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Abstract: Clustering algorithms optimization can minimize topology mainte-
nance overhead in large scale vehicular Ad hoc networks (VANETS) for smart
transportation that results from dynamic topology, limited resources and non-
centralized architecture. The performance of a clustering algorithm varies with
the underlying mobility model to address the topology maintenance overhead
issue in VANETs for smart transportation. To design a robust clustering
algorithm, careful attention must be paid to components like mobility models
and performance objectives. A clustering algorithm may not perform well
with every mobility pattern. Therefore, we propose a supervisory protocol
(SP) that observes the mobility pattern of vehicles and identifies the realistic
Mobility model through microscopic features. An analytical model can be used
to determine an efficient clustering algorithm for a specific mobility model
(MM). SP selects the best clustering scheme according to the mobility model
and guarantees a consistent performance throughout VANET operations. The
simulation has performed in three parts that is the central part simulation
for setting up the clustering environment, In the second part the clustering
algorithms are tested for efficiency in a constrained atmosphere for some time
and the third part represents the proposed scheme. The simulation results show
that the proposed scheme outperforms clustering algorithms such as honey bee
algorithm-based clustering and memetic clustering in terms of cluster count,
re-affiliation rate, control overhead and cluster lifetime.

Keywords: Cluster; VANET; smart transportation; supervisory protocol;
mobility models

1 Introduction

VANET [1] for intelligent transportation is a group of vehicles and road segments intercon-
nected in Ad hoc fashion and able to share information. The cars can move in any direction
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and cooperate with each other, relaying packets of information on different vehicles along with
their load. VANET for smart transportation has gained importance in recent years, because it can
offer information to drivers about rush hour traffic, accidents, weather (flood, rain, etc.), and road
conditions. We can also distribute vehicles in a VANET in a hierarchal manner by grouping cars
into clusters, like an IP subnet [2]. The VANET may see the entire set as a vehicle (logical) at the
cluster level. The network layer shares information with these logical vehicles (clusters in VANET)
to manage the VANET. The control messages in the network increase when the topology changes.
To overcome the control messages overhead, we may use cluster-based routing schemes.

One of the most recent issues in VANETs is the formation of a cluster-based communication
scheme responsible for routing information to the sink node in a proficient way using little
resources. First, clustering is a more suitable option for effective network management. Generally,
a VANET comprises hundreds of vehicles or more. In a flat VANET setup, needless data will be
generated. When the VANET size becomes huge, the flat VANET setup may saturate the network
and may encounter a scalability issue. In contrast to the Internet of Things (IoT) networks with
ground segments, scalability is challenging in VANETs due to vehicles’ movements. Accordingly,
efficient VANET management is significant. To date, the most professional approach to managing
VANETs is clustering. Clustering provides a base for managing several other crucial complications
in VANETs, e.g., controlling topology, building the backbone VANET and intrusion detection.
All the concerns described above need vigilant consideration and can be resolved based on a
well-structured clustered VANET.

The key purpose of clustering schemes is to determine a rational set of clusters that can cover
the whole set of vehicles in a VANET. One vehicle can only be a member of one cluster at a
specific time. While it is optional for each cluster to have a cluster head (CH), the existence of
CHs helps make VANET management easier. The clusters should be shaped and retained in such
a manner that the cost in terms of VANET resources, for instance, energy and bandwidth usage,
should be reduced. The cost may be decreased further through cluster setup and re-clustering.
Without these optimizations, the clustering turns out to be more costly than flat routing.

Most clustering schemes focus on different objectives with different mobility models
(MMs) [3]. The current work considers the same mobility pattern throughout the simulation and
network lifetime. Vehicles in a cluster may not move in the same mobility pattern throughout the
lifetime of the network. For example, in battlefield scenarios, at one moment, a particular vehicle
may be moving on the ground or forest with a random mobility pattern. Later, the vehicle may
move in the streets in a statistical fashion. Assuming a mobility model throughout a simulation
is not a good approach in the scenarios mentioned above, and a protocol that copes with vehicle
mobility patterns is required to select a clustering scheme based on the mobility model.

