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Abstract: The Coronavirus disease 2019 (COVID-19) outbreak was �rst dis-
covered in Wuhan, China, and it has since spread to more than 200 countries.
The World Health Organization proclaimed COVID-19 a public health emer-
gency of international concern on January 30, 2020. Normally, a quickly
spreading infection that could jeopardize the well-being of countless individu-
als requires prompt action to forestall the malady in a timely manner. COVID-
19 is a major threat worldwide due to its ability to rapidly spread. No vaccines
are yet available for COVID-19. The objective of this paper is to examine
the worldwide COVID-19 pandemic, speci�cally studying Hubei Province,
China; Taiwan; South Korea; Japan; and Italy, in terms of exposed, infected,
recovered/deceased, original con�rmed cases, and predict con�rmed cases in
speci�c countries by using the susceptible-exposed-infectious-recovered model
to predict the future outbreak of COVID-19. We applied four differential
equations to calculate the number of con�rmed cases in each country, plotted
them on a graph, and then applied polynomial regression with the logic of
multiple linear regression to predict the further spread of the pandemic. We
also compared the calculated and predicted cases of con�rmed population and
plotted them in the graph, where we could see that the lines of calculated and
predicted cases do intersect with each other to give the perfect true results for
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the future spread of the virus. This study considered the cases from 22 January
2020 to 25 April 2020.

Keywords: COVID-19; SEIR; forecasting; global pandemic; predict
con�rmed case

1 Introduction

On December 31, 2019, the city of Wuhan, China, announced an episode of typical pneu-
monia brought about by the 2019 novel coronavirus (2019-nCoV). Cases soon appeared in other
Chinese urban areas, and steps were taken to avoid triggering a worldwide epidemic [1]. Two
other novel coronaviruses (CoVs) have previously developed as major worldwide dangers in this
century: Severe acute respiratory syndrome coronavirus (SARS-CoV), in 2002, which spread to 37
countries; and Middle East respiratory syndrome coronavirus (MERS-CoV), in 2012, which spread
to 27 countries. SARS-CoV caused more than 8,000 cases and 800 deaths, while MERS-CoV
infected 2494 people and caused 858 deaths worldwide [2–4]. COVID-19 immediately spread to 24
countries on four continents in less than two months (as of February 10, 2020) [5–7]. To avoid
comparable episodes of COVID-19 in different locales outside Wuhan city, Wuhan declared that
its urban transport, tram, ship, and any travel of signi�cant distance were suspended, and the air
terminals and trains from Wuhan were likewise brie�y shut down on January 23, 2020, speci�cally
the “city closure.” On January 30, 2020, the World Health Organization (WHO) proclaimed the
quickly spreading COVID-19 a public health emergency of international concern (PHEIC) [8].
However, because of the rapid worldwide spread of the scourge, WHO has expanded the eval-
uation of the danger of spread and effect of COVID-19 at the worldwide level [9]. Although
several alternatives are perceived to treat or forestall COVID-19, including immunizations, mono-
clonal antibodies, oligonucleotide-based treatments, and different medications, immunizations and
antiviral medications normally require a long time to develop the antibodies [10–25]. Given the
criticality of the situation, there is a need to evaluate the pandemic’s spread so that speci�c mea-
sures can be taken to con�ne it. The infection can be diagnosed by a test that employs polymerase
chain reaction (PCR) and identi�es the virus based on its genetic �ngerprint. Currently, the only
treatment for the virus is supportive care; there is currently no vaccine to protect against the virus
and few vaccines around the world are in the development stage. This paper will discuss the most
recent pandemic circumstances of COVID-19 around the globe, in particular the Chinese province
of Hubei, and the countries of Taiwan, South Korea, Japan, and Italy. This study is focused
on the cumulative daily �gures from around the world with three main variables of interest:
Con�rmed cases, deaths, and recoveries.

