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Abstract: Android has been dominating the smartphone market for more than a
decade and has managed to capture 87.8% of the market share. Such popularity
of Android has drawn the attention of cybercriminals and malware developers.
The malicious applications can steal sensitive information like contacts, read per-
sonal messages, record calls, send messages to premium-rate numbers, cause
financial loss, gain access to the gallery and can access the user’s geographic loca-
tion. Numerous surveys on Android security have primarily focused on types of
malware attack, their propagation, and techniques to mitigate them. To the best of
our knowledge, Android malware literature has never been explored using infor-
mation modelling techniques. Further, promulgation of contemporary research
trends in Android malware research has never been done from semantic point
of view. This paper intends to identify intellectual core from Android malware lit-
erature using Latent Semantic Analysis (LSA). An extensive corpus of 843 articles
on Android malware and security, published during 2009–2019, were processed
using LSA. Subsequently, the truncated singular Value Decomposition (SVD)
technique was used for dimensionality reduction. Later, machine learning meth-
ods were deployed to effectively segregate prominent topic solutions with mini-
mal bias. Apropos to observed term and document loading matrix values, this
five core research areas and twenty research trends were identified. Further, poten-
tial future research directions have been detailed to offer a quick reference for
information scientists. The study concludes to the fact that Android security is
crucial for pervasive Android devices. Static analysis is the most widely investi-
gated core area within Android security research and is expected to remain in
trend in near future. Research trends indicate the need for a faster yet effective
model to detect Android applications causing obfuscation, financial attacks and
stealing user information.
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1 Introduction

Android has been dominating the smartphone market for more than a decade and has managed to capture
87.8% of the market share [1]. Affordability, agility and reliability of Android smartphones have encouraged
their use in e-commerce, banking, sending emails, using social media and marketing. Such popularity of
Android has drawn the attention of cybercriminals and malware developers. An exponential increase in
Android malware families has been observed by the research community. These malware families differ
in the way they attack, the type of vulnerabilities they exploit and the Android subsystem they target [2].
At times, these attacks may even propagate through application stores like Google play store [3]. The
malicious applications can steal sensitive information like contacts, read personal messages, record calls,
send messages to premium-rate numbers, cause financial loss, gain access to the gallery and access the
user’s geographic location. Popularity among users and continuously increasing Android malware attacks
has gained the attention of the researchers. Few of the benchmark literature reviews have also been done
by the research community [2,4–6].

These surveys have primarily focused on types of malware attack, their propagation, and techniques to
mitigate them. Few surveys also highlighted fundamental vulnerabilities of Android platforms. To the best of
our knowledge, Android malware literature has never been explored using information modelling
techniques. Further, promulgation of contemporary research trends in Android malware has never been
done from semantic point of view. This paper intends to identify intellectual core from Android malware
literature using Latent Semantic Analysis (LSA). LSA mimics the human brain to filter out semantics
from the text as it is mathematically proven to model words, synonyms, and metaphors to elaborate
various semantic aspects of qualitative literature [7–11]. LSA is reliably efficient in information retrieval
and query optimization [12,13]. Many researchers from different research fields have used LSA to
discover the research trends [10,14–17]. LSA identifies the entire of the contexts in which a word could
appear and learns to establish a common factor to represent underlying concepts. Keeping into
consideration other researches using information modeling techniques; the main contribution of this study
is to discover current trends, future research directions, and core research areas pertaining to Android
malware. To minimize opinion bias, K-means clustering was used to automatically map the document to
its closest possible topic solution.

The rest of the paper is organized as follows: The second section introduces the available materials and
methods along with the procedure to deploy LSA. The third section explains experimental results, different
topic solutions, research trends, core research areas and their mapping. Section 4 concludes the findings.

2 Materials and Methods

Automated topic modelling techniques require minimal human intervention and can process thousands
of articles in one go. However, manual review process does require human intervention at every step and can
be biased sometimes [7]. It is very difficult to manually review full length articles in large numbers. A great
manual effort is required to draw conclusions like research trends across large literature. At the document
level, one of the most useful ways to understand the text is by analyzing its topics. The process of
learning, recognizing, and extracting these topics across a collection of documents is called topic
modeling. Numerous well-formed algorithms are available to produce research trends and core research
areas within research field. In addition to it, numerous machine learning techniques could be used for
performing data analysis, visualization and interpretation of results. LSA is the fundamental and most
studied techniques in topic modeling. Papadimitriou et al. [18] investigated appropriate conditions for
applying LSA. Few of the researchers also performed decision making to analyze trends in blockchain
technology using Word2vec-based Latent Semantic Analysis (W2V-LSA) [19]. The experimental results
confirmed its usefulness and better topic modelling than tradition bibliometric methods. Initially, research
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trend analysis was also performed on doctoral dissertations and master’s theses for identifying future research
opportunities in the domain of blended learning [20]. Systematic information retrieval using automated and
semi-automated approaches in any field of research has itself become a trend. However, recent advancements
in text mining, information retrieval and topic modelling has gained attention of research community to
forecast research trends [21]. Text mining has also facilitated machine learning algorithms to enhance its
capability to mine latent information [22] from user review on websites, newspaper articles and social
media information analysis. Other techniques like probabilistic latent semantic analysis use uni-gram
format conversion of a word, which generally get fail to capture the specific context in the document
[23]. Further, n-gram format leads to decrease in efficiency of model due to wide dimensionality [24].
Owing to these probable limitations of probabilistic latent semantic analysis, LSA has been widely
accepted by research community to promulgate trends within research literature.