In this paper, we propose an SP that observes the mobility pattern of vehicles and identifies
a realistic mobility model using microscopic MM scenarios. An analytical model will determine
the best clustering algorithm for a certain mobility model. The SP chooses the leading clustering
scheme for the said mobility pattern and guarantees consistent performance throughout the life
of a VANET.

The remainder of the article is structured as follows: Section 2 addresses the existing work,
Section 3 presents the motivation. The clustering schemes adopted are discussed in Section 4,
Section 5 discusses the proposed SP and Section 6 describes the performance evaluation of the
suggested technique and the experiment results. Lastly, the article concludes in Section 7.
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2 Related Work

A large research community has been focused around clustering in VANETSs. Generally,
the various clustering approaches can be distributed into energy-efficient, mobility-based, swarm
intelligence-based, evolutionary algorithm-based, hybrid clustering and load balancing [3].

In this segment, the protocols that consider vehicles’ mobility are analyzed. The vehicles move
from some locality to another with a random motion or in a statistical manner. The vehicle’s
future mobility configuration has a powerful influence on clustering schemes. The direction and
speed of vehicles, i.e., relative mobility, needs consideration in cluster construction. However, if
vehicles with the same mobility speed relative to their neighbors but different movement direc-
tion are nominated as a CH, an inefficient clustering structure may result in an overload of
re-clustering and may create additional overhead.

The work presented in [4] assumes clustering based on energy usage in MANET. The energy
constraint is optimized to minimize the energy consumption of nodes. In the beginning, the
vehicles in MANET are grouped into a cluster using the K-medoid algorithm. This helps to
minimize the routing information in large scale MANETs, and the cost of network operation is
also reduced. An optimization algorithm named genetic fish swarm optimization is adopted to
perform the multipath routing in MANET. The authors claim that this mechanism will reduce
energy consumption.

The security of a cluster-based stable and energy-efficient MANET is discussed in [5]. In
this scheme, the CHs are selected based on multiple parameters, like vehicle mobility, its degree,
residual energy, distance from other CHs and trust value. The solution is optimized using fuzzy
logic. An additional CH named standby CH is used to rescue the original CH in different
situations like the accidental death of a CH, a CH that moves beyond the range of its members or
an attacker compromising the CH. In any of these situations, the standby CH will be invoked and
will perform the CH role. Another standby CH will be selected from the neighbor nodes based
on their optimization value. The consistent operation of the network will continue with additional
CH nodes. In addition to connectivity, this process will guarantee the security of the CH.

The Optimal Link State Routing scheme is selected to stream real-time data in MANET [6].
As mentioned in the paper, the overhead of the nodes is high because every vehicle chooses a
group of multipoint relay vehicles. Thus, the authors recommended the selection of multipoint
relay vehicles without compromising the quality of service (QoS). To further reduce the load on
the network, it adopts the lower maintenance clustering approach.

A clustering scheme based on connected dominating sets for multi-channel cognitive radio
(MCCR) MANETs was proposed in [7]. In this scheme, the channel selection is dynamic. The
purpose is to obtain a high delivery ratio, minimize control overhead and minimize the delay and
energy dissipation when the mobility is high. Furthermore, we can use a dynamic channel selection
scheme for future generation networks, like vehicular ad-hoc networks (VANETS), the internet of
things (IoT) and 5G networks.

In work in [8], the researchers proposed a mobility-aware cluster-based routing algorithm
for heterogeneous MANETs. The CHs were selected based on radio communication range and
lower mobility, resulting in stable clusters. The proposed scheme may generate fewer clusters,
resulting in lower cluster maintenance overhead. The hosts directly connected to form a loose
cluster. The mobility-aware loose cluster-based scheme suggested in this approach with a loose
clustering condition resulted in minimum maintenance overhead. Finding the highest remaining
energy vehicles in a heterogeneous MANET may create an additional burden on the network, as
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a high-powered vehicle doesn’t need to have the same mobility pattern as its neighbors. The term
relative mobility was also assumed. The number of neighbors of a vehicle becoming a CH was
not considered during the cluster formation process, resulting in CHs selected from only one part
of the network.

