
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.013014

Article

Test Case Generation from UML-Diagrams Using
Genetic Algorithm

Rajesh Kumar Sahoo1, Morched Derbali2,*, Houssem Jerbi3, Doan Van Thang4,
P. Pavan Kumar5 and Sipra Sahoo6

1Department of Computer Science & Engineering, Ajay Binay Institute of Technology, Cuttack, 753014, India
2Department of Information Technology, Faculty of Computing and IT, King Abdulaziz University,

Jeddah, 21589, Saudi Arabia
3Department of Industrial Engineering, University of Ha’il, College of Engineering, Hail, 2440, Saudi Arabia

4Faculty of Information Technology, Industrial University of Ho chi Minh City, 700000, Vietnam
5Department of Computer Science and Engineering, FST, IFHE, Hyderabad, 501203, India

6Department of Computer Science and Engineering, ITER, SOA Deemed to be University, Bhubaneswar, 751030, India
*Corresponding Author: Morched Derbali. Email: mderbali@kau.edu.sa

Received: 30 August 2020; Accepted: 20 December 2020

Abstract: Software testing has been attracting a lot of attention for effec-
tive software development. In model driven approach, Unified Modelling
Language (UML) is a conceptual modelling approach for obligations and
other features of the system in a model-driven methodology. Specialized tools
interpret these models into other software artifacts such as code, test data and
documentation. The generation of test cases permits the appropriate test data
to be determined that have the aptitude to ascertain the requirements. This
paper focuses on optimizing the test data obtained from UML activity and
state chart diagrams by using Basic Genetic Algorithm (BGA). For generating
the test cases, both diagrams were converted into their corresponding inter-
mediate graphical forms namely, Activity Diagram Graph (ADG) and State
Chart Diagram Graph (SCDG). Then both graphs will be combined to form
a single graph called, Activity State Chart Diagram Graph (ASCDG). Both
graphs were then joined to create a single graph known as the Activity State
Chart Diagram Graph (ASCDG). Next, the ASCDG will be optimized using
BGA to generate the test data. A case study involving a withdrawal from the
automated teller machine (ATM) of a bank was employed to demonstrate
the approach. The approach successfully identified defects in various ATM
functions such as messaging and operation.

Keywords: Genetic algorithm; generation of test data and optimization;
state-chart diagram; activity diagram; model-driven approach

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.013014

2322 CMC, 2021, vol.67, no.2

1 Introduction

Software testing is a vital yet resource-intensive portion of the software development life cycle
that uses up a considerable share of the budget as well as time. Testing automation is a routine
and essential part of the software development path in our efforts to address these concerns. A test
case can be mined automatically from different Unified Modelling Language (UML) models.
When software testing is carried out on such test cases with adequate test data, it enhances
trust in the software produced. In addition, test data can be mined from the test cases that use
the test specifications [1]. Making test cases often focuses exclusively on specifying requirements
and may neglect factors of system implementation leading to low test coverage. A mechanized
generation of test cases derives data from the provided models (for example, UML diagrams) and
converts them into specification-centred test data. UML modelling generates a graphical depiction
of the framework. It is a semi-formal language of visualization that is used to design and improve
intricate systems as well as to generate test cases [2–4]. Automated testing is employed to improve
the dependability of the solution and to save costs and reduce time.

Model-driven testing is used to mechanically devise test cases by means of models with system
features and software stipulations. It also provides details about the software specifications that
can be executed. This type of testing describes the behavioural, systemic dimensions for employing
the software [5,6]. Model-driven testing is therefore a technique through which the test cases are
created automatically from the stated model. In this approach, test cases are defined via system
under test (SUT) elements. The model reflects the abstract actions of the system. Test cases guided
by the model should not be performed against the behavioural model of the system. Various
techniques automatically produce and optimize the apt test cases against the anticipated output
that is generated by utilizing the test stipulations of the system.

