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Abstract: Remote sensing analysis techniques have been investigated exten-
sively, represented by a critical vision, and are used to advance our understand-
ing of the impacts of climate change and variability on the environment. This
study aims to find ameans of analysis that relies on remote sensing techniques
to demonstrate the effects of observed climate variability on Land Use and
LandCover (LULC) of theMesopotamia region, defined as a historical region
located in the Middle East. This study employed the combined analysis of
the Normalized Difference Vegetation Index (NDVI), Land Surface Tem-
perature (LST), and two statistical analysis methods (Pearson Correlation
Analysis, r; Coefficient of Determination, R2), which were applied using the
Moderate Resolution Imaging Spectroradiometer data and observed surface
meteorological data from 2000 to 2018. The resulting NDVI images show five
LULC classes with NDVI values varying between −0.3 and 0.9. Furthermore,
changes in the classified LULC area were compared statistically to those in
NDVI values, where a positive relationship was found. Also, when the LST
values and temperature are more extreme, the NDVI values were found to be
smaller, suggesting a decrease in the density of vegetation cover. A negative
correlation was found through Pearson correlation analysis (r = ∼−0.64),
indicating a direct effect of increased temperatures on LULC. Indeed, this
negative relationship between NDVI and LST was proven using R2 values,
where a two-dimensional scatter plot analysis showed thatR2 ranges from 0.54
to 0.9. Ultimately, the results obtained from this study reveal changes thatmay
have many prominent effects in the field of LULC classification, accelerating
the implications of climate change and variability factors.
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1 Introduction

Any substantial changes in climate variables, such as temperature, precipitation, or wind,
will lead to changes in climate [1]. Climate variability has been described as the mean statistical
data of previous variations in weather on all scales (temporal and spatial), beyond the scale of
individual weather events. The region of Mesopotamia is one of many regions that have been
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affected by climate variability during the last decade due to many factors, such as anomalous
changes in weather variables like precipitation and temperature [2–4]. Human activities, including
successive wars and a lack of optimal political solutions, have aggravated climate change in many
areas such as the Mediterranean Sea, the Mesopotamian valley, and China’s Loess plateau while
natural factors are represented by the level of global warming that has occurred [5]. Changes in
Land Use and Land Cover (LULC) have a direct impact on many aspects of human life. Climate
change, the hydrological cycle, biological diversity, and others are the most complex issues causing
changes in LULC [6,7]. Therefore, changes in LULC have been considered significant factors
related to environmental change at local and global scales. Also, factors related to LULC may
change over time. Consequently, LULC should be monitored with caution from the local, regional,
and global scales, especially when plans are considered for future evaluation [8,9]. The linkage
between different issues such as climate, vegetation cover, environment, and so on can be studied
using the long-term analysis of LULC change as a necessary procedure to identify and map
large-scale areas [10]. This process has many applications related to the fields of urbanization, the
environment, and economics, such as coastal change and urban sprawl [11], urban landscape pat-
tern change [12], water resource management [13], vegetation cover change [14], economic resource
change [15], and quarrying activities [16]. Satellite remote sensing data is the most common data
source for analyzing and mapping LULC class patterns and accrued changes because of its unique
characteristics related to many factors such as acquisition, digital format, resolution, accurate geo-
referencing, and so on [17]. Imaging systems, the methods used, and the understanding of LULC
features are the most factors that affect the use of effective remote sensing techniques used for
analyzing LULC changes [18,19].

Many studies have attempted to use remote sensing data to address changes in LULC, some
of which have focused on semi-arid and arid regions. Post-Classification Comparison (PCC), image
differencing, principal components analysis, and vegetation indices are the most common tech-
niques that have been adopted to monitor LULC changes using remotely sensed data [20]. Othman
et al. [21] were able to classify LULC changes using data from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) where it has been shown that the use of MODIS-Normalized
Difference Vegetation Index (NDVI) produced good results when revealing LULC classes [21]. To
minimize problems associated with multi-temporal images recorded under different atmospheric
and environmental conditions, the PCC method [22] has been used to classify and detect other
LULC classes using multi-temporal remote sensing data [23]. Land Surface Temperature (LST) is
an essential parameter that is often used to describe physical processes ongoing in land surface
classes on regional and global scales. It combines the results of all interactive operations between
the land surface and atmosphere, such as the exchange of energy fluxes between water bodies and
the atmosphere [24]. Land cover change analysis data based on LST retrieved from remote sensing
products have been used in many studies related to drought monitoring and soil salinization.
Many researchers have been using LST products in their studies. For instance, LST data have
been used to estimate the effects of long-term climate change, especially when integrated with
NDVI data used to monitor vegetation coverage. All these studies have proven that LST can be
a good indicator of many climate-related changes [25–27]. In addition, MODIS-NDVI data were
used to explore whether differences existed in Spain and the Balearic Islands through a temporal
statistical trend analysis of vegetation cover. The analysis showed that the NDVI trends were
negative or positive at different times [28]. As an extremely beneficial technique, a geographical
information system plays a significant role in detecting changes in LULC fields. Its high-power
capability can provide quantitative estimation, statistical analysis, and spatial distribution solutions
for a variety of case studies related to LULC [29,30]. Distribution analysis applications have been
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used to produce sensitive models that can be used to analyze the location of LULC classes on
the ground.

