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Abstract: With the increasing demand for doctors in chest related diseases,
there is a 15% performance gap every five years. If this gap is not filled with
effective chest disease detection automation, the healthcare industry may face
unfavorable consequences. There are only several studies that targeted X-ray
images of cardiothoracic diseases. Most of the studies only targeted a single
disease, which is inadequate. Although some related studies have provided
an identification framework for all classes, the results are not encouraging
due to a lack of data and imbalanced data issues. This research provides
a significant contribution to Generative Adversarial Network (GAN) based
synthetic data and four different types of deep learning-basedmodels that pro-
vided comparable results. The models include a ResNet-152 model with image
augmentation with an accuracy of 67%, a ResNet-152 model without image
augmentation with an accuracy of 62%, transfer learning with Inception-
V3 with an accuracy of 68%, and finally ResNet-152 model with image
augmentation but targeted only six classes with an accuracy of 83%.
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1 Introduction

Cardiothoracic diseases are serious health problems that may lead to disorders Affecting the
organs and tissues [1]. These cardiothoracic diseases are Affecting people at an alarming rate due
to environmental factors. The air gets more polluted every day, and this pollution is inhaled,
causing these diseases to develop [2]. To diagnose these cardiothoracic diseases, a chest X-ray
(CXR) is examined by a radiologist [3]. As more people get affected, doctors are becoming scarce,
especially in developing countries. However, with the advent of image processing tools, the task of
diagnosing these cardiothoracic diseases has seen significant progress [4]. Many researchers have
put in work to see how the problems associated with medical images can be mitigated by using
neural networks [5,6].
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A neural network is a mathematical model of neurons, also defined as a network capable
of approximating arbitrary functions mathematically based on the universal approximation theo-
rem [7]. This means that the neural network uses a set of algorithms modeled with the primary
purpose of recognizing patterns to classify and cluster a dataset after being trained [8,9]. The
training is done by feeding the neural network a large raw dataset, which it uses to recognize
numerical patterns in vectors [10].

In this research, we adopted Convolutional Neural Network (CNN) as a class of deep neural
networks to propose a generative adversarial network (GAN)-based model to generate synthetic
data for training the data as the amount of the data is limited. We will use pre-trained models,
which are models that were trained on a large benchmark dataset to solve a problem similar to
the one we want to solve. For example, the ResNet-152 model we used was initially trained on
the ImageNet dataset.

Other researches in the field of the cardiothoracic disease include: Ganesan et al. [11], who
used a Keras framework to classify CXRs to predict lung diseases, reported accuracy of 86.14%,
Rajpurkar et al. [12] used pixel-wise annotated DRRs data to learn an unsupervised multi-organ
segmentation model on X-ray images, Salehinejad et al. [13] proposed a binary classifier for the
detection of pneumonia from frontal-view chest X-rays, Irvin et al. [14] used a DCGAN tailored
model designed for training with X-ray images where a generator is trained to generate artificial
chest X-rays, Irvin et al. [14] trained several models to detect 14 different cardiothoracic diseases,
Chandra et al. [15] used five different models to identify pneumonia and reported 95.631% as the
best accuracy. A comprehensive literature review of related works is seen in Tab. 1.

Table 1: A comparison of the chest diseases diagnoses

References Method Findings Gaps identified

[16] Used a Keras framework to
classify and predict lung
diseases in CXRs by training
40000 CXRs obtained from
NIH dataset using a depth
wise separable convolution.

The proposed model has a
training accuracy of 86.14%
and a validation accuracy of
85.62%.

The accuracy of the model
gets better as the number of
epochs for training was
increased.

[2] Used pixel-wise annotated
DRRs data to learn an
unsupervised multi-organ
segmentation model on X-ray
images. A deep
image-to-image network for
multi-organ segmentation on
the labeled DRRs data
was trained.

The proposed model
framework takes synthetic
labeled DRR images as input
and can produce meaningful
segmentation results on real
X-ray images without any
ground truth annotations.

Nodule annotations directly
on 2D X-ray images are quite
challenging and
time-consuming due to the
projective nature of the X-ray
imaging.

(Continued)
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Table 1: (Continued)

References Method Findings Gaps identified

[12] A binary classifier for the
detection of pneumonia from
images of frontal-view
chest X-rays.

The CheXNet model
proposed achieve an f1 score
of 0.435 (95% CI 0.387,
0.481).