In the case of a genetic algorithm (GA), every person is chosen on the basis of the populace-
based candidate solution for the problem. The relevant GA facets are crossover, selection, and
mutation. The key steps of the GA are as follows: First is the initialization of individuals. Next
comes choosing the best person utilising the Roulette Wheel approach. Crossover is then employed
for generating the most appropriate solution and generating the finest strings by mutation. The
GA seeks the best possible solution from several likely solutions within a search field. The GA
depends on an approach that is purely a globally random search. A GA is an optimization
algorithm that is obtained from consideration of natural selection and evolution and is commonly
utilized to address intricate issues. The GA produces a preliminary number of different populaces.
It then creates the succeeding generation through crossover and mutation, which produces a fresh
batch of individuals [7,8]. This study tackles the problem of redundancy and optimisation of
the test case. Furthermore, it employs the GA for the optimization of the random test cases.
The findings of the GA are discussed in the following section of this paper.

In this study, we consider the Automatic Teller machine (ATM) as an example for our
approach. The ATM is a machine that mainly dispenses cash money and performs several
automatic banking services. This machine is convenient. It allows customers to perform quick
self-service transactions such as cash withdrawals, deposits, mutual account transactions, and bill
payments. However, conventional ATM services are inefficient and time-consuming. The opti-
mization of withdrawal operations at ATMs helps decrease financial inefficiencies due to unused
stocked cash. Predicting cash demand is very challenging because of the unpredictability of
withdrawal operations. Moreover, these specific processes are characterized by huge inherent
redundancy dynamics and large sets of randomized test cases [9–11]. Subsequently, the key
motivation of our research is to develop an advanced strategy for optimization that enhances

CMC, 2021, vol.67, no.2 2323

the performance of specific unpredicted behavioral dynamics in processes in cases with random
redundant states. This work will be developed using a Basic Genetic Algorithm (BGA).

This paper is organized as follows. Section 2 presents a synopsis of the literature for this
research field. Section 3 presents the recommended system and also elucidates the Activity State
Chart Diagram Graph (ASCDG). Section 4 defines the approach and presents the discussion and
simulation outcomes. Lastly, Section 5 describes the conclusion and makes recommendations for
future work.

2 Literature Survey

Test cases are produced and optimized by requirement stipulations and, in particular, by the
program code that can be tough to imbrute [12].

Researchers have focused on a technique that looks at how test cases are produced but are not
optimized using the Hybrid Particle Swarm Optimization (HPSO) algorithm [13]. In this scenario,
this algorithm functions competently in regression testing.

The Ant Colony Optimization (ACO) algorithm, a state-based system, has also been used
in software testing [14]. Furthermore, the researchers formulated a tool that generates a directed
graph where the test cases are produced to accomplish the test coverage norms for all states.
However, in this scenario, the test cases were not enhanced.

In a comparative study, Abdul et al. [15] elucidated how test cases are devised through
different methodologies utilising Particle Swarm Optimization (PSO). They also described how the
test cases are produced and optimized with the aid of UML models. Test case settings could be
mined from an activity diagram [16]. Such diagrams are then transformed into a Control Flow
Graph (CFG). However, this approach is time consuming and might be computationally costly.

Another study described a technique that is utilized to produce the test cases from combi-
national UML diagrams such as sequence and activity diagrams [17]. The corresponding system
diagram graph is then produced and navigated through Depth First Search (DFS). This technique
is employed for ATM card authentication. However, the test cases are not enhanced.

Researchers have elucidated how the test cases are spawned from a combinational diagram
such as a sequence and use case diagram [18]. The combinational system graph is subsequently
produced. However, the test cases are not augmented. Dalai et al. [19] utilized a technique that
produced the test cases from combinational diagrams such as activity and sequence diagrams.
The corresponding system graph is then produced and traversed. However, the researchers did not
look at the optimization of the test case.

Suresh et al. [1] presented a methodology that elucidates the attributes of genetic algo-
rithms along with the test data. This approach uses basis path testing such that optimization is
attained in the creation of test data. The testing effort and the time taken for the analysis are
therefore decreased.

The creation and optimization of test cases has been carried out by means of various soft
computing methods centered on test coverage norms within a Java setting [20]. This includes
a case study and a triangle classifier problem. Sahoo et al. [21] provided a method where the
test cases are produced and optimised by means of an activity diagram and the cuckoo search
algorithm. They also created test paths from activity diagram graphs by considering a case study
such as the bank ATM.