This section details the methodology to deploy LSA on Android malware literature. The keywords used
to search research articles and adopted inclusion-exclusion criteria for selecting articles are detailed here. A
manual search was performed across previously mentioned databases using the following search terms
“malware” OR “vulnerability” OR “security” OR “privacy” OR “monitoring” OR “application” OR
“smartphone” OR “android” OR “virus” OR “static” OR “dynamic” OR “detection” OR “data flow”
search keywords, with Android as prefix. Prominent research databases like Google Scholar, Mendeley,
ACM DL, Hindawi, Taylor and Francis, IEEE, Wiley and Scopus were searched to identify quality
literature related to Android malware. The inclusion and exclusion criteria followed for selection of
articles is mentioned in Tab. 1. The collected literature was pre-processed and organized using Mendeley
reference manager [25]. Mendeley helped to introduce standard formatting to all documents which were
indexed according to common objects.

Initially, a total of 1289 abstracts and titles of articles published during 2009–2019 were collected
by searching previously mentioned keywords. From amongst the collected documents, 251 duplicate
entries were removed. Remaining 1038 articles were accessed and evaluated as per decided inclusion/
exclusion criteria. Articles focusing on general malware (39), iOS (45), Symbian operating system (50),
windows (61) were excluded. Finally, we were left with 843 articles to be processed using LSA. Owing
to the required brevity of manuscript, the method to deploy LSA has been elaborated below with the help
of an example:

Assume Sample Doc1 and Sample Doc2 as documents within a given document corpus. The required
pre-processing and document-term matrix scores for identifying frequency of each term have been detailed in
Tabs. 2 and 3.

Sample Doc1: Malware application reads the unique device identifier to track the user’s device. Malware
applications can misuse user data like his or her phone numbers, contact list, calendar, etc.

Table 1: Inclusion and exclusion criteria

S. No. Inclusion criteria Exclusion criteria

1. Articles must be published in the time frame
2009-2019.

Articles that were focusing on an operating
system other than Android, e.g., BlackBerry,
Symbian, iOS, Windows were excluded.

2. Articles must have a focus on Android
security, malware analysis, and malware
detection and mitigation techniques.

Articles that did not focus Android security,
malware analysis, malware detection, mitigation
techniques and Android security threats were
excluded
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Table 2: Pre-processing procedure on sample documents

Steps Document
No.

Result

After Tokenization Doc1 [‘Malware’, ‘application’, ‘reads’, ‘the’, ‘unique’, ‘device’,
‘identifier’, ‘to’, ‘track’, ‘the’, ‘user’, ‘s’, ‘device’ ‘Malware’,
‘applications’, ‘can’, ‘misuse’, ‘the’, ‘user’, ‘data’, ‘like’, ‘his’, ‘or’,
‘her’, ‘phone’, ‘numbers’, ‘contact’, ‘list’, ‘calendar’, ‘etc.’]

Doc2 [‘Applications’, ‘can’, ‘track’, ‘down’, ‘the’, ‘exact’, ‘location’, ‘of’,
‘the’, ‘user’, ‘by’, ‘finding’, ‘the’, ‘wifi’, ‘network’, ‘or’, ‘tower’, ‘it’,
‘is’, ‘connected’, ‘to’ ‘‘Various’, ‘malware’, ‘applications’, ‘can’,
‘record’, ‘your’, ‘daily’, ‘usage’, ‘data’, ‘and’, ‘send’, ‘it’, ‘to’,
‘servers’, ‘Applications’, ‘can’, ‘access’, ‘the’, ‘message’, ‘logs’,
‘and’, ‘misuse’, ‘them’]

After Normalization Doc1 Malware application reads the unique device identifier to track the
user s device Malware applications can misuse the user data like his or
her phone numbers contact list calendar etc.

Doc2 Applications can track down the exact location of the user by finding
the wifi network or tower it is connected to Various malware
applications can record your daily usage data and send it to servers
Applications can access the message logs and misuse them

After Removing stop
words

Doc1 [‘Malware’, ‘application’, ‘reads’, ‘unique’, ‘device’, ‘identifier’,
‘track’, ‘user’, ‘device’, ‘Malware’, ‘applications’, ‘misuse’, ‘user’,
‘data’, ‘like’, ‘phone’, ‘numbers’, ‘contact’, ‘list’, ‘calendar’, ‘etc.’]

