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Abstract: A brainwave classification, which does not involve any limb move-
ment and stimulus for character-writing applications, benefits impaired peo-
ple, in terms of practical communication, because it allows users to command
a device/computer directly via electroencephalogram signals. In this paper, we
propose a new framework based on Empirical Mode Decomposition (EMD)
features along with theGaussianMixtureModel (GMM) andKernel Extreme
Learning Machine (KELM)-based classifiers. For this purpose, firstly, we
introduce EMD to decompose EEG signals into Intrinsic Mode Functions
(IMFs), which actually are used as the input features of the brainwave classifi-
cation for the character-writing application. We hypothesize that EMD along
with the appropriate IMF is quite powerful for the brainwave classification,
in terms of character applications, because of the wavelet-like decomposition
without any down sampling process. Secondly, by getting motivated with
shallow learning classifiers, we can provide promising performance for the
classification of binary classes, GMM and KELM, which are applied for
the learning of features along with the brainwave classification. Lastly, we
propose a new method by combining GMM and KELM to fuse the merits of
different classifiers. Moreover, the proposed methods are validated by using
the volunteer-independent 5-fold cross-validation and accuracy as a standard
measurement. The experimental results showed that EMD with the proper
IMF achieved better results than the conventional discrete wavelet transform
(DWT) feature. Moreover, we found that the EMD feature along with the
GMM/KELM-based classifier provides the average accuracy of 77.40% and
80.10%, respectively, which could perform better than the conventional meth-
ods where we use DWT along with the artificial neural network classifier
in order to get the average accuracy of 80.60%. Furthermore, we obtained
the improved performance by combining GMM and KELM, i.e., average
accuracy of 80.60%. These outcomes exhibit the usefulness of the EMD

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014433


3030 CMC, 2021, vol.66, no.3

feature combining with GMM and KELM based classifiers for the brainwave
classification in terms of the Character-Writing application, which do not
require any limb movement and stimulus.

Keywords: Brainwave classification; character-writing application; EMD;
GMM; KELM; score combination

1 Introduction

Human communication is an essential activity of passing and interpreting information from
one person to another, i.e., exchanges of opinions, emotions, ideas, or facts. Unfortunately, tradi-
tional communication is a challenging process for impaired people who does not possess speaking
power along with the muscle movements. This motivates researchers to explore the alternative
systems [1,2] to help defective people in terms of communication.

So far, brain-computer interface (BCI) [3,4], which enables people to communicate with a
computer, has been developed to help defective people to express their thoughts. The standard
concept of BCI is to convert measured brain signals into actions such as texts and emo-
tions [5]. Moreover, scholars have explored BCI-based researches based on three types of brain
responses: Event-related potentials (ERP), steady-state visual evoked potential (SSVEP) and motor
imagery (MI).

An ERP brain response is an electrophysiological response based on the direct effect of motor
events. Normally, auditory [6], visual [7] and tactile stimulation [8] are introduced to evoke ERP
signals. When the evoked ERP response was measuresd/analyzed, BCI system could convert the
user’s intention into several actions depending on the application. For example, in [9], the authors
proposed to use P300 wave being an ERP component for communication, known as P300 speller.
With this speller, defective users with motor disabilities could choose alphabets based on the
changed P300 wave via visual perception with the stimulus on a computer screen.

Furthermore, an SSVEP brain response is another type of visually evoked brain response,
which presents natural responses in terms of human visual perception at specific frequencies (i.e.,
flickering stimulus [10]). When a person focuses the visual stimulus on a monitor screen at a steady
flickering frequency, the electrical signals with the same frequency as the stimulus signal can be
generated by the human brain. For this reason, it is believed to detect what a user is focusing on
the visual stimulus such as liquid crystal display (LCD) and cathode ray tube (CRT) monitors [11].
For example, in [12], the authors presented a spelling application based on the BCI technique
by using the SSVEP response. With this speller system, the 45-target characters were introduced
with flickers at different frequencies and a sinusoidal stimulation approach was applied to display
visual stimuli via an LCD screen. The user could select the desired character by focusing on the
designed position of each character.