2324 CMC, 2021, vol.67, no.2

The authors of another study stated that the best possible optimisation methods should be
utilised in finding solutions for multi-objective functions [22]. The recommendation of optimiza-
tion techniques is performed with proficient software-testing criteria. Sequence and state chart
diagrams were utilized by Khurana et al. [23] for generating test cases. Next, test cases were
optimized using the GA. However, this is not an automated method for test scenario generation.

Explanations about test case generation and optimization from UML models instead of com-
binational models [24] have been presented. However, the researchers did not utilize an automated
approach. Moreover, not all faults were covered by this method.

The following constraints have been noted and require further work.

1. Most studies explain the generation and optimization of test data but fail to take execution
time into consideration.

2. Most studies have not focused on test scenarios.
3. Most research has not focused on model-driven testing techniques.

3 Proposed Approach

This study describes and evaluates a method that uses GA to generate test cases from
UML diagrams.

3.1 Basic Genetic Optimization Algorithm
Problems of prediction for heuristic data are challenging due to the random and redundant

features of such time series and the conventional global-learning models used for computational
intelligence [25]. These processes are characterized mainly by their generalized learning comport-
ments but fail to fully account for the dynamic complexity of such real-life time data sets in a
proficient way. This research proposes to implement a GA-optimizing technique to develop an
automated strategy that can generate the dependence table and control flow graph accurately and
quickly. The GA, which serves as a digital model of human reasoning, can incorporate local
training to represent the unpredicted dynamics of a heuristic time series in an efficient way [26].
Equally important, the GA approach is selected here due to its quick convergence and ability to
avoid being trapped in a local optimum similar to conventional methods that start from a single
point. The GA technique is also able to operate when the objective function is not smooth, and
there are many parameters. It is highly efficient in case of a noisy or stochastic objective function.
Finally, the use of GAs in this work is amply justified by the need to use probabilistic selection
rules and not deterministic ones [27].

The GA implements the rules of transformation of individuals and provides a solution to
these constraints. It identifies all suitable individuals by observing their values for functional fitness
before combining these individuals and their values to create new potential candidate solutions.

The most crucial steps are

• Generation or initialization of individuals.
• Choosing the best individuals using roulette wheel selection.
• Crossover to create enhanced solutions from the best solution.
• Mutation to generate best strings.

The GA flowchart is shown in Fig. 1.

CMC, 2021, vol.67, no.2 2325

Evaluate fitness values

Start

Initialization of
solutions

Best solution

Yes

Selection

Crossover

Mutation

End

No

Termination criteria
satisfied?

Figure 1: Flowchart of the BGA process

3.2 Transformation of Activity Diagram into Activity Diagram Graph
The activity diagram offers a way to symbolize the step-by-step business workflow and

relates to operational components. The activity diagram and the corresponding graph (ADG) that
describe the general operation of a bank ATM as presented earlier [28–30] are shown in Figs. 2a
and 2b. The dependence table of ADG is shown in Tab. 1.

3.3 State Chart to State Chart Graph Transformation
The state chart mostly offers descriptions of state transitions. It also focuses on the events that

influence state changes. The state chart diagram (SCD) and its corresponding diagram (SCDG)
are shown in Figs. 3a and 3b along with the withdrawal operations of the ATM bank. Moreover,
the dependence table of SCDG is shown in Tab. 2.

2326 CMC, 2021, vol.67, no.2

C F

B

D

X

A

E

Y

Validate PIN number

Start

PIN entered

Display error message

Yes

Withdrawal
amount entered

Check amount is positive
or non zero

Balance inquiry

End

Yes

NO

NO

End

(a)

(b)

Figure 2: (a) Activity diagram of overall operations of a bank ATM. (b) ADG of a bank ATM

3.4 Assimilation of ADG and SCDG into ASCDG
In this case, a combination of nodes, edges, and branches is used to serve as the coverage

criteria in ASCDG. The ASCDG corresponding to a cash withdrawal operation from a cash point
is shown in Fig. 4. A representation of the dependence table for withdrawal transactions is given
in Tab. 3.

3.5 Design Analysis
An initial population of individuals is generated in this method. The corresponding fitness

function values for individuals are also assessed. Next, the current best solution is evaluated.