2 Material and Method

2.1 SEIR Model
One of the fundamental ideas of the mathematical study of epidemiology is to model the out-

break of an infectious disease on a given population. The susceptible-exposed-infected-recovered
(SEIR) model is used to model the outbreak of a pandemic. Fig. 1 illustrates a typical SEIR
schema scenario in which members of the susceptible population Su(t) become part of the exposed
population Ex(t) at the rate proportional to b1. The exposed, in turn, are transitioned to the
infected populace In(t) at the rate proportional to b2. The infected recover at a rate proportional
to b3 and those who recover Re(t) from the disease return to the population with a susceptibility
rate proportional to b4.
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Figure 1: SEIR Model

The SEIR model explains the rate at which COVID-19 is affecting people worldwide. This
model uses the dataset of the victims, along with the dates when they are suspected of being or
are declared as the victims of COVID-19, and plots them in the graphs by country to predict
the rate of a future outbreak. The model also predicts the ratio (infected population every 20
days) of the growth of the danger and how long it is going to last. The denotations are Su-
susceptible (number of susceptible populations); Ex-Expose (number of exposed populations); In-
Infectious (number of infected populations); and Re-Recovered or Removed (number of recovered
or immune individuals). We have N= Su+Ex+ In+Re; this is constant due to the equal values
of birth and death rates, where N is the population of the country. Using the Susceptible→
Exposed→ Infected→Recovered model, the differential function is as below:

dsu
dt
=
−Ret

Tinf
.InSu (1)

dEx
dt
=

Ret

Tinf
.InSu−T−1

incEx (2)

dIn
dt
=T−1

incEx−T−1
inf In (3)

dRe
dt
=T−1

inf In (4)

where

Susceptible equation= (Ret/Tinf) ∗ In ∗ Su (5)

Exposed equation= (Ret/Tinf) ∗ In ∗ Su− (Tinc ∗−1)Ex (6)

Recovered/Remove/deceased equation= (Tinf ∗−1) ∗ In (7)

This study uses several differential equations to �nd the S, E, I, R, but two questions remain:
What is “Ret,” “Tinf,” and “Tinc,” and how can we de�ne these variables? Re0 and Ret represent
the r, which describes the individuals who are no longer infected or immunized (naturally or
through vaccination). Tinf represents the average duration of the infection, and 1/Tinf can be
treated as the D units of time for one individual to recover. Tinf represents the average incubation
period, assuming that some intervention will cause the reproduction number (Re0) todecrease (such
as bed nets, vaccines, government actions, isolation, and quarantine), but that their effectiveness
will decline over time.
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2.2 Database
The method we have used for our analysis is based on the COVID-19 dataset collected

from relevant sources (https://github.com/ieee8023/covid-chestxray-dataset). The dataset contains
the day-by-day con�rmed cases worldwide from January 22, 2020 to April 25, 2020, as shown in
Tab. 1. The dataset consists of a total of 30,049 columns and 6 rows, and it includes 5 attributes.

Table 1: Data set of the COVID-19 world-wide

Id Province_state Country_region Date(M/D/Y) Con�rmed_cases Fatalities

30835 New York US 3/16/2020 967 10
30836 New York US 3/17/2020 1706 13
30837 New York US 3/18/2020 2495 16
30838 New York US 3/19/2020 5365 34
30839 New York US 3/20/2020 8310 42
30840 New York US 3/21/2020 11710 60
30841 New York US 3/22/2020 15800 117
30842 New York US 3/23/2020 20884 158
30843 New York US 3/24/2020 25681 210
30844 New York US 3/25/2020 30841 285
30845 New York US 3/26/2020 37877 385
30846 New York US 3/27/2020 44876 527
30847 New York US 3/28/2020 52410 728
30848 New York US 3/29/2020 59648 965
30849 New York US 3/30/2020 66663 1218

3 Result and Discussion

3.1 SEIR Model for Hubei
We compared Intervention and non-intervention conditions on the SEIR model. At �rst, the

dataset and the population of each country were input into the model. The SEIR model was
plotted using the dataset and started for training. Fig. 2 showed that without intervention, the
number of cases in Hubei will keep increasing. Initially, the dataset of Hubei was input into the
model, and then, starting with the �rst con�rmed case in the dataset, each con�rmed case was
initialized for getting trained. Then, using the total length of the training dataset, the number of
days that would be used for making a prediction was calculated. Then, for each calculation for
the SEIR model, the following initializations were introduced:

# Initial state for SEIR model;
s= (N− n_infected)/N;
e= 0;
i= n_infected/N;
r= 0;
# De�ne all variable of SEIR model;
Tinf = 5.2# average incubation period;
Tinf = 2.9# average infectious period;

https://github.com/ieee8023/covid-chestxray-dataset
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R0 = 3.954# reproduction number.