Doc2 [‘Applications’, ‘track’, ‘exact’, ‘location’, ‘user’, ‘finding’, ‘wifi’,
‘network’, ‘tower’, ‘connected’, ‘Various’, ‘malware’, ‘applications’,
‘record’, ‘daily’, ‘usage’, ‘data’, ‘send’, ‘servers’, Applications’,
‘access’, ‘message’, ‘logs’, ‘misuse’]

After Stemming and
Lemmatizing

Doc1 [‘malwar’, ‘applic’, ‘read’, ‘uniqu’, ‘devic’, ‘identifi’, ‘track’, ‘user’,
‘devic’, ‘malwar’, ‘applic’, ‘misus’, ‘user’, ‘data’, ‘like’, ‘phone’,
‘number’, ‘contact’, ‘list’, ‘calendar’, ‘etc.’]

Doc2 [‘applic’, ‘track’, ‘exact’, ‘locat’, ‘user’, ‘find’, ‘wifi’, ‘network’,
‘tower’, ‘connect’, ‘various’, ‘malwar’, ‘applic’, ‘record’, ‘daili’,
‘usag’, ‘data’, ‘send’, ‘server’, ‘applic’, ‘access’, ‘messag’, ‘log’,
‘misus’]

Character Filtering Doc1 [‘malwar’, ‘applic’, ‘read’, ‘uniqu’, ‘devic’, ‘identifi’, ‘track’, ‘user’,
‘devic’, ‘malwar’, ‘applic’, ‘misus’, ‘user’, ‘data’, ‘like’, ‘phone’,
‘number’, ‘contact’, ‘list’, ‘calendar’]

Doc2 [‘applic’, ‘track’, ‘exact’, ‘locat’, ‘user’, ‘find’, ‘wifi’, ‘network’,
‘tower’, ‘connect’, various’, ‘malwar’, ‘applic’, ‘record’, ‘daili’,
‘usag’, ‘data’, ‘send’, ‘server, ‘applic’, ‘access’, ‘messag’, ‘misus’]
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Sample Doc2: Applications can track down the exact location of the user by finding the WiFi network or
tower it is connected to. Various malware applications can record your daily usage data
and send it to servers

As the task is to mine the relevant terms that provide useful or quality information about the document,
the document-term matrix has to be replaced by Term-Frequency/Inverse Document Frequency (TF-IDF)
weights for further processing of the matrix. TF-IDF weight is a measure to interpret the importance of
a term to a document in a collection of the large corpus. TF-IDF works on the fact that relevant words
are not necessarily frequent words. The TF-IDF weight is build-up of two terms that need to be
calculated beforehand:

(i) TF (Term Frequency): It provides the frequency of a term (TF) with normalized value, which can
be computed as the division of the number of occurrences of a term in a document and the total
number of terms in that document, refer Eq. (1). Sample TF scores in context with an example
taken are shown in Tab. 4.

TF t; dð Þ ¼ Number of occurences of term t appears in document d

Total number of terms in the document
(1)

(ii) IDF (Inverse Document Frequency): IDF indicates the importance of each term within the
document. IDF is calculated as a log of the division of count of documents in the corpus divided
by the count of documents where the specific term appears. However, it is quite obvious that

Table 4: Term frequency scores for each sample document

Documents Term frequency scores

Doc1 {‘malwar’: 0.1, ‘applic’: 0.1, ‘read’: 0.05, ‘uniqu’: 0.05, ‘devic’: 0.1, ‘identifi’: 0.05, ‘track’:
0.05, ‘user’: 0.1, ‘misus’: 0.05, ‘data’: 0.05, ‘like’: 0.05, ‘phone’: 0.05, ‘number’: 0.05,
‘contact’: 0.05, ‘list’: 0.05, ‘calendar’: 0.05}

Doc2 {‘applic’: 0.105, ‘track’: 0.053, ‘exact’: 0.053, ‘locat’: 0.053, ‘user’: 0.053, ‘find’: 0.053, ‘wifi’:
0.053, ‘network’: 0.053, ‘tower’: 0.053, ‘connect’: 0.053, ‘various’: 0.053, ‘malwar’: 0.053,
‘record’: 0.053, ‘daili’: 0.053, ‘usag’: 0.053, ‘data’: 0.053, ‘send’: 0.053, ‘server’: 0.053 }

Table 3: Document-term matrix describing frequency of terms

Term Doc1 Doc2 Term Doc1 Doc2 Term Doc1 Doc2

applic 2 2 exact 0 1 misus 1 0

calendar 1 0 find 0 1 network 0 1

connect 0 1 identifi 1 0 number 1 0

contact 1 0 like 1 0 phone 1 0

daili 0 1 list 1 0 read 1 0

data 1 1 locat 0 1 record 0 1

devic 2 0 malwar 2 1 send 0 1

server 0 1 uniqu 1 0 various 0 1

tower 0 1 usag 0 1 wifi 0 1

track 1 1 user 2 1
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some terms, like “is”, “the”, “of”, and “that” or certain domain-specific words, may appear
repeatedly but may not have much importance. Thus, arises a need to weigh down the
importance of most occurred terms while scaling up the rare ones. Therefore, IDF scores are
important and can be computed as given in Eq. (2). IDF scores for sample documents are
presented in Tab. 5.