CMC, 2021, vol.67, no.2 2327

The best solution is chosen using the roulette wheel selection method. The best solution selected
is put in the mating pool. An improved best solution is produced by performing a single point
crossover using two solutions from the mating pool. The genetic mutation was conducted on
the improved solutions before the best solution is computed. This process is performed until the
termination condition is achieved. Random generation of the initial population is performed using
their fitness functional value. Next, the best initial optimum solution is stored. If there is a high
fitness functional value, then the solution tends to lean towards the optimum value. The GA is
divided into three primary phases: selection, crossover, and mutation. In the selection process, the
relative fitness and total fitness functional values for every solution are assessed using the roulette
wheel selection technique. In the crossover phase, the selection of the best solutions for the mating
pool is performed, and the rest are discarded. This phase generates new solutions. In the mutation
phase, candidate solutions are enhanced by changing the values in small increments. If a better
solution is identified, the old solution is replaced, and the replacement serves as the new solution.

Table 1: Dependence table for overview of ATM operation

Symbol Activity
name

Possible
number of
outputs

Dependence Input Expected
outputs

A Insert PIN 1 (B) X Enter PIN by
using user
prompt

B: PIN
validation

B Validate PIN 2 (C, F) A PIN is provided
by the user

C: PIN Valid

F: PIN Invalid
C Entering the

withdrawal
amount

1 (D) B Enter the
withdrawal
amount through
user prompts

D: Check for the
amount and
forward

D Withdrawal of
amount
checked

1 (D1) C Withdrawal
amount is
entered by the
user

E: Amount is
checked

E Enquiry about
the balance

1 (Z) D Remaining
balance is found
after withdrawal
operation

Z: Correct final
result

F Error message
displayed

1 (Y) B, D Invalid input Y: Message
displayed for
incorrect
withdrawal
amount

2328 CMC, 2021, vol.67, no.2

Check if amount
if non-zero and

non-negative

Check the
withdrawal limit

Check if amount
is multiple of 100

or not

Check today's
withdrawal limit

entered by the user

[Not Ok]

[Not Ok]

[Not Ok]

[Not Ok]

[Not Ok]

[OK]

[OK]

[OK]

[OK]

[OK]

X1

Z1

D1

D2

D4

D5

D3

X1

Y1

Z1

Withdrawal amount

Check bank
balance

availability

(a) (b)

Figure 3: (a) SCD and (b) SCDG of a bank ATM operation

Table 2: Dependence table for an ATM cash withdrawal

Symbol Activity
name

Possible
number of
outputs

Dependence Input Expected
outputs

D1 Check the
amount whether
it is positive or
non-zero

2 (D2, Y1) X1 The user
entered the
amount

D2: Check for
the amount and
forward

Y1: Invalid
amount

D2 Check
withdrawal limit

2 (D3, Y1) D1 The user
entered the
amount

D3: Check for
the amount and
forward
Y1: Invalid
amount

(Continued)