The final format of brain response is MI response, which is based on the mental imagination
of motor behavior/movement. A conventional concept in BCI using the MI response is to convert
the user’s intention based on the mental imagination. For example, in [13], a MI based BCI
system was introduced for communication, known as a MI-speller. With this system, the users
could perform the desired mental imagination in terms of controlling the arrow point to the
specific hexagon of the desired character. In all the above mentioned BCI, a constant stimulation
and limb movements are needed for generating brain responses, which may lead to non-practical
applications especially for defective persons. Thus, the BCI system still requires a design where it
does not require any stimulation and limb movements.
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Different from the above mentioned studies, the brainwave classification without any limb
movement and stimulus for character-writing applications were proposed in [14]. The aim of
this system was to detect a multi-line and circle imagination characters. The experimental results
showed that this method was useful to detect the circle/straight line imagination, where the
estimated results could be transformed into self-designed Morse code symbols as shown in Fig. 1.
However, the system relied on the pair of EEG channels (third and fourth frontal lobes: F3 and
F4), which leads to the indistinct detection due to the joint decision. To address this problem,
the authors of [15] proposed a simple and effective system, where the effective architecture used a
single EEG channel to replace the pair of EEG channels. By comparing the pair of EEG chan-
nels, the experimental results insisted that the system using the single effective EEG channel (F3)
could give better performance in terms of the average accuracy. Although the above-mentioned
systems could provide the convenient and convincing communication application between human
brain and computer, the exploitation of alternative feature and classifier is required to improve
the detection of imagined characters.

Figure 1: Morse code symbols based on circle and/or straight line characters

In this paper, we propose a new method by using EMD feature along with GMM and
KELM-based classifiers. For this purpose, firstly, we explore empirical mode decomposition
(EMD) to decompose the EEG signal into intrinsic mode functions (IMFs), which are used via
six statistical features as the input features of the brainwave classification for the character-writing
application. Secondly, by getting inspired by [16,17] that the shallow learning classifiers provide the
promising performance for the classification of binary classes, Gaussian mixture model (GMM)
and kernel extreme learning machine (KELM) are applied to distinguish between a circle and
straight line characters. Finally, the score combination of GMM and KELM is proposed to
fuse the advantages based on different classifiers. The contributions and novelties are summarized
as follows:

1) EMD is first introduced to decompose EEG signals into IMFs that are used as
an input feature of the brainwave classification for the character-writing application
without any limb movement and stimulus. With this feature extraction method, the
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brainwave classification system could provide better accuracy compared to the conventional
DWT information.

2) We find that the GMM and KELM methods are better classifiers compared to
the conventional ANN-based classifier for distinguishing between a circle and straight
line characters.

3) The score combination of GMM and KLEM is proposed in this study. It can fuse the
complementary information based on different classifiers to further improve the reliability
of the detection decision.

The rest of this article is organized as follows: Section 2 introduces the proposed method-
ology, including data collection, feature extracted by EMD, GMM-based classifier, KELM-based
classifier and the score combination of GMM and KELM. Section 3 describes the experimental
setup and evaluation rule for our experiment. The performances of brainwave classification are
investigated and discussed in Section 4. Finally, Section 5 summarizes the paper and describes the
future work.

2 Proposed Methodology

In this section, we provide an overview of the data collection used for the experiment. In
addition, the feature extraction and classifiers are described for the brainwave classification in
terms of character-writing applications.

2.1 Data Collection
For the data collection, Emotiv EPOC Neuroheadset [18], as shown in Fig. 2, is used for

imaging of neural activity of the lobes frontalis. The Raw EEG data were recorded from sixteen
electrode positions, including AF3, AF4, F7, F3, F4, F8, FC5, FC6, T7, T8, P7, P3, P4, P8, O1
and O3 as seen in Fig. 3. The signals are sent through the Bluetooth technology and are sampled
with a 128 Hz sampling rate.

