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Abstract: Quantum Machine Learning (QML) techniques have been recently
attracting massive interest. However reported applications usually employ
synthetic or well-known datasets. One of these techniques based on using a
hybrid approach combining quantum and classic devices is the Variational
QuantumClassifier (VQC), which development seems promising. Albeit being
largely studied, VQC implementations for “real-world” datasets are still chal-
lenging on Noisy Intermediate Scale Quantum devices (NISQ). In this paper
we propose a preprocessing pipeline based on Stokes parameters for data
mapping. This pipeline enhances the prediction rates when applying VQC
techniques, improving the feasibility of solving classification problems using
NISQdevices. By including feature selection techniques and geometrical trans-
formations, enhanced quantum state preparation is achieved. Also, a represen-
tation based on the Stokes parameters in the Poincaré Sphere is possible for
visualizing the data.Our results show that by using the proposed techniques we
improve the classification score for the incidence of acute comorbid diseases in
Type 2 Diabetes Mellitus patients. We used the implemented version of VQC
available on IBM’s framework Qiskit, and obtained with two and three qubits
an accuracy of 70% and 72% respectively.

Keywords: Quantum machine learning; data preprocessing; stokes parameters;
Poincaré sphere

1 Introduction

Several efforts have been made in recent time to advance quantum software capable of
exploiting the power of the available Noisy Intermediate Scale Quantum (NISQ) devices. These
devices are being developed on a variety of hardware platforms and technologies with a number
of qubits ranging from fifty to a few hundred [1]. Despite the limitations in the number of
qubits and their susceptibility to noise, these devices are leading to the development of more
powerful quantum technologies for the future [2]. Each successful application is an important step
in the development of Quantum Computing. One of these applications lies in the advance of
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Machine Learning (ML) techniques, a technology that is widely used in a multitude of real-world
applications [3] motivated by the advances achieved in different knowledge fields and the derivative
commercial applications.

Quantum Machine Learning (QML) is one of the most encouraging applications, being
actively studied by several research groups [4]. In general, looking forward to developing new
techniques able to exploit Quantum Computing advantages to improve machine learning [5].
Supervised learning is a specific QML task recently emerging with massive interest from academy
and industry. There are several contributions in this field, including approaches with quantum
inspired neural networks and their applications [6–8], hybridized low-depth Variational Quantum
Circuits (VQC) [9], optimization algorithms [10] with simple error-mitigation [11], preprocessing
techniques like PCA showing exponential improvements [12], and experiments for classifica-
tion [13,14]. Also, multiple implementations of linear regression [15,16] in Quantum Computers
have been propose.

Several approaches to encode classical data into quantum states have been presented. These
describe advantages including the experimental overhead reduction in terms of resources and
the introduction of non-linearities in the data [14,17], enabling the use of linear classifiers and
kernel-based methods [18,19] on near-term quantum processors, with an exponential speed-up
when compared to classical algorithms [20]. In references [21,22] independent authors described
the advantages from the usage of quantum algorithms in machine learning methods, being one
example the polynomial reduction from query complexity in nearest–neighbor classification when
compared to classical algorithms [23].

Multiple examples from the usage of quantum computing techniques in machine learning
applications for well-known datasets have been presented. Datasets such as MNIST, Wine, Can-
cer and Iris are of common use to test these approaches [13,18,24,25]. Nonetheless, real-world
applications are scarce, a handful of applications including a Reactor Coolant Pump (RCP) state
classification at a Nuclear Power Plan [26], Wine recognition [8], Dementia prediction [27] and
the partial dynamics of a complex 10-spin system [28] have been explored. There is a need
for explore real applications using quantum machine learning, that motivate further research in
this area, using quantum properties in real-world applications. It should be noted that quantum
machine learning algorithms may not yield to an advantage when compared with their classical
counterparts, but understanding their scope and limitations is critical in the development of
current quantum technologies.

In this paper we present a real case study of Type 2 Diabetes Mellitus (T2DM), this disease
is the fourth cause of mortality, with rising prevalence this disease is a major public health
problem [29]. There are 415 million people with diagnosed diabetes and it is estimated that around
193 million people suffer the disease without diagnosis, in both cases it could lead to micro
and macrovascular complications, causing major distress to both patients and caregivers [30]. We
introduce a preprocessing technique to map the data into quantum states to perform quantum
classification. In particular, this technique is based on a data representation using the Stokes
parameters, enhancing data encoding techniques proposed by [3], improving on average a 20%
the classification score of a Quantum Variational Classifier implemented using IBM’s framework
Qiskit [31]. We conducted three different experiments using VQC over the same data features and
parameters. In the first experiment, we normalized the data with zero standard deviation, in the
second we add to this normalization an Ellipsoidal coordinate transform and finally in the third
we found the Stokes parameters from data.
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This paper is organized as follows: First, we present the proposed pipeline to pre-process
data describing each of the stages developed: Feature Scaling and selection, ellipsoidal coordinate
mapping and Stokes parameters data representation, then we describe the employed quantum
classifier and the experiments performed to classify acute comorbidities incidence in Type 2
Diabetes Mellitus (T2DM) patients. Finally, we present the obtained results and a discussion about
these results and conclusions.