CMC, 2021, vol.67, no.2 2329

Table 2: Continued

Symbol Activity
name

Possible
number of
outputs

Dependence Input Expected
outputs

D3 Check if the
amount is a
multiple of 100
or not

2 (D4, Y1) D2 The user
entered the
amount

D4: Check for
the amount and
forward

Y1: Invalid
amount

D4 Checked the
withdrawal limit
for today

2 (D5, Y1) D3 The user
entered the
amount

D5: Check for
the amount and
forward
Y1: Invalid
amount

D5 Check bank
balance
availability

2 (Y1, Z1) D4 The user
entered the
amount

Z1: Amount is
checked

C

F

B

D

X

Z

A

E

Y
D1

D2

D4
D5

D3

Figure 4: Activity state chart diagram graph (ASCDG) of an ATM

2330 CMC, 2021, vol.67, no.2

Table 3: Dependence table for the complete ATM operation

Symbol Activity
name

Possible
number of
outputs

Dependence Input Expected
outputs

A Insert PIN 1 (B) X Enter PIN by
using user
prompts

B: Validate the
PIN and is
forwarded

B Validate PIN 2 (C, F) A PIN provided by
the user

C: Valid PIN

F: Invalid PIN
C Enter the

withdrawal
amount

1 (D) B Enter withdrawal
amount by using
user prompts

D: Amount is
forwarded to be
checked

D Check
withdrawal
amount

1 (D1) C Withdrawal
amount entered
by the user

D1: Amount is
forwarded to be
checked

D1 Check the
amount if it is
positive or
non-zero

2 (D2, F) D The user entered
the amount

D2: Forwarded
amount is
further checked

F: Invalid
amount

D2 Check
withdrawal
limit

2 (D3, F) D1 The user entered
the amount

D3: Forwarded
amount is
further checked
F: Invalid
amount

D3 Check if
amount is a
multiple of
100 or not

2 (D4, F) D2 The user entered
the amount

D4: Forwarded
amount is
further checked

F: Invalid
amount

D4 Check the
withdrawal
limit for today

2 (D5, F) D3 The user entered
the amount

D5: Forwarded
amount is
further checked
F: Invalid
amount

D5 Check bank
balance
availability

2 (E, F) D4 Amount entered
by the user

E: Amount is
checked

F: Invalid
amount

(Continued)

CMC, 2021, vol.67, no.2 2331

Table 3: Continued

Symbol Activity
name

Possible
number of
outputs

Dependence Input Expected
outputs

E Balance
enquiry

1 (Z) D5 Remaining
balance after
withdrawal
operation

Z: Correct final
result

F Display error
message

1 (Y) B, D1, D2, Invalid input Y: Message
displayed for
incorrect
withdrawal
amount

D3, D4, D5

4 Methodologies

Net-amt indicates the total balance amount in the account of the customer as defined in the
program code. Min-bal indicates the lowest balance that needs to be maintained by the customer.
Wd-amt represents the amount to be withdrawn by the customer. The successful transactions
are represented by Test-data. Fail-bal and Suc-bal indicate the transactions that failed or were
successful, respectively. The test cases in this scenario are created and optimised through ASCDG
by the application of BGA.

4.1 Algorithm: Optimization of Test Cases
The generation of test cases by the application of BGA was carried out as follows:

• Ensure the application of GA to the ASCDG.
• Find the fitness functional value of every component of ASCDG.

The functional fitness value was determined as follows:

fx = 1
((abs (net-bal−wd-amt)−min-bal)+ ε)2

, (1)

where ε varies from 0.1 to 0.9.

Hint: The fitness functional expression described in Eq. (1) is largely justified in the related
literature for generating test cases with evolutionary optimization algorithms.

• Find the initial best solution and subsequently group the fitness functional values according
to the population.

• while generation <500 do:

//Selection//

• Assess the relative fitness and total fitness of each solution using the roulette wheel selection
method, where every chromosome is dependent on the fitness functional value.

• Determine the actual count and the exact count.
• Place the best solutions in the mating pool and remove the remaining solutions.

2332 CMC, 2021, vol.67, no.2

//Crossover

• Execute single point crossover on each individual to form the new population.

//Mutation

• By modifying the values by a slight amount, determine the mutation value of each
individual.

• Test the boundary conditions.

//New fitness function is evaluated

• Update the best solution

//Generation=Generation+ 1 (incremented by 1)

The best or the most optimal solution is ascertained based on the fitness functional value.

The relative fitness, during the selection process of the genetic algorithm, can be computed
using the following relationship:

trfx (i)= fx(i)
tfx

, (2)

where trfx (i) denotes the total relative fitness value, fx (i) denotes the fitness function value of the
candidate solution, and tfx denotes the sum total of all fitness values of the solutions.

The actual count and exact count can be computed as follows:

ec (i)= trfx (i)∗ popsize (3)

ac (i)= round(ec (i)) (4)

where ec designates the exact count, ac is the actual count, popsize designates the population size,
and round() is the function to determine the round-off value of a number.

4.2 Discussion and Results

Let us take into consideration the mathematical function fx = 1
((abs(net-bal−wd-amt)−min-bal)+ε)2

to

generate the initial population of individuals. Thereafter, let us assess their corresponding fitness
functional values. Next, we estimate the current best solution.