Remarkably, the present study used a particular combination of remote sensing data to
find an optimal analysis procedure that could be used to allocate climate change effects on the
LULC in the study area. In addition, this study aims to address the factors that cause these
changes and to find possible land management solutions or proposals to limit these changes
from an environmental perspective. Furthermore, the following goals are addressed to achieve the
study objectives: (i) to provide recent and historical LULC maps for the Mesopotamia region
and to reveal the changes in LULC cover classes; ii) to identify the effects of observed long-
term climatic variability on LULC using a developmental procedure that depended on LST and
statistical analyses.

2 Background

2.1 Study Area
The historical land of the Middle East, situated between the Tigris and Euphrates river

basins, is called Mesopotamia. Agriculture first emerged in Mesopotamia and then spread to
neighboring lands, such as Ancient Egypt. Early agricultural operations enabled the residents
of Mesopotamia to settle in the area and abandon their previously nomadic lives [31,32]. It is
located from 30◦–39◦N to 40◦00′–50◦54′E covering an area of about 496,290 km2, including much
of Iraq and the eastern parts of Syria as well as small portions of western Turkey and Iran
(Fig. 1). Sand and dust storm (SDS) events create challenging environmental phenomenon for
humans in the Mesopotamia region, where there has been an increase in SDSs with varying
levels of intensity and frequency, especially in the past decade [2,33]. In addition, LULC changes
have been occurring in this region primarily because of SDSs. These environmental catastrophes
have been described in many international forums dealing with climate change phenomena and
are categorized as uncontrollable transboundary environmental phenomena that cause a great
deal of damage to human property and lives [34,35]. Al-Hayani et al. [36] concluded that SDSs
contains various microorganisms, including Mycobacterium, Brucella, Bacillus, and many others.
Furthermore, SDSs have a major economic effects. For example, a recent study by Al-Hayani
et al. [37] showed that dust events in Kuwait City in 2001–2014 have caused $28,180 worth in
damage per day to the oil export sector.

2.2 Remote Sensing Data
In recent years, remote sensing has become an impressive technique based on its robust

methods and reliable products. The MODIS on board Terra, an Aqua platform available for large-
scale terrestrial applications, has 36 spectral bands ranging in wavelength from 0.4 to 14.4 µm
with varying spatial resolutions having two bands at 250 m, five bands at 500 m, and 29 bands at
1 km. The MODIS product data are distributed in the Hierarchical Data Format (HDF), and each
file contains multiple layers of data. Out of seven bands used for land-surface applications (bands
1 to 7) from a total of 36 bands, only bands 1 and 2 (representing the red and near-infrared parts
of the spectrum) were used in this NDVI analysis and study; cloud-free images were selected.
Furthermore, of the 36 bands, only six bands deal with land surface temperature/emissivity (Bands
20 to 23 and Bands 31 to 32). In this study, bands 31 and 32 were used for the analysis of
LST [38].
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Figure 1: General view of the study area

Because the study area covers an extensive region, 76 satellite images with two types of
MODIS data acquired in July were retrieved from the United State Geological Survey (USGS)
website representing from 2000 to 2018 [39]. The downloaded images included 36 images of NDVI
type MOD13Q1 and 38 images of LST type MOD11A1 Version 6, where every two images cover
the entire study area. A subset and mosaic process was applied to produce 19 scenes of each
image type in the study area. These images have specific information, as described below:

1) MOD13Q1 data provides two essential vegetation layers generated every 16 days as a
Level 3 product at a 250 m spatial resolution. The band’s width fluctuated between
620 and 876 µm with spectral radiance at 21.8 and 24.7 W/m2-µm-sr for bands 1 and
2, respectively.