In Leader Based Group Routing (LGBR), a routing mechanism is made for delay tolerant
networks (DTN) with group mobility [9]. The information is saved in the vehicles and delivered on
contact chance. The basis for the leader-based group routing was group mobility-based epidemic
routing (ER) for delay tolerant networks. Assuming each cluster as a single entity, the resource
requirements and routing overhead throughout the routing process are considerably reduced.

To conclude, all the schemes discussed above use the same mobility model throughout the
operation of the network. It is also possible that the vehicles have a different mobility pattern at
different times; therefore, clustering protocol performance will change along with changes in the
vehicle mobility pattern. A scheme is required that observes the mobility pattern of vehicles and
that adopts the clustering protocol that best fits the scenario.

3 Motivation

An essential feature of vehicles is movement, as it disturbs the performance of the VANET
protocol. In planning VANETs, the performance metrics and movement patterns of vehicles are
considered. Precise depiction of vehicles is crucial to determine whether a scheme is beneficial or
not suitable in a certain environment. MMs are categorized according to seven disparate categories
on the basis of their elementary movement features, including group mobility, flocking mobility,
time-variant community mobility, virtual game-driven mobility individual mobility, autoregressive
mobility and non-recurrent mobility [10].

The deviations and movement patterns in the above MMs influence the performance char-
acteristics. MM modeling uses two methodologies: syntactic and traces. Traces delivers patterns
perceived in reality systems. At this point, the whole thing is deterministic. The methods men-
tioned above require a massive amount of contributors and a lengthy surveillance period. The
syntactic model denotes the mobility of vehicles accurately and classifies them into individual
mobility or group mobility. The syntactic model is based on uncertainty and controlled and
statistical prototypes. In controlled topology-based MMs, there are obstacles, pathways and speed
limits that restrict the partial randomness and movement of vehicles. A model based on total
randomness is known as a statistical MM. Mobility model formulation is based on stochastic
processes. Vehicles’” movements consist of a sequence of arbitrary length interims called epochs.
Throughout one epoch, the vehicle moves in a persistent direction and at a continuous speed. The
track and speed differ for other MMs.

In disaster recovery, the vehicles function in city and rural regions. The urban regions have
roads and streets, and their mobility is realistic, constrained or partial random. When a vehicle
arrives at a rural region, the mobility may be random or statistical. The mobility model and the
clustering algorithm must fit the operational scenario/environment for the improved outcome and
better QoS. This process is also supposed to be automatic in all respects.

Fig. 1 presents two different syntactic MMs for group mobility with vehicle-to-vehicle com-
munication. The mobility of vehicles is supposed to alter with a change in scenario, and if the
MM of the VANET remains the same, then the outcome might be reduced. Similarly, if we vary
the MM once the scenario changes and the clustering algorithm does not change, again, the QoS
might be compromised.
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Figure 1: Battlefield VANET operational scenario [!]

4 Clustering Schemes

This section explores different clustering schemes proposed in wireless networks, and their per-
formance is tested in different scenarios. We proposed clustering schemes based on bee intelligence,
integration of honey bee and genetic algorithm and memetic algorithm.

4.1 Honey Bee Algorithm-Based Clustering

We propose a honey bee algorithm-based clustering (HBAC) in [11]. In this algorithm, a
modified version of the honey bee algorithm was used to find an optimal CH set in MANET.
We selected HBAC due to its simplicity, robustness and flexibility and its ease of implementation.
HBAC is also able to explore local solutions and handles the objective cost.