When comparing the
CheXNet model and the
radiologist’s diagnosis, there
is an F1 difference of 0.051
(95% CI 0.005, 0.084). Since
this does not contain 0,
CheXNet is therefore higher.

[13] A DCGAN tailored model
designed for training with
X-ray images where a
generator is trained to
generate artificial CXRs.

The proposed model has an
approximate accuracy of
70.87% for DS1, 58.90% for
DS2, and 92.10% for DS3.

The model obtained its best
accuracy when trained on an
augmented dataset with
DCGAN synthesized CXRs
to balance the imbalanced
real dataset (D3).

[14] Models were trained to take
input as a single-view chest
radiograph and output the
probability of each of 14
observations. Several models
were trained to find the one
with the best accuracy.

DenseNet121 produced the
best accuracy and was used
for the research.

The models are limited to the
CheXpert database and liable
to over-fitting.

[15] Five benchmarked classifiers
namely: Multilayer Perceptron
(MLP), Random Forest,
Sequential Minimal
Optimization (SMO),
Classification via Regression,
and Logistic Regression
classifiers are used for
pneumonia detection.

Of all the classifiers, the
logistic regression has the
highest accuracy of 95.631%.

The model is limited to only
analysis on non-rigid
deformable registration driven
automatically lung regions
and segmented ROI confined
feature extraction.

Previous works used state-of-the-art techniques and got significant results with one or two
cardiothoracic diseases but could lead to misclassification. In our work, we adopted GANs to
synthesize the chest radiograph (CXR) to augment the training set on multiple cardiothoracic
diseases to efficiently diagnose the chest diseases in different classes, as shown in Fig. 1. In this
regard, our significant contributions are classifying various cardiothoracic diseases to detect a
specific chest disease based on CXR, use the advantage of GANs to overcome the shortages
of small training datasets, address the problem of imbalanced data; and implementing optimal
deep neural network architecture with different hyper-parameters to improve the model with the
best accuracy.

The rest of the manuscript is organized as follows: In Section 2, we have reported a dataset
and its analytics. Section 3 elaborates on the proposed solution’s overall methodology and shows
all deep learning models with different hyper parameters and a comparison of the results. Section
4 discusses the outcomes in the results and analysis section. Finally, the conclusion is drawn in
Section 5 with some discussion regarding limitations and future works.
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Figure 1: A pie chart showing the 14 underlined diseases related to chest that addressed by
this study

2 Data and Methods

Training of deep learning models requires big data and requires much computational power—
practical training and validation. As more data is gathered for a deep learning model, it becomes
more effective and more accurate as the model is prone to over-fitting with insufficient data. This
research used a state-of-the-art dataset from [17], and it contains 108,948 frontal-view radiographic
images of 32,717 different patients. The dataset is further classified into six major classes of
cardiothoracic diseases, as seen in Tab. 2.

Table 2: Six classes of chest related diseases in the dataset used

Thoracic diseases No. of cases

Infiltration 16,421
Effusion 12,921
Atelectasis 11,610
Nodule 6,971
Mass 6,046
Pneumothorax 5,793

The model also requires a class for X-rays with no thoracic disease; hence we collected 49,186
images for that. Although the images of remaining classes are not enough for proper training to
successfully create it without risk of over-fitting, we were able to resolve the problem by obtaining
more images from the dataset of the Kaggle challenge [18] as well as exploiting the synthetic
dataset generated by state-of-the-art GAN model. The details can be seen in Section 4. GAN
automatically discovers and learns the regularities or patterns in input data in such a way that
the model can be used to generate or output new examples that could be drawn from the original
dataset, as seen in Fig. 2. This means that GAN will create possible inputs from what it has
learned from the inputs from the original dataset making more available for training.
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Figure 2: Generative adversarial network (GAN) model

We used python’s matplotlib library to graphically represent the distribution of all the various
cardiothoracic diseases and those without the cardiothoracic disease. Furthermore, the familiar
X-ray images (without cardiothoracic disease) used in our study have the highest frequency,
higher than the combined cardiothoracic diseases. When comparing the cardiothoracic disease
frequencies, the infiltration data has the highest frequency, while consolidation has the lowest
frequency, as seen in Figs. 3 and 4.

In Fig. 3, we examined each of the pathologies using the pixel distribution. Moreover,
the datasets we used are imbalanced, and the following observation can be deduced from
Figs. 3 and 4:

• Infiltration, Effusion, Atelectasis, Nodule, Consolidation, Pleural Thickening, Emphysema, and
Hernia affected more males compared to females based on the available data used for
this analysis.