2) Authorized validation of MOD11A1 Version 6 was obtained by the Terra satellites by
various in situ measurements [40]. These data can be described as having a daily temporal
resolution generalized by a split-window algorithm under clear-sky conditions at about
1 km (actually 0.928 km) spatial resolution with nominal data array dimensions equal to
1200 rows by 1200 columns gridded in a sinusoidal map projection. The band’s width fluc-
tuated between 10.78 and 12.27 µm with spectral radiance at 9.55 and 8.94 W/m2-µm-sr)
for bands 31 and 32, respectively.

3) In the temporal evaluation of MODIS-NDVI results, Landsat 5 Thematic Mapper, Landsat
7 Enhanced Thematic Mapper+, and Landsat 8 Operational Land Imager were taken
simultaneously. Landsat satellite images have 30 m spatial resolution with a 16–18 days
temporal resolution, and associated spectral bands had wavelength differences between
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0.433 and 2.35 nm. Landsat images feature a higher spatial and temporal resolution than
MODIS images and provide high-quality multispectral data for land surfaces since 1972.

2.3 Meteorological Data
Meteorological data reports, covering data from 1990 to 2018, were gathered from 14 mete-

orological observation stations distributed in Mesopotamia; these reports were used to complete
the study objectives. This dataset was obtained from the Iraqi Ministry of Transportation [41,42],
which shows the meteorological stations of (1) Mosul, (2) Kirkuk, (3) Tikrit, (4) Ramadi,
(5) Khanqin, (6) Baghdad, (7) Karbala, (8) Hila, (9) Aziyzia, (10) Badra, (11) Alhai, (12) Nasiriya,
(13) Dewaniya, and (14) Alemarah (Fig. 1).

3 Methodology

3.1 Normalized Difference Vegetation Index (NDVI)
The NDVI is the most extensively used remotely sensed vegetation index and is used for

detecting and investigating LULC and climatic phenomena, such as drought and desertification.
For LULC studies, NDVI supplies a measure of the vegetation cover, associated with standing
biomass volume. The main challenge related to using NDVI is that, even though biomass and
productiveness are intimately related in some systems, the consequences of NDVI conditions can
be generally based on changes of vegetation cover across LULC and ecosystem types [43]. The
NDVI is a quantified vegetation remote sensing index that measures the differences between the
red and near-infrared spectra reflected or observed from the vegetation cover. It is mostly used to
discriminate between vegetated and unvegetated areas; it can also be used to evaluate the health
status of vegetation [44]. The NDVI is represented mathematically using Eq. (1) as follows:

NDVI= (NIR−RED)/(NIR+RED) (1)

where NIR and RED reflect the near-infrared and red range of the spectrum, respectively. This
formula generates a value between −1 and +1. The values from −1 to 0 represent unvegetated
areas such as naturally bare, abandoned, or urbanized land, and values greater than 0 to +1
represent existing vegetation in the area under study [45]. In other words, a high NDVI value is
observed when low reflectance is observed in the red channel and high reflectance is observed in
the NIR channel, and vice versa. Based on the example provided by [46] and using MODIS13Q1
products, in the present study the NDVI was extracted from each image through multi-layer
MODIS data for each frame, and the mosaic process of two frames was applied for each year
(Fig. 2). From NDVI results validated via Landsat satellite imagery, the final NDVI images and
LULC were classified into five classes, where the NDVI range of values for each class was
estimated and was used in the statistical analysis of this study.

3.2 Retrieving LST from the MODIS Data
The incident solar radiation received on earth is the ultimate energy source for plant life

and largely determines the climatic conditions of earth’s habitats. The amount of solar energy
reaching the earth’s surface is a significant observation related to the surface energy balance
and governs many diverse surface processes. The LST provides a good indicator of long-wave
and incoming solar irradiation that affects all the LULC classes. When soil, vegetation, water,
or urban area, and so on have a different response for incoming solar radiation, any changes
in the local surface temperature can be detected [47]. Several methods can be used to retrieve
LST-based remote sensing data such as the split-window, temperature/emissivity separation, or
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single-channel methods [48,49]. In the present study, LST was retrieved automatically, where
several steps had to be completed based on the single-channel method, as presented by [47]. Here,
LST type (MOD11A1 Version 6) data from 2000 to 2018 (July) that covered the entire study
area with a mosaic subset was adopted to obtain the final scene in the study area. The LST
data were extracted in degrees Kelvin; the LST units obtained were converted to degrees Celsius
using Eq. (2):

Temperature (c)= (DN ∗ 0.02)− 273.15 (2)

where DN represents the digital numbers of LST data (Fig. 3) [50].