Figure 2: SEIR Model without intervention

After all of the variables, including average incubation period and average infectious period,
were de�ned, the intervention parameters were de�ned. Using NumPy, we plotted the model that
predicts the con�rmed cases together with the con�rmed cases in the dataset for comparison.
Here, we used logistic regression along with polynomial regression with the logic multiple linear
regression and linear regression.

We �t the SEIR model to real data, then found the best variables of the SEIR model to �t
the real data.

• Tinf was using the average value 2.9;
• Tinc was using the average value 5.2;
• Rt = we found the best reproduction number by �tting the real data (if using a decay

function, we found the parameter of decay function);
• Cfr=we found the best-case fatality rate (this parameter is to predict fatalities);

Intervention for the SEIR model is shown in Fig. 3.

Figure 3: SEIR Model with intervention
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After a few days, the intervention started, Re0 = Re0 × 0.5, At �rst, we took a constant
reproduction number, i.e., a constant value of parameters Re0 and cfr, the population of each
country (N) and n_infected, i.e., the number of con�rmed cases (starting from �rst con�rmed case
in dataset), the maximum number of days of prediction and the initial state of the SEIR model.
Then, we let the number of intervention days be 80. When the period exceeded 80 days, we set the
Re0 value to half by applying the formula Re0 =Re0×0.5. Then,we used the differential equations
given above to �nd the suspected, exposed, infected, and recovered cases from the dataset and
imposed them on the dependent variable (con�rmed cases) using the independent variables to
further predict the number of con�rmed cases and the function of �tting the SEIR model to
real data:

• We auto-choose the best decay function of Ret (intervention days decay or Hill decay is
represented in Fig. 4);
• If the total case/country population is below 1, we reduced the country population;
• If the dataset was still no case, then it returned 0;
• We plotted the �t result and forecast trends

The hidden function will be discussed in mathematical code.

Figure 4: Decay Function

3.2 COVID-19 Forecasts in Taiwan
We �rst checked to see if the country’s name was listed in the training dataset. If the country’s

name was not listed in the dataset, then we trained it and set the country’s name in the province
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state. If the country’s name was listed in the dataset, then we trained it and set the country’s
name in the country region. Then after using a random variable (such as a, b), we �t the model
and plotted the �t results into the graph, i.e., where ‘a’ is the independent variable and ‘b’ is the
dependent variable, with values of dates and population, respectively. As shown in Fig. 5, the
depicted data have been taken from the dataset where we have performed the calculations to �nd
the SEIR model and then simply plotted them. In Fig. 5, we can see that the infected population
rate, depicted by the red line, is �uctuating, but is constant at the population range of 0.0000 with
the number of days increasing from 60 to 100. It is the same as that of the exposed population,
which is depicted by the yellow line, where the yellow line is �uctuating, but it is constant at the
population range of 0.0000 with the increase in days. However, if we look at the recovered cases,
which are depicted by the blue line, the blue line is �uctuating, but it is increasing as the number
of days increases.

Figure 5: SEIR model trends for Taiwan

Fig. 6 shows the independent variables of both the predicted and depicted cases. The depicted
cases are represented by valid cases and the predicted cases are represented by the trained cases.
We have also plotted the cumulative case study hereafter calculation and perfect prediction of
training. The red line depicts the cumulative study of the modeled infected population, which is
observed to increase from day 15 with a nearly constant increase of infected cases from 30 to 400.
The green line represents the trained con�rmed cases, which remain nearly constant from day 3
to day 15 at the population hold of 0.000, but then it sharply increases to a population count of
nearly 400 within a smaller period. The yellow line represents the valid infected populations, which
are calculated using the above differential equations, and we obtained a perfect result because
the prediction line touches the yellow line, which means our predictions are correct. If we start
plotting, the red line will automatically intersect with the yellow line, and our future predictions
will also be correct. The blue line represents the valid con�rmed cases that we have calculated
using the above differential equations, and the result is that the red line. which represents the
predicted con�rmed cases, touches the blue line, which signi�es that our prediction is correct.

Fig. 7 shows the overall case study. The x-axis represents the dates of con�rmation and the
y-axis represents the population of the con�rmed cases on that date. The green line, which depicts
the con�rmed case population that we have calculated through April 22, 2020, shows that the
number of con�rmed cases was zero on January 25, 2020, butit had risen to 425 by April 21, 2020.
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The red line, which depicts the predicted or trained case of con�rmed cases, shows that on January
22, 2020, there were no con�rmed cases but by June 22, 2020, the number had risen to 524. After
that date, the number will stabilize with no additional con�rmed cases with an increase in time.
Because we can observe that the real and the predicted lines provide nearly the same results, we
can conclude that our predictions are correct.