2 Materials and Methods

The current limitations of NISQ devices impose restrictions on Quantum Machine Learning
techniques [1]. Currently, many proposed QML applications rely on using well-known datasets,
where the preprocessing techniques are now standard [13,18,24]. When using real-world datasets
these techniques are not always suitable to adequate the data to be processed by Quantum
Classification models. We proposed a data preprocessing pipeline presented in Fig. 1, to transform
datasets before applying current kernel techniques for VQC algorithms. Each of the components
of this pipeline are described.

Figure 1: Proposed preprocessing pipeline

2.1 Feature Scaling
This step ensures same scaling for the numerical inputs in the model, enhancing the accuracy

and speed of optimization methods during training. In general, this is a required step in the
data preprocessing pipeline for most of the classical Machine Learning techniques [32]. For QML
implementations, this is a fundamental step due to data constraints when representing it as
quantum states. These restrictions result from quantum mechanics properties, in this sense, we
standardized the data to zero mean deviation and unit variance. Then, each feature vector was
scaled to a range of [−1, +1].
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2.2 Feature Selection
Feature selection techniques are based on the idea of identifying and removing less relevant or

redundant features, providing faster and more cost-effective predictors [33]. These techniques are
relevant when processing medical datasets where features could induce noise in the models, making
the classification process more difficult during training. Algorithms like Principal Component
Analysis (PCA) have proven to be proficient to perform data preparation, even in QML appli-
cations and processing [12,34]. However, using this kind of algorithms make data interpretation
unfeasible, therefore, avoiding artificial transformations enables feature interpretation before using
them for the model.

In this sense, we based our methodology in variable ranking, calculating the mean value from
the scores obtained using the feature importance of four different classical classification methods.
Our main goal was to find a subset of features from our dataset that give us the best performance
in classification, using the minimum number of features considering the encoding transformation
to define quantum states, and the current quantum devices limitations in terms of quantum
volume. Therefore, we selected the top three features of the calculated score, this dimensionality
constrained is imposed by the ellipsoidal coordinate mapping. Our chosen classification methods
were Gradient Boosting [35], Random forest, K-Best and Extra Trees that minimizes overfitting
the data.

2.3 Ellipsoidal Coordinate Mapping
The selected features were transformed into a coordinate space where it can be easily repre-

sented using the Poincaré sphere. We use an iterative method based on [36] to transform those
features from a Cartesian coordinate space (x,y, z) to an ellipsoidal coordinate space (ϕ,λ,h),
following Eqs. (1)–(3).

ϕi = arctan

⎡
⎣ z(

1− e2 N(i)
N(i)−h(i)

)
p

⎤
⎦ (1)
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x

)
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(
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where N(i) is defined as:
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) (4)

The constant p is:

p=
√
x2+ y2 (5)
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and e is based on the semi-major axis a, the semi-minor axis b.

e2 = a2− b2

a2
(6)

We executed the method specifying a dispersion error of 10−5 for each data point.

2.4 Stokes Parameters: Poincaré Sphere Representation
A convenient geometrical representation of the Quantum States is obtained when using the

Bloch Sphere, also known as Poincaré Sphere, it has been used to describe polarization states
by using the Stokes parameters. By defining the data in terms of ellipsoids, these definitions are
mathematically analogous to Stokes parameters to describe polarization, however, they have no
physical relation with them. The ellipses parameters are represented by:

S1 = h cos (2ψ) cos (2φ) (7)

S2 = h sin (2ψ) cos (2φ) (8)

S3 = h sin (2ψ) (9)

S0 = S21 +S22 +S23 (10)

where φ is the azimuth angle between the semi-major axis of the ellipse and the x-axis, and ψ is
the elliptic angle, defined by the inverse tangent of the relation between the length of the semi-axes
of the ellipse (Fig. 2a). A simple geometric representation of these parameters is obtained when
defining a spherical surface of unit radius:

S =
⎛
⎝
S′1
S′2
S′3

⎞
⎠ = S−1

0

⎛
⎝
S1
S2
S3

⎞
⎠ (11)

Figure 2: In (a) semi-axes of the ellipse, in (b) Stokes parameters represented over Poincaré sphere
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Fig. 2b depicts these coordinates representation in the Poincaré sphere. In this, the variables
S′1, S

′
2 and S′3 can be considered as the Cartesian coordinates of the point S on the surface of

the unitary radius sphere, being 2ψ and 2φ the angular coordinates of this point.