The best solution is selected and placed in the mating pool using the roulette wheel selection
method. Single point crossover is performed to generate an enhanced best solution that uses two
solutions from the mating pool. Next, the genetic mutation is performed on the amended solutions
to further compute the best solution. The process continues until the termination criterion is
met. The optimum solution is established after BGA is applied and the function is maximized
through MATLAB-7.0. The various iterations are represented in Tabs. 4–6. The optimal solution
was achieved after 160 iterations with minimum central processing unit (CPU) execution time
according to the findings.

The simulation results taking into consideration 20 test cases, which have been optimised
through the use of BGA, are presented in Fig. 5. The representation of the simulation results is
done through the use of test data and the number of iterations through BGA implementation.

A comparative study with the work of Suresh [1] was performed to justify the novelty of the
technique described in our paper. The approach used in the work of Suresh has been implemented
in three heuristic algorithms: Bee Colony Algorithm (BCA), Particle Swarm Algorithm (PSA),

CMC, 2021, vol.67, no.2 2333

and Genetic Algorithm (GA). The results of the comparative study for the different techniques in
terms of required iteration number for each technique are shown in Tab. 7.

Table 4: Results after the first iteration

Sol. # Actual
value

fx value trfx ec ac Chromosome
before
crossover

Chromosome
after
crossover

Actual
value

fx value

1 1300 5.2364e−010 0.21684 1.0842 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 4000 5.9488e−010
2 3600 5.8344e−010 0.20007 1.0004 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 2000 5.4083e−010
3 800 5.1186e−010 0.19823 0.99115 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1800 5.3583e−010
4 1900 5.3832e−010 0.19462 0.97308 1 0 0 0 0 10 0 0 0 0 0 0 1 0 0 1 1800 5.3583e−010
5 1700 5.3336e−010 0.19024 0.95119 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1100 5.1888e−010
SUM 2.73e−009

Table 5: Results after the second iteration

Sol. # Actual
value

fx value trfx ec ac Chromosome
before
crossover

Chromosome
after
crossover

Actual
value

fx value

1 4000 5.9488e−010 0.2182 1.091 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 4200 6.0073e−010
2 2000 5.4083e−010 0.19838 0.99189 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 2500 5.5363e−010
3 1800 5.3583e−010 0.19655 0.98273 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1900 5.3832e−010
4 1800 5.3583e−010 0.19655 0.98273 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1900 5.3832e−010
5 1100 5.1888e−010 0.19033 0.95164 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1500 5.2847e−010
SUM 2.76e−009

Table 6: Results after the third iteration

Sol. # Actual
value

fx value trfx ec ac Chromosome
before
crossover

Chromosome
after
crossover

Actual
value

fx value

1 4200 6.0073e−010 0.2177 1.0885 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 4600 6.1268e−010
2 2500 5.5363e−010 0.20063 1.0031 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 2900 5.642e−010
3 1900 5.3832e−010 0.19508 0.97541 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 2000 5.4083e−010
4 1900 5.3832e−010 0.19508 0.97541 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 2100 5.4335e−010
5 1500 5.2847e−010 0.19151 0.95755 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1800 5.3583e−010
SUM 2.80e−009

The results obtained from the BGA strategy (Tab. 7) are better than those obtained from the
work of Suresh [1]. Test data are optimized after 169 iterations in the work of Suresh [1], whereas
optimized results were obtained after 160 iterations in the BGA approach. This performance is
significant since it proves that the approach is more efficient and less time-consuming. Therefore,
the approach designed in this paper is more efficient and superior when compared with several
heuristic techniques.

The main advantage of the designed approach is that the BGA needs less CPU time to
achieve a global optimum than other testing methods. In addition, the density of global solu-
tions is reduced when compared to the whole input search area. Equally important, our study

2334 CMC, 2021, vol.67, no.2

demonstrates that BGA-generated test data are efficiently enhanced compared with data generated
randomly. Nevertheless, it should be noted that one of the disadvantages of the GA is the random
selection of the test case in each testing progression. Consequently, the selected test may not cover
the maximum, and it can generate large fault rates of detection.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 104