• Pneumothorax, Cardiomegaly, Edema, and Fibrosis affected more females compared
to males.

• Cardiomegaly affects individuals starting around the age of 10 years old but is most
common between the ages of 35–60, with a median age of around 50.

• Effusion has a similar distribution with Cardiomegaly but with a median around 55.
• Atelectasis affects individuals mostly between the ages of 25 and upwards. There is one case
under the age of 25 which appeared to be an outlier.

• Mass effect mostly affects teenagers and adults with an extreme case occurring in a child.
• Emphysema is mostly seen in adults above 40 years old while those below 40 appeared to
an outlier.

The dataset gathered for this research is highly imbalanced as the number of individuals
without cardiothoracic disease (49,186) is significantly higher than others. This is an issue as
it makes training of the model very difficult to avoid the over-fitting problem. To remedy this
problem, a GAN is used as its primary purpose is to learn regularities and make a small dataset
useable for training. After the GAN was applied, we went further to seek multiple physicians’
opinions in the cardiothoracic. Field to ensure that there are no errors in the dataset.
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Figure 3: Gender wise distribution of chest related diseases
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Figure 4: Age wise distribution of chest related diseases

Next, we clustered each of our classes of cardiothoracic diseases into separate folders and
further divided each folder into training and validation sets. These sets contain the label of each
class as it would be used in creating the models. These training and validation sets could not be
used the way they are as they have to be reshaped and normalized. Therefore, we reshaped them
into (150, 150, 3) and normalized them. The images needed to be rotated in all angles because
some images might have been uploaded the wrong way. This was done by augmenting the images.
The labels were then encoded using one-hot coding, and the array was shaped into (128, 128, 3).
These were saved as pickle files to be used later in the model creation.

2.1 ResNet
As the neural network’s depth increases, the training process becomes more tedious, and

the convergence time increases significantly. At the instant, when a deep neural network starts
to converge, they are exposed to degradation issues [19]. For example, the network’s accuracy
becomes stagnant due to saturation, and eventually, the accuracy starts degrading rapidly.

He et al. [19] proposed a deep neural network to mitigate the issues mentioned above. This
study’s basic idea is to incorporate a residual mapping to which the layers of the neural network
will fit. The basic building block of ResNet is presented in Fig. 5.

The residual block serves two purposes. First, when the input and output dimensions are
equal, the identity short, i.e., x assists in the computation of the output as presented in (1).

y= F (x,wi)+x (1)
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Figure 5: Residual block which is used in the design of ResNet architecture [19]

On the contrary, when the dimensions change, the short will perform the identity mapping
from the input with zero-padding to increase the dimensions. The dimension shortcut assists in
computing the dimension using 1 Ö 1 convolution operation represented as (2).

y= F (x,wi)+wsx (2)

This architecture makes ResNet very efficient in terms of accuracy, and the depth of the
network can be considerably increased. He et al. [19] presented a ResNet with a depth of 152
layers, i.e., approximately eight times the well-known VGG16 [20]. However, the complexity of
the former is still less than the later studies [21,22]. Besides, the convergence rate of ResNet is
significantly faster, with ResNet-34 achieving a top-five validation error of 5.71% and ResNet-152
achieving a top-five validation error of approximately 4.49%.

3 Experimental Analysis and Results

Different hyper parameters were used, and the various results were compared to improve the
proposed model, as shown in Tab. 3. We used ResNet-152 architecture (Fig. 5) in three models
that can increase in size without acquiring new images. This is done by duplicating the images
with some variation so the model can learn from examples.

Table 3: The proposed models and comparisons of their results

Models Augmentation Accuracy Total
trainable
parameters

Max
Pooling:
#layers

Batch:
#layers

Optimizer

ResNet-152 Yes 0.67 3,479,631 4 10 Adam
ResNet-152 No 0.62 3,657,221 3 10 Adam
Transfer learning
(Inception-V3)

– 0.68 38,551,567 False – RMSprop

ResNet-152 with 6
targeted classes

Yes 0.83 38,543,367 False 100 RMSprop

Tab. 3 shows the four proposed models’ comparisons with their experimental analysis and
results with 50 epochs in training. Conv2D is implemented in the feature map’s structure in each
layer of the proposed CNN to transform the X-ray images into abstract representations. Then,
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Maxpooling is utilized to decrease the dimensions of the output size. The dropout layer (0.5 or
0.2) is used either before or after the flattened layer to fix the over-fitting problem.