IDF t; dð Þ ¼ log
Total number of documents

Number of documents with term t in it
(2)

Hence, after the calculation of TF and IDF scores, the final document-term matrix with TF-IDF scores is
calculated with the following Eq. (3).

wt;d ¼ TFt;d � log N

dft
(3)

where t denotes the terms; d denotes each document; N denotes the total number of documents. Consider
Tab. 6 above, it represents the document-term matrix with TF-IDF scores for previously stated example.
A term will have more TF-IDF value when its occurrences across the document are more but less across
the corpus. Let’s take an example of a domain-specific word i.e., “malware” which was very common in
entire of the corpus, but may appear often in a document hence, it will not have a high TF-IDF score.
However, the word “permissions” may appear frequently in a document, and appears less in the rest of
the corpus, it will have a higher TF-IDF score. As shown in the example given above, a large corpus of
the research papers on Android security and malware resulted in high dimensional TF-IDF matrix. High
dimensional matrix is generally expected to be redundant and noisy. Therefore, to uncover the
relationship among the words and documents and to capture the latent topics within the corpus,
dimensionality reduction was required. Term Frequency-Inverse Document Frequency (TF-IDF) matrix
(as produced in the previous step) was fed to truncated Singular Vector Decomposition (SVD). SVD
transforms the data from high dimensional vector space to a low dimensional vector space keeping the
originality of the data sustained. Using SVD, the LSA would produce two matrices, one for the terms
loading values and other for the documents loading values. High loading terms and high loading
documents help to interpret their association with topic solutions. Each topic solution signifies the
research theme across the corpus. Researchers can modify selection by varying the selections of the
number of factor solutions. The most common research areas can be found easily by selecting a lower-
level factor aggregation. A higher-level factor aggregation signifies principal or core research themes.

Table 5: Inverse document frequency score for each term

Terms IDF score Terms IDF score Terms IDF score Terms IDF score

applic 1.000000 list 1.405465 tower 1.405465 find 1.405465

calendar 1.405465 locat 1.405465 track 1.000000 identifi 1.405465

connect 1.405465 malwar 1.000000 uniqu 1.405465 like 1.405465

contact 1.405465 misus 1.405465 usag 1.405465 record 1.405465

daili 1.405465 network 1.405465 user 1.000000 send 1.405465

data 1.000000 number 1.405465 various 1.405465

devic 1.405465 phone 1.405465 wifi 1.405465

exact 1.405465 read 1.405465 server 1.405465

2660 CMC, 2021, vol.66, no.3



Truncated SVD is a matrix algebra technique which decomposes TF-IDF matrix into a product of three
matrices—U, ∑ and V. The SVD decomposition over matrix A is represented as follows in Eq. (4):

A ¼ U �
X

� VT (4)

Here, A represents the TF-IDF matrix, U represents documents-to-concepts matrix describing
associations between concepts and terms, V represents terms-to-concepts matrix describing associations
between documents rooted to various concepts and ∑ represents a diagonal matrix with non-negative real
numbers, arranged in descending order. Moreover, these diagonal values represent the relative strength of
each concept. A maximum number of concepts (also known as topics) cannot be more than the total
number of documents rather its value needs to be adjusted to develop a latent semantic representation of
the original matrix. Let’s assume d is the total number of documents, t is the total number of terms in all
the documents and k is considered as the hyperparameter indicating the number of topics to be extracted
from the textual data. Ak is the low-rank approximation of matrix A and can be produced using truncated
SVD as follows in Eq. (5):

Ak ¼ Uk �
X
k

� VT
k (5)

where Uk is the document-to-topic matrix (t × k), Vk is the term-to-topic matrix (d × k), and
P

k is the topic-
to-topic matrix (k × k). To decrease the importance of frequent terms and increase the rare terms in
documents, the TF-IDF technique was used and Tab. 6 shows the term frequencies being transformed
after applying TF-IDF. To illustrate the text mining done by LSA, consider the same textual data
example, SVD operation has to be applied on the TF-IDF matrix. As discussed, each of the k reduced
dimensions corresponds to a latent concept which helps to discriminate the documents. To obtain the
most significant dimensions, the optimal value for k needs to be adjusted. But for the above example, the
value of k is taken to be two. The document loading-matrix and term-loading matrix are shown in Tabs. 7
and 8. As an application of LSA followed by clustering approach will help to identify topic solutions.