Figure 2: Emotiv EPOC neuroheadset used as EEG signal acquisition hardware
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Figure 3: Electrode positions of Emotiv EPOC neuroheadset

In terms of the recording data, five healthy volunteers participated in the study. Two charac-
ters, including a circle and straight line characters are used for the animation as shown in Fig. 4.
We followed the process as advised in [14]. Fig. 5 shows the procedure of the data collection. The
setup is as follows: 1) A volunteer first wears Emotiv EPOC neuroheadset on his/her head and
keeps on the meditation for around 60 sec as illustrated in Fig. 5a. 2) The volunteer is then tested
for imagining the circle/straight line characters as illustrated in Fig. 5b. 3) the volunteer will rest
for 120 s after imagining the characters for about 30 times.

2.2 Feature Extraction
EMD has been proved to be effective for non-stationary time-series analysis [19], which is one

of feature extraction methods that has attracted a lot of attention, in terms of the classification of
brainwaves, because of its promising adaptability [20–22]. EMD can be implemented to decompose
the EEG signal into different IMFs that provide underlying intra-wave modulated components
in the signal. IMFs must satisfy two conditions: 1) the difference between the total number of
extreme and total number of zero-crossing is zero or one 2) the mean value of the envelope
defined by the local maxima and local minima is (very close) zero.
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(a) (b)

Figure 4: Two characters used for the animation: (a) Circle and (b) Straight line

(a) (b) (c)

Figure 5: The procedure of the data collection consisting of three parts: (a) Preparation, (b) Imag-
ination, (c) relaxation

The steps of EMD algorithm are calculated as follows:

Step 1: Detect the maximum and minimum values of the signal s (n).

Step 2: Apply the cubic spline interpolation to obtain the envelopes emax (n) and emin (n).

Step 3: Compute the local mean as

m (n)= emax (n)+ emin (n)
2

(1)

Step 4: Subtract m (n) from s (n) to get the modal function c (n) as

c (n)= s (n)−m (n) (2)
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Step 5: Acquire the residue as

r (n)=m (n)− c (n) (3)

Step 6: Decide whether r (n) an IMF or not based on the two basic conditions for IMFs
mentioned above.

Step 7: Repeat step 1 to 6 until r (n) cannot be decomposed into the IMF. Finally, the original
signal is decomposed into N IMFs and the residual component as follow:

s (n)=
N∑
i=1

ci (n)+ r (n) . (4)

In this paper, the IMFs are not directly used as an input of classifier because of the
problem of variable-sized windows. If M is the length of a sub-band, X {x1,x2, . . . ,xM} and
Y {y1,y2, . . . ,yM} are two adjacent sub-bands (IMFs). The information can be defined by using six
statistical features [14,22] including mean, average power, standard deviation, ratio of the absolute
mean values of adjacent sub bands, skewness and kurtosis. Tab. 1 shows the details of each
statistical feature.

Table 1: Six statistical features

Statistical feature names Formula

Mean (μ) μ= 1
M

M∑
j=1

|xj|

Average power (μ) μ=
√√√√ 1
M

M∑
j=1

x2j

Standard deviation (σ ) σ =
√√√√ 1
M

M∑
j=1

(
xj −μ

)

Ratio of the absolute mean values of adjacent sub bands (Ra) Ra=
∑M

j=1

∣∣xj∣∣∑M
j=1

∣∣yj∣∣
Skewness (Sk) Sk=

√√√√ 1
M

M∑
j=1

(
xj −μ

)3
σ 3

Kurtosis (Ku) Ku=
√√√√ 1
M

M∑
j=1

(
xj −μ

)4
σ 4
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2.3 Brainwave Classifiers
Although deep learning classifiers, such as deep neural network (DNN) [23], convolutional

neural network (CNN) [24] and Long short-term memory (LSTM) [25], have been proved to be
effective for the brainwave classification, it is well known that deep classifiers strongly depend
on the training data. Moreover, we observe from [26] that deep neural network using multi
layers cannot give convincing results for the binary classification. This motivates us to believe
that shallow learning classifiers are more efficient than deep learning classifiers for the binary
classification. In this paper, the GMM and KELM approaches are adopted for the brainwave
classification. In addition to using the GMM/KELM approach alone, the combined scores of
GMM and KELM are proposed to fuse the merits based on different classifiers. The details are
described as follows.