Figure 2: MODIS-NDVI from 2000 to 2018 for the Mesopotamia. MODIS, moderate resolution
imaging spectroradiometer; NDVI, normalized difference vegetation index

3.3 Statistical Analysis
The histograms of all NDVI and LST images were divided into 10 break values (Fig. 4).

Two-dimensional scatter plot analysis was prepared to establish the relationship among the three
variables: NDVI, LST, and the temperature distribution. Standardized statistical analyses were
carried out to show the relationship between these variables with LULC changes in the study
area during the studied period [51]. Two-dimensional scatter plot analysis and Pearson Correlation
Coefficient (r) analysis was applied to find the statistical relationship between NDVI and LST for
each LULC class.
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Figure 3: MODIS NDVI and LST results from 2000 to 2018 for the study area. LST, land
surface temperature; MODIS, moderate resolution imaging spectroradiometer; NDVI, normalized
difference vegetation index

4 Results and Discussion

According to [50], the region of Mesopotamia has suffered from two major problems,
increasing salinization and dune movements, which play a leading role in decreasing quality and
availability of agricultural lands. These problems are the main results of climate change in the
study area based on extensive evidence that the findings of this study have confirmed. The NDVI
images at a 16-day composite were produced by MODIS13Q1 products covering the study area
from 2000 to 2018. The NDVI levels were estimated using the NDVI rescale method to improve
visual interpretation. As a result, it was found that the NDVI values ranged from −0.3 to 0.9.
The highest value (0.9) represents vegetation, whereas the lowest value (−0.3) represents water;
the NDVI of barren lands fall in between (Fig. 2). The NDVI was used to analyze the four
main LULC classes, including vegetation, agricultural lands, barren lands, and water. The areas
of each class and the NDVI value for each year are summarized. According to Tab. 1, the region
is generally covered by barren land (∼80%), open water (2%), and agricultural areas (∼7%).
Although no significant changes were observed in the overall assessment of the area during the
study period, changes were especially observed in open water areas when these areas are examined
in detail (Fig. 5). In addition, the most noticeable differences can be seen in the vegetation where
vegetation cover varied between 4% and 11%. To visualize the relationship between LULC and
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NDVI in the study area, the changes in each class area were estimated as a percentage for each
studied year (Fig. 6). Therefore, changes in LULC classes can be defined. These changes in the
region can be compared, evaluated, and attributed to several factors, such as the effects of climate
change as a connection to the retreat of the classes of water bodies. The increase in the barren
land class that has been caused by human activity is an example of an increase in the class of
the agricultural land area.

Figure 4: Preparing the normalized difference vegetation index (NDVI) and land surface temper-
ature (LST) data for statistical analysis

Standardized analysis between the NDVI, LST, and average ground temperature values, from
2000 to 2018, is illustrated in Fig. 7. Note that all parameters are in a relationship that binds
them to a specific format. When the LST and temperature are high, the NDVI values are low,
indicating a decrease has occurred in the density of the vegetation cover as was observed in the
period from 2003 to 2012. However, this also occurred in 2014, where this decrease in the density
of the vegetation cover proves that climate change has been exacerbated and as a result caused
desertification in the study area. Conversely, an increase in NDVI values can be observed when
the LST and temperature decrease as seen during the period 2000 to 2003 and for 2012, 2016, and
2018, suggesting that the density of vegetation cover had increased. This may have been caused
by the high rates of rainfall in those years or by the increase in the agricultural area used by
humans. This analysis method can be considered a suitable and straightforward solution for the
assessment of the effects of various drought factors in the region.
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Table 1: Temporal land use and land cover (LULC) classes with their areas

Year Water
(km2)

% Barren lands
(km2)

% Vegetation
(km2)

% Agricultural
lands (km2)

% Total

2000 8279 2 403428 81 35945 7 48645 10 496299
2001 9944 2 399345 80 37634 8 49377 10 496300
2002 10720 2 375527 76 55113 11 54938 11 496300
2003 9986 2 401673 81 30972 6 53668 11 496300
2004 11101 2 395304 80 31773 6 58120 12 496299
2005 10024 2 387599 78 41714 8 56964 11 496300
2006 10332 2 386633 78 43475 9 55859 11 496299
2007 10332 2 397580 80 32528 7 55859 11 496299
2008 8274 2 402711 81 30877 6 54437 11 496299
2009 8275 2 403428 80 35946 7 48649 11 496300
2010 9369 2 396073 80 32879 7 57978 12 496299
2011 8882 2 395353 80 32686 7 59379 12 496299
2012 8645 2 399739 81 31052 7 56866 10 496300
2013 9986 2 397640 80 31760 6 56912 12 496299
2014 10084 2 412250 83 20561 4 53404 11 496299
2015 8914 2 411015 83 20341 4 56029 11 496299
2016 8275 2 403428 80 35942 7 48645 11 496299
2017 9944 2 399345 80 37634 7 49377 11 496300
2018 10720 2 375527 80 55113 7 54938 11 496300