Table 6: Transformed term frequencies after TF-IDF generation

Terms Doc1 Doc2 Terms Doc1 Doc2 Terms Doc1 Doc2

applic 0.309883 0.344626 like 0.217765 0.000000 send 0.000000 0.242180

calendar 0.217765 0.000000 list 0.217765 0.000000 server 0.000000 0.242180

connect 0.000000 0.242180 locat 0.000000 0.242180 tower 0.000000 0.242180

contact 0.217765 0.000000 malwar 0.309883 0.172313 track 0.154942 0.172313

daili 0.000000 0.242180 misus 0.217765 0.000000 uniqu 0.217765 0.000000

data 0.154942 0.172313 network 0.000000 0.242180 usag 0.000000 0.242180

devic 0.435530 0.000000 number 0.217765 0.000000 user 0.309883 0.172313

exact 0.000000 0.242180 phone 0.217765 0.000000 various 0.000000 0.242180

find 0.000000 0.242180 read 0.217765 0.000000 wifi 0.000000 0.242180

identifi 0.217765 0.000000 record 0.000000 0.242180
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3 Experimental Results and Findings

Using procedure detailed in Section 2 and weighting scheme as given in Eq. (3), a n*843 term-document
weighted matrix was created for t term in d document for all n documents within corpus. This corpus would
be used for identification of prominent topic solutions within Android malware literature. Initially the dataset
of 843 documents had 10076 tokens. After pre-processing, the count was reduced to 1122 tokens. 843 sparse
vectors were created with 1122 tokens. The collection of 843 articles on Android malware was then
transformed to a singular row of vectors wherein rows of the matrix used as 1122 terms of 843 columns,
each vector representing an article on Android malware. This process would provide a unique numeric
value to the collection of words as discussed in Tab. 6 for sample documents and in Tab. 10 for actual
843 documents (as proof of concept). This list of words is further used for the creation of matrix
containing weights. As mentioned previously, large corpus of 843 documents on Android malware
resulted into high dimensional TF-IDF matrix which was likely to be noisy and redundant across its
many dimensions. Therefore, to uncover the latent structure within words and documents and to identify
latent topics within corpus, dimensionality reduction step was performed as detailed in subsequent
sections below.

3.1 Rank Lowering Using Singular Vector Decomposition

The weighted matrix TF-IDF obtained after preprocessing steps was provided to the SVD to further
perform rank lowering. The SVD model X ¼ U

P
V^t is used to perform matrix X factorization into

variables [13,26]. The following terminology is used in Eqs. (6) and (7).

U: Initial rotation

∑: Scaling

Table 7: Term-loading with five latent topics

Terms Topic 1 Topic 2 Terms Topic 1 Topic 2 Terms Topic 1 Topic 2

Applic 0.411164 −0.028694 like 0.136800 0.179853 send 0.152138 −0.200017

Calendar 0.136800 0.179853 list 0.136800 0.179853 server 0.152138 −0.200017

Connect 0.152138 −0.200017 locat 0.152138 −0.200017 tower 0.152138 −0.200017

Contact 0.136800 0.179853 malwar 0.302917 0.113620 track 0.205582 −0.014347

Daily 0.152138 −0.200017 misus 0.136800 0.179853 uniqu 0.136800 0.179853

Data 0.205582 −0.014347 network 0.152138 −0.200017 usag 0.152138 −0.200017

Devic 0.273601 0.359705 number 0.136800 0.179853 user 0.302917 0.113620

Exact 0.152138 −0.200017 phone 0.136800 0.179853 various 0.152138 −0.200017

Find 0.152138 −0.200017 read 0.136800 0.179853 wifi 0.152138 −0.200017

Identify 0.136800 0.179853 record 0.152138 −0.200017

Table 8: Document-loading with two latent topics

Topic 1 Topic 2

Doc1 0.795922 0.605399

Doc2 0.795922 −0.605399

2662 CMC, 2021, vol.66, no.3



V: Final rotation

XXt ¼ U
X

Vt
� �

U
X

Vt
� �t ¼ U

X
Vt

� �
Vtt

Xt
Ut

� �
¼ U

X
VtV

X
tUt ¼ U

XX
tUt (6)

XtX ¼ U
X

Vt
� �t

U
X

Vt
� �

¼ Vtt
Xt

Ut
� �

U
X

Vt
� �

¼ V
Xt

UtU
X

Vt ¼ V
X

t
X

Vt (7)

The mathematical expression XXt and XtX provides term-loading and document-loading respectively.
∑∑^t represents the weights of the topics in descending order. The maximum number of topics generated
was equal to the number of documents in the corpus. For extracting a few topics (k), the topmost k
singular values were taken from the matrix

PPt [27,28]. Text is represented as a matrix of form
X = U∑Vt such that each row stands for unique word and each column represents unique document.
Each cell represents the number of occurrences of the word with which it appears in a document. Apply
preliminary transformation wherein weights have been assigned describing word importance in particular
document w.r.t all other documents. The dimension reduction step had structured the matrices in such a
way that words that did not appear originally in some contexts now do appear, at least fractionally.
Afterwards, apply SVD which decomposed the original matrix into the product of three other matrices.
Term loading XXt matrix represents terms loaded for a particular topic solution. Each cell contains term
weight for a particular topic giving more weightage to that topic solution as per the specified threshold
value. Document loading matrix XtX represents documents loaded for a particular topic solution. Each
cell contains document weight for a particular topic giving more weightage to that topic in terms of
number of documents loaded for that topic as per the specified threshold value.