2.3.1 GMM-Based Classifier
GMM has received a great amount of attention, in terms of the brainwave classification,

because of the Gaussian mixture-based ability to model complicated densities. It also provides
promising results for the binary classification as suggested in [27]. In this paper, the GMM is
implemented to discriminate the circle from the line imagination. It can represent each class
as follow:

P (O |λ)=
℘∑
k=1

wkg

(
O

∣∣∣∣∣μk,
∑
k

)
, (5)

λ=
{
wk,μk,

∑
k

}℘

k=1

, (6)

where O defends the feature vectors augmented by six statistical features, wk is the kth mixture
weight, g

(
O
∣∣μk,

∑
k

)
is a D-variate Gaussian density function with m and diagonal covariance

matrix,
∑

and ℘ is the number of Gaussians.

For the testing phase, the decision of circle/line imagination class is computed by the
logarithmic likelihood ratio as:

�GMM (ϒ)= log (ϒ |λcircle )− log (P (ϒ |λline )) , (7)

where ϒ is the testing feature vectors, λcircle and λline define the GMMs for circle and line
imagination classes, respectively.

2.3.2 KELM-Based Classifier
KELM has been proved to be an efficient algorithm for many classification tasks and can also

provide an expectable performance for the brainwave classification. This is because of the good
generalization, based on the original extreme learning machine (ELM) [28] and the advantage of
the kernel function [29], in terms of making effective classification tasks to map nonlinear features.
KELM is based on ELM where the mapping kernel function is introduced to replace the hidden
layer of ELM. It achieves higher efficiency compared to other methods.

In KELM, we can directly use kernel functions for the feature mapping. Kernel matrix can
be represented by using the following equation:

ΩKELM =HHT (8)
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where H is the hidden layer output matrix. ΩKELM is a kernel function: ΩKELM = h (xr) ·h (xs)=
K (xr,xs).

Because the Moore–Penrose generalized inverse is used to compute the output weights, the
output function of the KELM-based classifier can be expressed as below:

f (x)=

⎡
⎢⎢⎢⎢⎢⎢⎣

K (x,x1)

K (x,x2)

...

K (x,xN)

⎤
⎥⎥⎥⎥⎥⎥⎦
(
1
C

+ΩKELM

)−1

T (9)

where T denotes the target (label) matrix, similar to SVM. I is the identity matrix. C denotes the
regularization coefficient.

For the testing phase, the decision of circle/line imagination classes is based on the difference
of two classes as below:

�KELM (ϒ)=P (tcircle |f (ϒ))−P (tline |f (ϒ)) (10)

where P (tcircle |f (ϒ)) and P (tline |f (ϒ)) are the posterior probability of circle and line imagina-
tion. In this paper, we employ the radial basis function as an effective kernel function. Further
details of KELM can be found in [29].

2.3.3 Score Combination of GMM and KELM
Score combination gives a mechanism to fuse the merits of different classifiers in order to

increase the decision performance. It has been adopted in many applications [16,30,31]. In this
paper, the score combination is also used in our experiment. Fig. 6 shows the block diagram of
score combination of GMM and KELM. To achieve the combined score, the scores of GMM
and KLEM are linearly coupled by the following equation:

�COMB (ϒ)= α�GMM (ϒ)+ (1−α)�KELM (ϒ) (11)

where �GMM (ϒ) and �KELM (ϒ) are the scores of GMM and KELM model, respectively.
Moreover, α is a weighing coefficient.

Figure 6: Block diagram of score combination of GMM and KELM

3 Experimental Setup and Evaluation Rule

In terms of recording the data, since previous work showed that the signals from two
electrodes which are positioned at F3 and F4 are the suitable electrodes for the character-
writing application as summarized in [14], the data from two these electrodes positions are used
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in our experiment. Here, the evaluation data which used in the experiment follows previous
studies [14,15]. Therefore, each volunteer is required to image circle characters by 100 times and
straight line characters by 100 times so that we obtain 500 circle signals and 500 straight line
signals to investigate the proposed methods.