Figure 6: Real con�rmed case and predict con�rmed case for Taiwan

3.3 COVID-19 Forecasts in South Korea
Fig. 8 shows that the infected population rate depicted by the red line is almost constant at

the population range of 0.0000 with the increase in days (from 60 days to 100 days). The infected
population rate is the same as that of the exposed population, depicted by the yellow line, which
slightly increases from 40 to 60 days up to a fractional increase of population, to 0.0004, but
then remains constant at the population range of 0.0000 with the increase of days. However, the
blue line, which represents the number of recovered cases, increases with the increasing number of
days. In Fig. 9, we have plotted the independent variables of both predicted and depicted cases.
The depicted cases are represented by valid cases and the predicted cases are represented by the
trained cases. We have also plotted the cumulative case study here. After calculation and perfect
prediction of training, we can observe that the red line, which depicts the cumulative study of the
modeled infected population, increases from day 20 with a nearly constant increase of population
from 1000 to 11,000. The green line represents the number of trained con�rmed cases, which
remain nearly constant up to day 17 when the population holds at 0.000, but then it increases
sharply to a population count of nearly 7000 within a short time period. Once it reaches 7000,
it increases at a uniform rate. The yellow line represents the valid infected populations that are
calculated using the above differential equations. We obtained a perfect result, since out prediction
line touches the yellow line, which means our predictions are correct, and if we start plotting
more, the red line will automatically intersect with the yellow line, and our future predictions will
also be correct. We observe the same with the blue line, which represents the valid con�rmed
cases that we have calculated using the above differential equations. The results show that the red
line, which represents the predicted con�rmed cases, touches the blue line, which signi�es that our
prediction is correct.
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Figure 7: Estimated con�rmed case Taiwan

Figure 8: SEIR model trends for South Korea

Figure 9: Real con�rmed case and predict con�rmed case for South Korea
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Fig. 10 shows the overall case study. The x-axis represents the dates of con�rmation and
the y-axis represents the population of the con�rmed cases on that date. The green line, which
depicts the con�rmed case population calculated through April 22, 2020, shows that the number
of con�rmed cases was zero on January 25, 2020, but it rose to 10,694 by April 22 2020. The red
line, which depicts the predicted or trained case of con�rmed cases, shows that on January 22,
2020, there were no con�rmed cases, but by June 8, 2020, there were 11,451 cases. After that date,
the number will stabilize with no addition of con�rmed cases with an increase in time. Because
we can observe that the real and the predicted lines give nearly the same results, we can conclude
that our predictions are not wrong.

Figure 10: Estimated con�rmed case in South Korea

3.4 COVID-19 Forecasts in Japan
In Fig. 11, the depicted data have been taken from the dataset,and calculations have been

performed to �nd the SEIR model and simply plot it. In Fig. 11, the infected population rate
depicted by the red line is almost constant at the population range of 0.0000 with the increase
in days. It is the same as that of the exposed population, which is depicted by the yellow line.
The yellow line slightly increases from day 40 to 60 up to a fraction of population increase up to
0.0004, but then it remains constant at the population range of 0.0000 with the increase in days.
However, when we look at the recovered cases depicted by the blue line, the blue line is increasing
with the increase in days. Fig. 12 shows the independent variables of both predicted and depicted
cases. The depicted cases are represented by valid cases,and the predicted cases are represented
by the trained cases. We have also plotted the cumulative case study here. After calculation and
perfect prediction of training, we observe that the red line, which depicts the cumulative study of
modeled infected population, increases from day 20 with a nearly constant increase of population
from 1000 to 11,000. The green line represents the trained con�rmed cases, which remain nearly
constant up to day 17 at the population hold of 0.000, but then it increases steeply to a population
count of nearly 7000 within a short time period. Once it reaches 7000, it increases at a uniform
rate. The yellow line represents the valid infected populations, which are calculated using the above
differential equations. We obtain a perfect result, since our prediction line touches the yellow line,
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which means our predictions are absolutely correct. Additionally, if we start plotting further, the
red line will automatically coincide with the yellow line, meaning that our future predictions will
also be correct. It is the same with that of the blue line, which represents the valid con�rmed
cases that we have calculated using the above differential equations. We obtain the result that the
red line, which represents the predicted con�rmed cases, touches the blue line, which signi�es that
our prediction is correct.