2.5 Variational Quantum Classifier
The Variational Quantum Classifier (VQC) is a quantum method for supervised learning that

allows performing classification problems in current NISQ devices. Based on a method proposed
by Havlíček et al. [3] this algorithm allows to obtain experimental results in NISQ devices without
the need to perform additional error-correction techniques. The calculation of the cost function
based on the iterative measurements from the device serve as error mitigation, by including noisy
measurements into optimization calculations. Also, it has been showed that mapping features to
quantum states using amplitude encoding, is a suitable option to preprocess data when using
VQC, provided that data is low dimensional or its structure allows for efficient approximate
preparation [14,18,37]. This method is a hybrid approach where the parameters are optimized and
updated in a classical computer, making the optimization process without increasing the coherence
times needed [3,28].

One of the key components from this method is the feature map definition, which maps
data into a potentially vastly higher-dimensional Hilbert space of a quantum system [14] allowing
to perform efficient computations over non-linear basic functions on a possibly intractably large
space, the feature space. A similar implementation known as kernel-trick has been explored using
classical machine learning [38]. Nonetheless, using classical devices to perform these operations
could take exponential resources, therefore quantum computing allows for creating more complex
models that could predict with higher precision [28].

Figure 3: Schematic view of VQC algorithm [27]

Havlíček et al. [3] proposed a VQC with two main elements presented in Fig. 3. First, a
feature map that works as a fixed black-box encoding classical data xi into a quantum states
|Ψ (xi)〉 , by applying transformations to the ground state |0〉n using products of single and two-
qubits unitary phase-gates. In specific, the experimental implementation of the authors results
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in a unitary gate uφ (x) = Uφ(x)H
⊗

nUφ(x)H
⊗

n where H represent the Hadamard gate and

Uφ(x) = exp
(
i
∑

S⊆[n] φs (x)
∏

i∈S Zi
)
, is a diagonal gate in the Pauli-Z basis. Second, a short

depth unitary U (θ) circuit with l layers of θ-parameters, optimized during training by minimizing
a cost function in a classical device, and tuning θ iteratively. Using parameterized quantum
circuits known as quantum circuit learning QCL, implies the usage of an exponential number of
functions with respect to the number of qubits from the parameterized circuit, this is intractable
on classical computers, therefore, allows to represent more complex functions than the classical
counterparts [28].

3 Case Study: Incidence of Acute Diseases in Diabetic Patient

Diabetes Type 2 is a rising public health problem [29]. The patients with Diabetes Type 2
represent over 90% of the total of patients with any type of diabetes and is the seventh cause of
death worldwide [29,39]. This disease leads to a number of micro and macrovascular events [40],
which represent short and long-term complications such as cardiovascular disease, nephropathy,
retinopathy, peripheral neural disease, limb amputation, erectile dysfunction, depression, among
others. Given its close relation with lifestyle and obesity, the numbers of people suffering from
this condition and its complications keep increasing [30]. The steady increment in the number
of people suffering from Type 2 Diabetes Mellitus results in a huge burden on the health-care
system increasing the healthcare costs [30,41,42]. Provided the wide range of complications and
disabilities that come along, this disease has a major impact on the patients’ life and on healthcare
system supporting them.

Several T2DM related complications have been studied through different classical Machine
learning, Deep Learning and Data Mining techniques [43,44]. The risk factor identification asso-
ciated with these complications is of great value to the clinical management of individuals with
diabetes. Due to the high level of disability and incremental costs of the disease, it is necessary
to investigate the causes involved in the genesis of complications. In order to address them in
the future and apply the medical knowledge not only from a healing perspective but also on a
preventive one, saving suffering to the patient and money to the health care system.

A dataset containing clinical information from patients diagnosed with Type 2 Diabetes
Mellitus has been used. For each subject a successive 12-month time period was defined, during
this period, a patient is considered diagnosed with T2DM if the disease onset date was prior to
the established cut-off point. By following these criteria, the total study population was 149,015
filtered from a larger database containing Electronic Health Records (EHR) from Osakidetza
(Basque Health Service) in Bilbao, Spain. This dataset includes clinical variables such as LDL-
Cholesterol, Body Mass Index and glycated hemoglobin (A1C). Also, demographic variables
including age, gender and socioeconomic status position were considered.

The study protocol was approved by the Clinical Research Ethics Committee of Euskadi
(PI2014074), Spain. Informed consent was not obtained because patient health records were made
anonymous and de-identified prior to analysis.