In terms of the feature extracted with the help of EMD method, we used the cubic spline
interpolation to interpolate maxima and minima in order to obtain the upper and lower envelope.
The first 5 IMFs based on EMD was extracted by using the six statistical methods as explained
in Section 2.2. Fig. 7 shows the first 5 IMFs before the statistical methods.

Figure 7: Signals of the first five IMFs/sub bands obtained through EMD method where
(a) first columns are derived from circle characters and (b) second columns are derived from
line characters

In the GMM-based classifier, the two GMMs for a circle and line imagination classes have
256-components. Motivated by [27], the expectation maximization algorithm along with the like-
lihood estimation is adopted to train these GMMs. For the KELM-based classifier, we found
that high values of regularization coefficient and kernel parameter perform a similar performance
compared with low values of regularization coefficient and kernel parameter because high values
of regularization coefficient and kernel parameter are suitable for the high-dimensional feature
space. As a result, minimum low values of regularization coefficient and kernel parameter with
the best performance are selected. Here, the regularization coefficient and kernel parameter of the
KELM were set to 100. For the score combination, the uniformly-weighted average as summarized
in [32] is applied in this study, so the weighing coefficient is set to 0.5.

All the proposed classifier models were evaluated by using the volunteer-independent 5-fold
cross-validation. In each fold, the data sets from four different volunteers were used to train
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the model and the data sets from the remaining volunteers were used to evaluate the classifier
model performance. From the volunteer-independent 5-fold cross-validation, 400 circle signals and
400 straight line signals were used to train the classifier model, while 100 circle signals and 100
straight line signals where the volunteer is different from the volunteers of training datasets were
used to investigate the trained model. To investigate the performance of each fold, the accuracy
performance is calculated as:

Accuracy (%)= TC+TS
TN

× 100 (12)

where TC and TS are the true circle and true straight line where the model correctly classifies the
circle and straight line classes, respectively. TN is the total number of testing trials.

4 Results and Discussion

4.1 Results of EMD Using Different IMF Information
Since EMD methods using different IMF information vary the accuracy of the brainwave

classification system, we need to find out the suitable IMF representation. Fig. 8 shows the results
of different IMF information based on the GMM-based classifier.
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Figure 8: Performance of different IMF information

As shown in Fig. 8, based on the GMM-based classifier, we can see that IMF 1 provided
the best average accuracy. This is because the IMF, obtained by the first time, has a wideband
frequency, which can give the difference between the line and circle character as seen in Fig. 7
(second row). Therefore, EMD with IMF 1 was used for all the next experiments.

Although our previous work reported that the pair of F3 and F4 provide the best result,
some study [15] showed that by using only one position could provide promising performance
for the brainwave classification. The F3 and F4 positions were investigated to find out the
suitable EEG position. Fig. 9 shows the comparison of F3 and F4 positions based on the
EMD-GMM-based classifier.
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From Fig. 9, we can note that the F3 position significantly provided better average accuracy
than the F4 position because the F3 position provided different information between the circle
and line imagination signals. This leads to the obvious statistical features along with the effi-
cient classifier. Similar trend can be found in [15]. Here, the best result with average accuracy
has a high reliability for practical application. Therefore, the F3 position was used for all the
next experiments.

4.2 Results of the Proposed Methods
In this subsection, the GMM, KELM-based classifier along with the fusion of GMM and

KELM were compared for the brainwave classification. Fig. 10 shows the results of the KELM-
based classifier along with the fusion of GMM and KELM.
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Figure 10: Performance of GMM-based classifier, KELM-based classifier, the score combination
of GMM and KELM in terms of accuracy (%)

As it can be seen in Fig. 10, the KELM-based classifier performed better than the GMM-
based classifier because KELM has high ability to distinguish the circle and straight line characters
accurately. Next, the score fusion of GMM and KELM provided an improved performance as
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compared to the individual GMM and KELM-based classifiers in term of average accuracy.
However, in case of the second and fourth volunteers, the score fusion can give worse performance
than single classifier because the scores of two classifiers are too different to combine the decision
merits. Similar trend can also be found in [33,34]. Here, the score fusion of GMM and KELM did
not perform according to our expectation since the fused score of GMM and KELM provided
the slightly improved performance as compared to the single KELM-based classifier. This is due
to using the same input feature as summarized in [35].