3.2 Selecting Optimal Topic Solutions

Optimal topic loadings come from dimensionality reduction. It offers a detailed analysis of obtaining k
optimal terms or values from the term matrix produced by it. Selecting an optimal topic value has been
difficult because of its requirement to understand and requiring several procedures to obtain favorable
value [26]. The five prominent topic loadings for 843 corpus of documents is shown in Tab. 9. It is
suitable enough to identify trends in Android malware research.

The results in Fig. 1 showed that numerous high loading publications converged to one research area,
i.e., “Static Level Monitoring” (T5.2) in the five topic solutions. Static analysis is the most utilized analysis
technique for malware analysis; hence it is unsurprising that “Static Level Monitoring” (T5.2) remained to
trend research area throughout the year 2009-2019. Results also showed that “Automatic Malware Analysis”
(T5.3) and “Hybrid level monitoring” (T5.4) also became a trending research area during the year
2014–2019. “Dynamic level monitoring” (T5.5) also had been a dominant research area in Android
malware research.

In the corpus, the most common approaches used by researchers to capture security threats in Android
ecosystem are based on static level monitoring (39%). Dynamic Level Monitoring (26%), Hybrid Level
Monitoring (21%), Automatic Malware Analysis (about 11%), and Application Structure Analysis (3%)
were also found to have considerable share in Android malware literature. It is to be noted that from the
year 2009, many static technique to detect android malware were proposed [29] and the techniques based
on dynamic analysis were first explored by the researchers in 2010 [30].

The ten-topic solution as shown in Fig. 2 uncovered ten trending areas, viz. “Machine Learning
Approach” (T10.9), “Dynamic Code Loading” (T10.2), “Dalvik Byte Code Analysis” (T10.6), “Feature-
Based Analysis” (T10.10), and “Repackaged App Identification” (T10.3) which were dominant research
areas for the time period 2014–2019. However, in Fig. 3 the twenty-topic solution uncovered various
trending areas, viz. “Permission-Based Analysis” (T20.5), “Data Flow Tracking” (T20.7), “Context
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Monitoring” (T20.16). “Permission-Based Analysis” (T20.5) was a dominant research area throughout the
period 2009–2019. However, “Kernel Level Check” (T20.6), “Data Flow Tracking” (T20.7) and other
supplementary techniques like “Machine Learning Approach” (T20.12), “Formal Analysis” (T20.20)
became trending research areas during the year 2014–2019.

3.3 Android Security Research Trends

Considering the twenty-topic solutions, the prominent research trends in android security research are;
the distribution of articles clearly interprets, “Machine Learning Approach” (T20.12), “Data Flow Tracking”
(T20.7), “Context Monitoring” (T20.16), “Kernel Level Check” (T20.6), emerged as among highly explored
topic solutions. This was consistent with the five, ten topic solutions.

The research trend, “Machine Learning Approach” (T20.12) is one of the highly explored topics over the
last few years in which android applications are analyzed statically as well as dynamically to collect some set

Table 9: Core research areas identified through LSA

Topic
No.

Topic label Loading terms

T5.1 Application
Structure Analysis

component, intent, receiver, broadcast, leak, vulnerability, string, class,
object, activity, privilege, developer, sensitive, analysis, content, explicit,
application, action, android, permission

T5.2 Static Level
Monitoring

signature, bytecode, graph, context, dalvik, flow, permission, component,
control, library, program, service, method, object, entry, event, field, code,
data, path

T5.3 Automatic Malware
Analysis

machine, accuracy, dataset, class, performance, positive, family, false,
application, similarity, proceeding, experiment, signature, pattern,
dynamic, android, vector, static, score, graph

T5.4 Hybrid Level
Monitoring

dynamic, analysis, static, cloud, taint, application, instruction, execution,
component, sensitive, bytecode, android, library, program, native, object,
string, dalvik, class, event

T5.5 Dynamic Level
Monitoring

kernel, privilege, escalation, policy, control, enforcement, security, exploit,
memory, vulnerability, library, native, context, component, Linux,
mechanism, access, resource, sandbox, virtual

Table 10: Transformed term frequencies after TF-IDF generation for 843 documents

Terms Doc1 Doc2 Doc3 Doc4 Doc5 ….. Doc843

kernel 0.000000 0.000000 0.346366 0.000000 0.589463 ….. 0.000000

dynamic 0.176043 0.160859 0.170893 0.165134 0.280882 ….. 0.164157

machine 0.000000 0.000000 0.000000 0.000000 0.000000 ….. 0.344502

accuracy 0.000000 0.000000 0.000000 0.346553 0.000000 ….. 0.000000

graph 0.000000 0.000000 0.000000 0.000000 0.000000 ….. 0.344502

….. ….. ….. ….. ….. ….. ….. …..
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of features and then make the system learn it for making a decision about unknown sample of malicious
applications. Machine learning methods were used in [31–37]. Another significant trend that emerged was
“Kernel Level Check” (T20.6) which focuses on the techniques designed to make the kernel level attacks
more difficult to execute [4].