4 Results

In particular, our concern is the prediction acute conditions, we studied the incidence of acute
myocardial infarction, major amputation or avoidable hospitalizations. Following the methodol-
ogy discussed in Section 2.2 for feature selection we used gender, cholesterol LDL and Johns
Hopkins’ Aggregated Diagnosis Groups (ADG). These features were contained in the higher
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scores when gradient boosting, random forest, k-best and tree-based techniques were applied as
feature selectors.

Figure 4: Poincaré geometrical data representation

Table 1: VQC results for acute disease prediction in Diabetes patients

Data
dimension

Metrics Preprocessing

Normalized
(−1,1) and zero
standard deviation

Ellipsoidal
transform

Poincaré
sphere

3 Accuracy 0.680 0.580 0.720
Precision 0.758 0.586 0.758
Recall 0.709 0.653 0.758
F1-Score 0.733 0.618 0.758

2 Accuracy 0.500 0.620 0.700
Precision 0.413 0.689 0.793
Recall 0.600 0.666 0.718
F1-Score 0.489 0.677 0.754

Furthermore, the included features are relevant for the diabetes patients care, there is a strong
correlation between diabetes and cholesterol [45], ADG has been used in the past to assess diabetic



CMC, 2021, vol.67, no.2 1857

patients’ mortality [46], and we included gender as one of the selected features because it provides
a differential characteristic, meaning that could enhance separability due to non-direct correlation
with the output. This could be explained by the difference in hormones, fatty tissue distribution
or simply differences in the lifestyles.

Then we randomly selected a balanced set of 250 samples for the data. These were split
into two subsets, 200 for train and 50 for testing. After preprocessing the data, it is possible to
represent the data points using the Poincare Sphere as depicted in Fig. 4, where the red dots
represent patients with acute conditions and blue dots without. Albeit this step is not needed to
process the information, it provides a good visual representation of the data distribution.

Figure 5: T2DM acute disease classification metrics for the conducted experiments

Data classification was performed by using the implemented version of VQC in IBM’s frame-
work Qiskit version 0.11.1 and executed in the provided simulator Aer version 0.2.3 [31]. Every
combination of the experiments was executed with 1024 shots, using the implemented version
of the COBYLA optimizer [47] through the same framework. We conducted tests with two and
three qubits, in each case we compared the accuracy, precision, recall and F1-Score when applying
data normalization between −1 and 1 with zero standard deviation, adding to this normalization
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the ellipsoidal coordinate transform, and finally adding the Stokes parameter representation, the
results from these experiments are summarized in Tab. 1.

To show the advantage of using the proposed pipeline and its elements we performed three
experiments using VQC over the T2DM dataset. In the first experiment we normalized the data
using zero standard deviation before passing to the model. In addition to the normalization,
in the second experiment we also transformed the data to Ellipsoidal coordinates. Finally, in
the third experiment we calculated the Stokes parameters additional to all the previous steps,
giving the possibility to visualize the data points using a Poincaré sphere. By including all the
data preprocessing elements, we obtained a pipeline that enhance data preparation for VQC
application. The results of these experiments are presented in Fig. 5, using accuracy, precision,
recall and F1-score as metrics to evaluate the model’s performance. In these figures it can be
seen that using the proposed pipeline to transform data, induce significant improvements in the
classification performance in particular in the 2 qubits case. Moreover, by using the proposed
technique, the model results when employing 2 qubits resemble those obtained when 3 qubits were
used, enhancing the classification results even if fewer resources are available.

5 Conclusions

Research on Quantum Machine Learning applications is advancing the uses of current state
quantum computers, given the wide range of applications and the industry interest in machine
learning techniques to solve practical problems. We consider that this work contributes in the
usage of new techniques for the exploitation of NISQ devices in “real-world” applications
of QML.

A milestone to pursue is to achieve quantum advantages for commercial applications. Machine
learning is an area of computer science where statistics, data processing and analytics converge,
given the relevance of data across the different fields and the breadth of applications. In particular,
Quantum Machine Learning is being actively investigated by several research groups, as the exploit
of quantum computing advantages could improve and expand the range of real-world machine
learning applications.

In this paper we propose a pipeline to transform and preprocess data, making it feasible to
be classified using Quantum Machine Learning techniques. By using this pipeline, we enhanced
the quantum state preparation for VQC algorithm. Our results showed that by using the proposed
techniques we obtained similar results when classifying the incidence of acute diseases in diabetes
patients using a Variational Quantum Classifier with two and three qubits, with 70% and 72%
accuracy respectively. We are currently studying and developing unsupervised and supervised
machine learning techniques suitable for NISQ devices, given the current limitations on coherence
times and qubits available on current devices. In particular, conducting further research on the
application of the proposed pre-processing pipeline to improve the data suitability for different
QML techniques such as Quantum Support Vector Machine. We are also evaluating the execution
advantages of applying the proposed technique in different environments.
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