No.of Iterations

BGA

T
es

t c
as

es
 o

r
te

st
 d

at
a

Figure 5: Simulation result of the test data optimisation by using BGA

Table 7: Comparative study showing the iteration number of different approaches

Iteration number

Present work BGA 160
Work of Yeresime Suresh [1] BCA 180

PSA 172
GA 169

5 Conclusions and Future Work

The most elementary steps for an automated testing process comprise developing the depen-
dence table, designing the dependence graph, and creating the possible paths. The strategy
recommended here has the capability to develop the dependence table and regulate the flow
graph with less CPU execution time and more accuracy. The issue of automated generation
was analysed in this study. Optimization of test cases was achieved by adopting BGA through
UML combinational diagrams (ASCDG). The suggested scheme helps to create a more efficient
process that enables improvement of software quality performance. Additionally, it offers inspi-
ration to researchers to attain further enhancement of software features. Future software will be
used with BGA in the future to improve software performance and reduce costs. The processes
that will be developed in this way are likely to be used through various UML models using
combinational graphs.

CMC, 2021, vol.67, no.2 2335

Future directions for this research include improving the generation of automated test data
for large-scale and complex platforms. The current techniques create test data based on small
programs and simple structures. Moreover, areas of future research should establish test data
that exploit a multiple path fitness function for the flow graph control. Exploiting BGA can be
enhanced by investigation of code coverage and merging with other meta-heuristic techniques such
as chaotic particle swarm algorithms.

Funding Statement: The authors acknowledge the financial support from the Deanship of Scientific
Research, University of Hail, Saudi Arabia through the project Ref. (RG-191315).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report about
the present study.

References
[1] Y. Suresh and S. Rath, “A genetic algorithm-based approach for test data generation in basis path

testing,” International Journal of Soft Computing and Software Engineering, vol. 3, no. 3, pp. 326–
332, 2013.

[2] B. Beizer, Software testing techniques. 2nd ed., New York: Van Nostrand Reinhold, 1990.
[3] A. Abdurazik and J. Offutt, “Using UML collaboration diagrams for static checking and test gen-

eration,” in Proc. International Conference on Unified Modeling Language, Berlin, Heidelberg, pp. 383–
395, 2000.

[4] M. Sharma, D. Kundu and R. Mall, “Automatic test case generation from UML sequence diagrams,”
Proceedings of IEEE Conference on Software Maintenance, vol. 1, pp. 60–67, 2007.

[5] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User Guide. USA: Addison-
Wesley, 2001.

[6] J. Hartmann, M. Vieira, H. Foster and A. Ruder, “A UML-based approach to system testing,” Journal
of Innovations System Software Engineering, vol. 1, no. 1, pp. 12–24, 2005.

[7] J. Holland, Adaptation in Natural andArtificial Systems. Ann Arbor: University of Michigan press, 1975.
[8] S. S. Basa, S. K. Swain and D. P. Mohapatra, “Genetic algorithm based optimized test case design

using UML,” Journal of Computer and Mathematical Sciences, vol. 9, no. 9, pp. 1223–1238, 2018.
[9] G. Tsaramirsis and M. Yamin, “Generation of UML2 use cases from MEASUR’s ontology charts:

A MDA approach,” in Model-Driven Business Process Engineering, Chapter 4. UAE: Bentham Science
Publishers, pp. 67–76, 2014.

[10] M. Yamin, G. Tsaramirsis, M. Nistazakis and N. Zhang, “Transformation of semantic analysis to
com+ business requirements using MDA approach,” Journal of Service Science and Management, vol. 3,
no. 1, pp. 67–71, 2010.

[11] K. Marikina, C. Apostolopoulos and G. Tsaramirsis, “Extending model driven engineering aspects to
business engineering domain: A model driven business engineering approach,” International Journal of
Information Technology, vol. 9, no. 1, pp. 49–57, 2017.

[12] M. Prasanna and K. R. Chandran, “Automatic test case generation for UML object diagrams using
genetic algorithm,” International Journal of Advances in Soft Computing and its Applications, vol. 1, no. 1,
pp. 19–32, 2009.

[13] K. Arvinder and B. Divya, “Hybrid particle swarm optimization for regression testing,” International
Journal on Computer Science and Engineering, vol. 3, no. 5, pp. 1815–1824, 2011.