Figure 5: Land use and land cover (LULC) changes between water and vegetation as an example
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Figure 6: The relationship between Land use and land cover (LULC) and normalized difference
vegetation index (NDVI) in the study area

Figure 7: Standardised analysis results for the Normalized difference vegetation index (NDVI),
land surface temperature (LST), and average ground temperature
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As mentioned in many articles, water bodies and vegetation cover are often influenced by
surface temperatures where this relationship can be simulated as a linear relationship [3,6,7,28,51].
In the present study, the total number of the metadata matrices of the NDVI and LST images
were used to study the relationship between NDVI and LST to find the correlation between these
two for the LULC classes (Fig. 8). This analysis shows a negative correlation existed between
NDVI and LST for all LULC classes in the study area. In other words, the increase in surface
temperature adversely affects the other LULC classes. The strength of the obtained negative
correlation between the NDVI and the LST was analyzed using analyzing the Pearson correlation
coefficient (r). This correlation varies between −1 (representing a perfect negative correlation), zero
(represents no linear correlation), and +1 (representing a perfect positive correlation) [52], where
the average between the NDVI and the LST Pearson Correlation Coefficient (r) was −0.64, and
this proved a negative correlation existed between them. The Coefficient of Determination (R2)
showed an excellent fitting negative relationship between the LST and the NDVI for all classes
ranging from 0.54 to 0.9. Fluctuation in LST values indicates that these values directly affect the
decrease or increase in LULC classes.

Figure 8: The relationship between Normalized difference vegetation index (NDVI) and land
surface temperature (LST) as two-dimensional scatter plot analysis

Previous studies have analyzed the effects of climate change on LULC in some parts
of Mesopotamia, as mentioned by [53] where some changes in the Mesopotamian marshland
occurred during the period 1988–2017; the authors found that dramatic changes in vegetation
cover occurred. As a large part of the region of Mesopotamia, all parts of Iraq suffer from
major effects of climate change. The spatial extent of the desert area in the western part of
Iraq increased to 2,287,000 km2 between 1990 and 2017 (studied period), as mentioned by [54].
Furthermore, Yahya et al. [5] found a reduction in annual runoff values in the studied period from
1992 to 2017, where the drought satiation fluctuated between moderate to extreme drought and
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increased in the desertified area of northwestern Iraq. According to the above, only some parts
of the study area and corresponding study subject were analyzed. Our research provides a new
vision of how climate change affects the entire study area through the interplay of several remote
sensing and statistical analysis methods, which have been efficient in finding potential relationships
between the variables under study and in achieving the primary goal of the study.

5 Conclusions

The complicated situation regarding climate variability in the region of Mesopotamia must
be studied with caution. The variable changes in temperature, precipitation, and increase in SDS
events should not be underestimated; this change in climate behavior would largely eliminate some
species or change the composition of a combination of other species present in the study area. In
the present study, MODIS products that have been shown to be efficient to many environmental
applications, such as the detection of vegetation change, were used to assess the relationship
between the LULC classes and the possibility of climate change occurring over time. Statistical
analyses were done on the LST and NDVI to find any possible connection between increasing
surface temperature and decreasing vegetation cover, reflecting the likelihood of increasing drought
factors affecting the study area over time. Based on the present study’s results, the LULC cate-
gories should be monitored with caution, especially concerning the increase and decrease in the
area of these classes over time. The use of higher resolution images would allow a more detailed
analysis of the changes. Periodic monitoring of these classes will help land managers to develop
the study area in several ways and reduce the opportunity for the occurrence of direct negative
effects of erosion-related factors by increasing the spatial extent of vegetation cover at the expense
of the barren land class, and thus, reduce the effects of potential desertification factors in the
study area. Immediate solutions must be developed in the region of Mesopotamia in the hope of
reducing this phenomenon, because the cultivation of windbreaks requires planting lines of unique
carefully selected species of fast-growing trees in areas corresponding to prevailing surface winds.
It is hoped that these windbreaks would stop the movement of dunes and reduce the risk of sand
and dust storms events, especially in the western and southwestern parts of Mesopotamia.
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