Figure 11: SEIR model trends for Japan

Figure 12: Real con�rmed case and predict. Con�rmed case for Japan

Fig. 13 shows the overall case study. The x-axis represents the dates of con�rmation and
the y-axis represents the population of the con�rmed cases on that date. The green line,which
depicts the con�rmed case population,has been calculated through April 22, 2020 to show that
the number of con�rmed cases was zero on February 2, 2020, but it had risen to 187,327 by
April 21, 2020. The red line,which depicts the predicted or trained case of con�rmed cases, shows
that on January 22, 2020, there were no con�rmed cases, but by September 27, 2020, the number
had risen to 27.14 million. After that date, the number will stabilize with no additional con�rmed
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cases with an increase in time. Because we can observe that the real and the predicted lines give
nearly, the same results, we can conclude that our predictions are not wrong.

Figure 13: Estimated con�rmed cases in Japan

3.5 COVID-19 Forecasts in Italy
In Fig. 14, the depicted data have been taken from the dataset, and we have performed

the calculations to �nd the SEIR model and plotted the data. Fig. 14 shows that the infected
population rate, depicted by the red line, is almost constant at the population range of 0.0000
with the increase in days, but it increases at a fraction of 0.01 between 60 and 100 days. Similarly,
the exposed population, which is depicted by the yellow line, slightly increases with a fraction of
a population of 0.1 to 0.2 from day 80 to day 100. However, the blue line, which depicts the
case of the recovered population, is increasing sharply with the increase in days. In Fig. 15, we
observe the independent variables of both predicted and depicted cases. The described cases are
represented by valid cases, and the trained cases are represented by the predicted cases. We have
also plotted the cumulative case study here. After calculation and perfect prediction of training, we
can see that the red line, which depicts the cumulative study of the modeled infected population,
increases sharply up to 300,000 of the population. The green line represents the number of trained
con�rmed cases, which remain nearly constant up to day 13 when the population holds at 0.000,
but then they increase to a population count of nearly 200,000 within one month. The yellow line
represents the valid infected population, which is calculated using the above differential equations.
We obtain a perfect result since our prediction line touches the yellow line, which means our
predictions are correct. If we plot further, the red line will automatically coincide with the yellow
line, indicating that our future predictions will also be correct. Similarly, the blue line represents
the valid con�rmed cases that we have calculated using the above differential equations. We obtain
the result that the red line, which represents the predicted number of con�rmed cases, touches the
blue line, which signi�es that our prediction is correct.

Fig. 16 shows the overall case study. The x-axis represents the dates of con�rmation and the
y-axis represents the population of the con�rmed cases on that date. The green line,which depicts
the con�rmed case population, which we have calculated through April 22, 2020, shows that there
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were two con�rmed cases as of February 2, 2020, but by April 22, 2020, that number had risen to
187,327. The red line, which depicts the predicted or trained case of con�rmed cases, shows that
there were no con�rmed cases on January 22, 2020, but by November 17, 2020, that number was
expected to rise to 27.54 million. After that, it went to a stable state with no additional con�rmed
cases with an increase in time. Here we can observe that the real and the predicted lines provide
nearly the same results; hence we can conclude that our predictions about the cases of COVID-19
matched the calculated cases.

Figure 14: SEIR model trends for Italy

Figure 15: Real con�rmed case and predict. Con�rmed case for Italy

3.6 COVID-19 Global Forecasting
In the global forecast, we have used group by function to plot all the cases worldwide in