[14] L. Huaizhong and C. P. Lam, “An ant colony optimization approach to test sequence generation for
state-based software testing,” in Proc. of the Fifth Int. Conf. on Quality Software (QSIC’05), Melbourne,
Victoria, Australia, pp. 255–262, 2005.

2336 CMC, 2021, vol.67, no.2

[15] R. Abdul, S. Anwar, M. A. Jaffer and A. Ali Shahid, “Automated GUI test coverage analysis
using GA,” in Proc. 7th IEEE Int. Conf. on Information Technology, Las Vegas, Nevada, USA, pp. 1057–
1063, 2010.

[16] B. N. Biswal, P. Nanda and D. P. Mohapatra, “A novel approach for scenario-based test case
generation,” in Proc. IEEE Int. Conf. on Information Technology, Sydney, NSW, Australia, 2008.

[17] A. Tripathy and A. Mitra, “Test case generation using activity diagram and sequence diagram,” in Proc.
ICAdc, AISC 174, India: Springer, pp. 121–129, 2013.

[18] N. Ashalatha and S. Debasis, “Automatic test data synthesis using UML sequence diagrams,” Journal
of Object Technology, vol. 9, no. 2, pp. 75–104, 2010.

[19] S. Dalai, A. Acharya and D. P. Mohaptra, “Test case generation for concurrent object-oriented systems
using combinational UML models,” International Journal of Advanced Computer Science andApplications,
vol. 3, no. 5, pp. 97–102, 2012.

[20] B. Swathi and H. Tiwari, “Test case generation process using soft computing technique,” International
Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 1, pp. 4824–4831, 2019.

[21] R. Sahoo, D. P. Mohapatra and M. R. Patra, “Model driven approach for test data optimization using
activity diagram based on cuckoo search algorithm,” International Journal of Information Technology and
Computer Science, vol. 9, no. 10, pp. 77–84, 2017.

[22] N. Gupta, A. K. Sharma and M. K. Pachariya, “An insight into test case optimization: Ideas and
trends with future perspectives,” IEEE Access, vol. 7, pp. 22310–22327, 2019.

[23] N. Khurana and R. S. Chillar, “Test case generation and optimization using UML models and genetic
algorithm,” in Proc. 3rd Int. Conf. on Recent Trends In Computing, Delhi, India, pp. 996–1004, 2015.

[24] L. Haldurai, T. Madhubala and R. Rajalakshmi, “A study of genetic algorithm and its applications,”
International Journal of Computer Science and Engineering, vol. 4, no. 10, pp. 139–143, 2016.

[25] W. J. Jemai, H. Jerbi and M. N. Abdelkrim, “Synthesis of an approximate feedback nonlinear control
based on optimization methods,” WSEAS Transactions on Systems and Control, vol. 5, no. 8, pp. 646–
655, 2010.

[26] M. Jabri, A. Belgacem and H. Jerbi, “Moving horizon parameter estimation of series DC motor
using genetic algorithm,” in Proc. 2009 World Congress on Nature & Biologically Inspired Computing,
Coimbatore, India, pp. 1528–1531, 2009.

[27] M. Jabri and H. Jerbi, “Comparative study between Levenberg-Marquardt and genetic algorithm
for parameter optimization of an electrical system,” IFAC Proceedings Volumes, vol. 42, no. 16,
pp. 77–82, 2009.

[28] Y. Huang, X. Chen, K. Yuan, J. Zhang and B. Liu, “Directional modulation based on a quantum
genetic algorithm for a multiple-reflection model,” Computers, Materials & Continua, vol. 64, no. 3,
pp. 1771–1783, 2020.

[29] R. K. Sahoo, S. K. Nanda, D. P. Mohapatra and M. R. Patra, “Model driven test case optimization
of UML combinational diagrams using hybrid bee colony algorithm,” International Journal of Intelligent
Systems and Applications, vol. 6, pp. 44–53, 2017.

[30] A. Y. Hamed, M. H. Alkinani and M. R. Hassan, “A genetic algorithm to solve capacity assign-
ment problem in a flow network,” Computers, Materials & Continua, vol. 64, no. 3, pp. 1579–
1586, 2020.