In the first model, we built four layers of convolutions, each followed by a Maxpooling layer.
The model has one flattened layer followed by one dropout layer, then finally, two fully connected
layers at each end. An Adam optimizer is used. As for the activation function, a leaky ReLU
function is used. All these are used to train a multi-class model with 14 classes for our various
cardiothoracic diseases with a validation accuracy of 67%. Tab. 3 shows the details of the model
that was developed.

The next model uses the same model (ResNet) but without image augmentation. It is clear
from Tab. 3 that a deep convolutional model with 512 hidden layers is used with the ReLU
activation function. SoftMax is used to activate the output layer with 14 target classes of car-
diothoracic disease. Extra batch normalization layers have been included after every Conv2D and
dense layers to help distribute normalization in each batch. The validation accuracy is around
62% in predicting cardiothoracic disease in X-rays using a multi-class classification of 14 target
labels. The model shows about 5% decline over model 1.

The third model is a transfer learning method utilizing Inception-V3. This transfer learning
involves reusing an already developed model for a task as the starting point for a second task
model. For this research, we used a pre-trained inception-V3 model, which has 1024 fully con-
nected layers and the ReLU activation function without batch normalization layers as we used
more parameters. To remedy the over-fitting issue, a dropout of 0.2 is used, and SoftMax is also
used to output 15 classes. The validation accuracy is around 68% in predicting cardiothoracic
diseases in X-rays using a multi-class classification of 14 target labels. In general, the validation
accuracy of the model is good compared to model 2. However, it is not a significant improvement
compared to the original model 1.

The last optimized model targeted six classes of the original 14 classes. A replica of the first
model which used image augmentation in the convolutional neural network is used, but the num-
ber of target classes is reduced to 6 from the original dataset. This model has all the parameters of
the first model for the image augmentation which are as follows: rotation range= 40, width shift
range 0.2, height shift range= 40, shear range= 0.2, zoom range= 0.2, horizontal flip= true, and
fill mode= nearest. Notably, this proposed model has an advantage over the previous models, and
thus, model 4 of the modified ResNet-152 achieves a much better accuracy at 83%. It is a perfect
improvement compared to the previously analysed models. Moreover, the validation accuracy of
model 4 increases from around 67% to approximately 83%.

4 Discussion

Four different deep learning models were developed for the automatic detection of vari-
ous cardiothoracic diseases using X-ray images of the chest. After completion of training and
validation of the models, we recognize the following:

• Model 4 is a replica of model 1 but with a reduced target class to 6, using all the label
samples greater than 100 with a rotation range of 40 and a shift of 0.2. Thus, means model
4 is significantly affected by clustering approach so that the accuracy increased from 0.6721
to 0.83.

• The ResNet-152 without image augmentation has a training accuracy of 99% and a
validation accuracy of 62%. This model seems to over fit the training data.

• More training data with balanced classes will significantly increase model accuracy.
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• Image augmentation increases the accuracy of the model in predicting cardiothoracic
diseases from an X-ray.

• More training data for other rare cases will increase the model performance.
• More training data will increase the model performance in predicting cardiothoracic disease

from an X-ray.
• Using a pre-trained model can speed up training and increase model accuracy.

5 Conclusion and Future Work

This research employs the advantages of computer vision and medical image analysis to
develop an automated model with the clinical potential for early detection of the disease. Using
deep learning models, the research aims to evaluate the effectiveness and accuracy of different
convolutional neural network models in the automatic diagnosis of cardiothoracic diseases from
X-ray images compared to diagnosis by experts in the medical community.

After successfully training and validating the models we developed, ResNet-152 with image
augmentation proved to be the best model for the automatic detection of cardiothoracic disease.
However, one of the main problems associated with radiographic in-depth learning projects and
research is the scarcity and unavailability of enough datasets, a critical component of all deep
learning models as they require many data for training. This is why some of our models had
image augmentation to increase the number of images without duplication. As more data are
collected in chest radiology, the models could be retrained to improve the accuracy of the models
as deep learning models improve with more data. The future of Artificial Intelligence in terms of
cardiothoracic diseases are unlimited. As more data becomes available, training and testing of dif-
ferent deep learning models will be possible. Multi-classification techniques are required with huge
datasets for effective, efficient, and accurate detection of various cardiothoracic diseases. Hence,
we are aimed to bring transfer learning in the pre-trained model to use the learning procedures
of top deep learning models. We also intended to carry out some optimization algorithms for the
automation of hyper parameters in the deep learning models.
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