a cumulative manner. In Fig. 17, the depicted data have been taken from the dataset where
we have done the calculations to �nd the SEIR model and plotted it. Fig. 17 shows that the
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infected population rate depicted by the red line is almost at the population range of 0.0000
with the increase of days, but from day 60, the infected population rate has increased to the
population fraction of 0.0003. Similarly, the exposed population, which is depicted by the yellow
line, increases from day 60 with a fraction of population increase up to 0.0002. However, the blue
line, which represents the recovered population, is increasing with the increase in days up to a
fraction of the population of 0.0009. Fig. 18 shows the independent variables of both predicted
and depicted cases. The depicted cases are represented by valid cases and the predicted cases
are represented by the trained cases. We have also plotted the cumulative case study here. After
calculation and a perfect prediction of training, we observe that the red line, which depicts the
cumulative study of the modeled infected population, increases from 20 days with an increase of
population from 500,000 to 2 million. The green line represents the number of trained con�rmed
cases, which remain nearly constant up to day 17 at the population hold of 0.000, but then it
increases to a population count of nearly 2 million within a short period (from 60 days to 100
days). The yellow line represents the number of infected people that are calculated using the above
differential equations. We obtained a perfect result since our prediction line touches the yellow
line, which means our predictions are correct. If we plot further, the red line will automatically
coincide with the yellow line and our future predictions will also be correct. It is the same with
that of the blue line, which represents the valid con�rmed cases that we have calculated using
the above differential equations. The results show that the red line, which represents the predicted
con�rmed cases, touches the blue line, which signi�es that our prediction is correct.

Figure 16: Estimated con�rmed case in Italy

Fig. 19 shows the overall case study. The x-axis represents the dates of con�rmation and
the y-axis represents the population of the con�rmed cases on that date. The green line, which
depicts the con�rmed case population calculated through April 22, 2020,shows that there were 653
con�rmed cases on January 23, 2020, but by April 27, 2020 that number had risen to 2.6 million.
The red line depicts the predicted or trained case of con�rmed cases, and it shows that there were
nine con�rmed cases on January 25, 2020, but that the number is forecast to rise to 36.63 million
by October 9, 2020. After that, it will go to a stable state with no additional con�rmed cases
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with an increase in time. Here, we can observe that the real and the predicted lines give nearly
the same results, enabling us to conclude that our predictions match that of the calculated cases.

Figure 17: SEIR model trends in the global

Figure 18: Real con�rmed case and predict, con�rmed case in the global

3.7 Comparative Analysis
The effectiveness of prediction depends upon the authenticity of the data and the data

sources. A comparative analysis of COVID-19 is shown in Tab. 2. We focused our SEIR research
model on the countries of Taiwan, Korea, Japan. and Italy, as well as Hubei Province, China. Our
global forecasting was conducted by using the population as a parameter to predict the number
of cases of people exposed to, infected by, and recovered from COVID-19. We also compared the
actual number and predicted number of con�rmed cases for all countries, as well as the estimated
number of con�rmed cases globally.
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Figure 19: Estimated con�rmed case in the Global

Table 2: Comparative analysis

Sl. No. Ref. Countries Parameters Methods Remarks

1 [22] China Fitness value FPASSA-ANFIS Predict the number of
con�rmed cases within
ten days based on
previously con�rmed
cases

2 [23] Italy Transmission rate,
recovery rate and
morality rate

ESIR Forecasting total number
COVID-19 cases

3 [24] US, Spain,
Italy, UK,
France, Russia

Total population ARIMA, HWAAS,
TBAT, Facebook’s
Prophet, DeepAR, and
N-Beats

Forecasting total number
of active COVID-19 case
per countries

4 [25] India
(Maharashtra,
Gujarat, Delhi)

Statistical parameter and
metrics ETs and GEP

Genetic programming
(GP)

Predict con�rmed and
death case

5 Our Work Hubei,
Taiwan,
Korea,
Japan,
Italy,
Global
forecasting

Fraction of population Susceptible-Exposed-
Infectious-Recovered
(SEIR)

Predict exposed, infected
and recovered case, Real
con�rmed cases and
predict con�rmed cases
for all the countries as
well as estimated
con�rmed case globally

4 Conclusion

In this paper, the dataset of some countries was used to study the cases of COVID-19. We
used the SEIR model to predict the future outbreak of COVID-19. We applied four differential
equations to calculate the number of con�rmed cases in each country, plotted them on a graph,
and then applied polynomial regression with the logic of multiple linear regressions to predict
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the further spread of the pandemic. We also compared the calculated and predicted cases of
con�rmed population and plotted them in the graph, where we could see that the lines of
calculated and predicted cases do intersect with each other to give the perfect true results for the
future spread of the virus. This study considered the cases from January 22, 2020 to April 25,
2020. The objective of this work is to help China in its �ght against the pandemic. In the future,
machine learning and deep learning algorithms with arti�cial intelligence will be used for training
and testing the model, which will enable us to predict trends even more accurately.
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