4.3 Comparison with Some Previous Systems
In this subsection, our previous systems where the results of DWT feature with the ANN-

based classifier was used as baseline systems [14,15] to compare the proposed system. In addi-
tion, the ANN using six statistical features extracted by EMD (IMF 1) was also used in the
comparison. Tab. 2 reports the comparison of proposed systems with the referred systems.

As it can be seen in Tab. 2, we can observe that the ANN using the IMF 1 information
outperformed the ANN using the DTW information (Gamma) because IMF 1 can provide more
distinct representation than the DTW information. This indicates that IMF 1 is powerful for
the brainwave classification in terms of the character-writing application. Next, we can find that
the GMM-based classifier performs better than the ANN-based classifier. This is because the
MSE function in the ANN-based classifier is non-convex function, making classifier ineffective
for the brainwave classification in terms of the character-writing application. In addition, the
KELM-based classifier can give the best performance in terms of individual classifiers due to
the advantage of kernel mapping. Finally, the score fusion of GMM and KELM provides the
best accuracy at 80.60% compared to the above mentioned systems because GMM and KELM
have complementary features based on different classifiers. These outcomes show the usefulness
of EMD feature with GMM and KELM-based classifiers for the brainwave classification based
on the character-writing application, which do not require any limb movement and stimulus.

Table 2: Comparison with some previous systems in terms of accuracy (%)

Feature extraction
method at channel

Classifier Accuracy

Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 Volunteer 5 Average

DWT at F3=F4 (our
implement set as
in [14])

ANN 70.50 69.50 62.00 66.00 73.00 68.20

DWT at F3 (result
in [15])

ANN 77.50 63.00 76.00 66.50 87.50 74.10

DWT at F4 (result
in [15])

ANN 60.50 52.00 45.00 53.00 57.00 53.50

EMD at F3 ANN 82.00 67.00 68.50 82.00 78.50 75.60
EMD at F3 (proposed) GMM 78.50 65.00 72.00 89.00 82.50 77.40
EMD at F3 (proposed) KELM 84.00 71.50 80.00 80.50 84.50 80.10
EMD at F3 (Proposed) GMM+KELM 84.50 71.00 81.00 81.00 85.50 80.60
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5 Conclusions

In this paper, we proposed the brainwave classification by using EMD along with GMM
and KELM for the character-writing application. For this purpose, we firstly explored the EMD
method to decompose EEG signals into IMFs, which were used via statistical features as the input
features of the classifiers. Secondly, the GMM and KELM methods were applied as classifiers.
Finally, the score combination of GMM and KELM was proposed to fuse the merits based
on different classifiers. The experimental results showed that the EMD with the proper IMF
outperformed the DTW information. Furthermore, we found that by using EMD with the GMM
and KELM-based classifier provided the average accuracy of 77.40% and 80.10%, respectively,
which performed better than using DWT with the ANN-based classifier that gave the average
accuracy of 74.10%. Moreover, the improved performance was obtained by combining the GMM
and KELM at the average accuracy of 80.60%. These outcomes exhibit the usefulness of the
EMD feature with GMM and KELM-based classifiers for the brainwave classification based on
the character-writing application, which do not require any limb movement and stimulus.

In the future, by getting inspired by [36], we have a plan to use new neuroheadsets such
as Emotiv EPOC+ and Open BCI neuroheadsets instead of EPOC neuroheadset with the aim
of further improving the performance. We would also like to combine the phase feature extrac-
tion [31,37] and the neural network-based bottleneck feature extraction [38] with the proposed
system in the future.
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