8 19 27

93

236

329

15

73
88

38

136

174

74

151

225

0

50

100

150

200

250

300

350

2009-2013 2014-2019 2009-2019

N
um

be
r 

of
 R

es
ea

rc
h 

Pa
pe

rs

Time Period

T5.1 Application Structure Analysis

T5.2 Static Level Monitoring

T5.3 Autimatic Malware Analysis

T5.4 Hybrid Level Monitoring

T5.5 Dynamic Level Monitoring

Figure 1: Publication count for five-factor solution during three different time periods

0

100

200

300

400

T10.1 T10.2 T10.3 T10.4 T10.5 T10.6 T10.7 T10.8 T10.9 T10.10

2009-2013 2014-2019 2009-2019

Topic No Topic Label

T10.1 Emulator Based Analysis
T10.2 Dynamic Code Loading
T10.3 Repackaged App Identification
T10.4 Context Monitoring
T10.5 Component Based Study
T10.6 Dalvik Byte Code Analysis
T10.7 Permission Based Analysis
T10.8 Classification Based on App Behaviour
T10.9 Machine Learning Approach
T10.10 Feature Based Analysis

Figure 2: Ten factor solution during three different time periods

2
22 9 9

37
10 14 18 4 7 4 5 11 4 10 26

2 12 7 1516

21 33 28

61

41 48 24
23 30

14
52 36

26 12

36

10

37
27

4018

43 42 37

98

51
62

42

27
37

18

57
47

30
22

62

12

49

34

55

0

50

100

150

200

250

2009-2013 2014-2019 2009-2019

Topic No Label

T20.1 Obfuscated Code Analysis
T20.2 App Level Analysis
T20.3 Hybrid Analysis
T20.4 Input Matching
T20.5 Permission Based Analysis
T20.6 Kernel Level Check
T20.7 Data Flow Tracking
T20.8 Classification Based on App Behaviour
T20.9 Dynamic Code Loading
T20.10 Emulator Based Analysis
T20.11 Dex File Study
T20.12 Machine Learning Approach
T20.13 Flow Monitoring
T20.14 Component Based Study
T20.15 Syntactic and Semantic Pattern
T20.16 Context Monitoring
T20.17 Feature Based Analysis
T20.18 Dalvik Byte Code Analysis
T20.19 Repackaged App Identification
T20.20 Formal Analysis

Figure 3: Twenty factor solution during three different time periods

CMC, 2021, vol.66, no.3 2665



3.4 Mapping of Core Research Areas and Research Trends

Tab. 11 shows the mapping of research trends with five core research areas. The mapping is done on the
basis of similarity scores. The topics corresponding to the latter were somewhat related to the former and
were verified using similarity scores. The similarity scores were calculated as a result of the low and high
loading values of topic solutions. The similarity scores present a clear relationship between the core
research area and their related trends which also validates the procedures developed to show their
semantic connection. The detailed discussion is presented in the following sections.

3.5 Mapping of Core Research Areas and Trends

This section details the mapping of top five topic labels with top twenty topic solutions. Initial mapping
of Topic (T5.1) “Application Structure Analysis” has a clear overlap with “App Level Features” (20.2). It
uncovered the use of metadata and features of an Android application to detect and analyze Android
malware. Metadata can be characterized as the displayed information which is available before
downloading and installing the Android application, e.g., required permissions, description, version, last
updated, rating, number of installations, developer information. This trend was seen in the project named
WHYPER [38]. Among all five core research areas, results revealed that (T5.2) “Static Level
Monitoring” has been investigated the most. Tab. 11 demonstrates that out of twenty topic solutions,

Table 11: Mapping of core research areas and trends

Topic No. Five topic labels Topic No. Topic label

T5.1 Application Structure Analysis T20.2 App Level Analysis

T5.2 Static Level Monitoring T20.5 Permission Based Analysis

T20.7 Data Flow Tracking

T20.11 Dex File Study

T20.14 Component Based Study

T20.15 Syntactic and Semantic Pattern

T20.16 Context Monitoring

T20.17 Feature Based Analysis

T5.3 Automatic Malware Analysis T20.4 Input Matching

T20.12 Machine Learning Approach

T20.19 Repackaged App Identification

T20.20 Formal Analysis

T5.4 Hybrid Level Monitoring T20.1 Obfuscated Code Analysis

T20.3 Hybrid Analysis

T20.9 Dynamic Code Loading

T20.10 Emulator Based Analysis

T20.13 Flow Monitoring

T20.18 Dalvik Byte Code Analysis

T5.5 Dynamic Level Monitoring T20.6 Kernel Level Check

T20.8 Classification Based on App Behaviour
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seven research trends converged to core research area T5.2. In “Permission-Based Analysis” (T20.5),
permissions played a vital role for investigation of malicious content, as most activities (e.g., a collection
of APIs) require specific consents keeping in mind the end goal to be achieved [3]. Another research
trend that emerged in this area is the “Dex file study” (T20.11). Though dex files are difficult to humans
to understand, yet it is prudent to study dex files for mitigating malware attacks. To identify malicious
code segments, researchers first decompile the dex code into more conceivable formats such as assembly,
smali, dalvik bytecode, source code, jar, jimple or java bytecode [39]. Automatic Malware Analysis
(T5.3), primarily explored “Input Matching” (T20.4), “Repackaged App Identification” (T20.19), “Formal
Analysis” (T20.20), and “Machine Learning Approach” (T20.12). All such techniques were related to
automated identification of Android malware. To achieve the effectiveness and scalability of Android
malware detection, the trend “Machine Learning Approach” (T20.12) came into light during the time
period 2014-2019. Another research trend that emerged was “Repackaged App Identification” (T20.19).
Repackaging is one of the popular techniques being used by malware authors to generate fraudulent
repackaged applications [40]. The year 2012 was a high time when malware started evolving and a need
of hybrid techniques for malware monitoring was felt (T5.4). The rampant utilization of techniques such
as dynamic code loading, native code, java reflection, and code coverage by malware community was
limiting the significance of static and dynamic detection methods. Researchers were in need of a robust
solution to analyze and mitigate the impact of malware. The trends like “Dynamic Code Loading”
(T20.9), “Dalvik ByteCode Analysis” (T20.18), “Obfuscated Code Analysis” (T20.1) which emerged
during 2014–2019 played the vital role in introducing/establishing hybrid approaches to combat against
the evolving malware. The past hybrid projects such as “AppIntent [41], SmartDroid [42], IntelliDroid
[43], Harvester [44], A5 [45] witness the curtailment of smart tactics and had produced precise detection
results. Dynamic Level Monitoring (T5.5) is also a prominent trend that signifies the requirement of
runtime analysis of Android applications. The trend “Kernel Level Check” (T20.6) uncovered the use of
system calls for effective malware detection. Android Linux kernel has more than 250 system calls in
common [46].

4 Discussion

The results of this study revealed that “Static Level Monitoring” (T5.2) had been proved to be the most
widely investigated topic in Android malware research. The studies related to static analysis majorly focus on
network addresses, data flow tracking, control flow graphs, string matching, permissions, dex files, context,
and intents. Studies also focused on behavioral and structural analysis to extend its coverage for advanced
malware applications. Kernel-level analysis, API call monitoring, taints were its major highlights.
Researchers identified that the results of the combined effects of structural and behavioral features
produce richer and robust analysis. Numerous studies support hybrid techniques to detect destructive
payloads. Though automation in malware analysis and analysis with supplementary techniques were
comparatively less in number yet are effective enough to produce promising results.

To maintain the effective interpretations and comparisons among the topics; change of focus over two
time-frames 2009–2013 and 2014–2019 were observed. It depicts the paradigm shift from time window
2009–2013 to 2014–2019. Machine learning approaches were found to be effective among other
competitive approaches to detect Android malware. These approaches are well explored and promising
during the time 2014–2019. The trend kernel-level check greatly influenced the research community
during 2014–2019. Applications were inspected at the kernel level in order to understand their real-time
behavior. Detection of piggybacked application through sensitive graph analysis/data tracking followed
by usage of machine learning algorithms was widely studied during 2014–2019. Application permissions
have remained the topmost static features to detect Android malware. It has been widely investigated
during 2009–2019, as it poses as the first barrier to the malware authors. To activate certain events in an
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Android ecosystem, some specific permission should be declared in the manifest file. Due to the ability of
malicious applications to hide their actual behavior through the user interface, it became cumbersome to
analyze all possible paths or inputs, while performing sandbox analysis. During 2014–2019, smart
interaction solutions came into light which focused on generating activity, and function call graph using
static analysis and exploring paths using dynamic analysis.

5 Conclusion

Reviewing literature manually may result in biased and incomplete inferences. This work systematically
analyses a large corpus of 843 research articles on Android security using an information modeling
technique. The major outcomes of this study are the analytical interpretation of five core research areas
and twenty substantial research themes. The results suggest that Static Level Monitoring is the most
widely investigated topic in Android malware analysis and detection. Behavioral analysis in addition to
structural is a must to extend the coverage for advanced malware and vulnerable applications. Kernel-
level analysis, API call monitoring, taints are also important indicators of malware behavior. Research
trends indicate that results of the combined effects of structural and behavioral features produce richer
and robust analysis.

This investigation also identifies new future dimensions for researchers. The results of this study will
help others to choose their areas of interest for their potential research along with the associated research
trend. The most impacting factor of this work lies in that researchers can apply the same methodology in
any other research fields by little or almost no changes.
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