The purpose of this protocol is to select a CH set as soon as possible when required. The
CHs are chosen based on a vehicle’s residual energy, its degree and relative mobility. To calculate
the weight of a car i to become the CH, Eq. (1) below can be used:

Wveh; = WvehE, ;4. + WvehD,, 4. + WvehM 40 (1)

To calculate the WvehE,,;., first, the average of vehicle energies AvehEi can be computed as
in Eq. (2):

l n
AvehE; =~ " vehRE; )
n-
i=1
where vehRE; is the remaining energy of vehicle i. WvehE, 4 is the weighting factor concerning
residual energy/power of a node and is calculated as follows: the weight factor is 1 when the value
of RE; > E;, the weight factor is —1 when vehRE; < AvehE; and its value will be 0 when vehRE; ~
AvehE;. Similarly, the weight factor will be 1 when the value of vehDeg; > AvehD;, the weight
factor will be —1 when vehDeg; < AvehD; and its value will be 0 when vehDeg; =~ AvehD;. Similarly:

WvehD,,,4. 1s the weight factor w.r.t node degree and is calculated by Eq. (3):

1 n
WvehD; = p Z vehDeg; 3)

i=1



1358 CMC, 2021, vol.67, no.2

where vehDeg; is the degree of node i, WvehD; is the weighting criteria w.r.t vehicle degree and n
is total vehicles in VANET. Likewise, the weight of a car’s w.r.t mobility is calculated as follows:
the node with the same movement speed and direction or static nodes are appropriate nominees
and the weight value will be 1, and 0 otherwise.

The cluster headset comprises the nodes as a minimum 3 hops away from each other. When
the weight of all nodes has been identified, the minimization function in Eq. (4) is applied to
compute the suitability of a cluster headset.

n n
Minimize F (w,c) = Z Z wgtij(Wveh; — Avehj)2 4)

i=1 i=1

k
Subject to ZWU:k for (i=1,...,k)
j=1

Here, wgt;; is the relationship weight of vehicle 1 with CH;. Wveh;, the weight value of vehicle
i and Avehj is the average value of a car concerning the distances among CHs.

4.2 Cluster Formation Based on Honey Bee, Tabu List and Genetic Algovithm

In this scheme, the properties of the genetic algorithm along with a tabu list and the honey
bee algorithm are used to find the optimal cluster headset [12]. The tabu search and genetic
properties are used to find more optimal clusters. The algorithm will suffer from local maxima
due to the local search algorithm. The notations used in genetic bee tabu clustering (GBTC) were
adopted as in [12]. The pseudo-code of GBTC is presented in Algorithm 1.

Algorithm 1: The pseudo code of the GBTC algorithm

Procedure GBTC
I: Input: k, n
2: Output: CHs
3: Cj=rand (n) where j=1,2,3,...,n
4 if (ft =true) then
5: return CHs
6: else
7: while (i! = max) do
&: m=n-—c¢
9: for (pt=1;pt <=m;pt++) do
10: Xpt = Ep + Dpr + My,
11: end for
12: for G=1;j<=k;j++) do
13: if (xj <ipop[j]) then
14: npopl(j] = ipop[j]
15: end if
16: end for
17: while (nof! =n —m) do
18: beel =rand(n — m)

(Continued.)
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19: bee2 =rand(n — m — beel)
20: Crossover (beel, bee2)

21: Mutation(beel, bee2)

22: if (OFS not in TL) then
23: TL=TL+ OFS

24: end if

25: CHs =npop

26: return CHs

27: end procedure

4.3 Memetic Algorithms-Based Clustering (MemeHoc)

In this algorithm, a modified version of the memetic algorithm is used to find the optimal
cluster headset in VANET [13]. The pseudo code of Algorithm 2 best explains the memeHoc
cluster formation process.

Algorithm 2: The psuedo code of memeHoc
1: Procedure memhoc_clustering_SP

2: Input: n, k

3: Output: CHs

4. SP_TD=0

5: forG=1;1<n;i++) do

6: SP_TD =SP_TD + SP_Degi

7. end for

8: SP_A =StID

9: SP_k=SP_A

10: forG=1;j<k;j++)do

11: \\ initializesarandom cluster head — set permutation
12: SP_CHs[j] =rand (v[n])

13: end for

14: SP_pop[j]= SP_CHs[j]

15: SP_pop|[j] = SP_Local_Improver (CHs)

16: pop_new[j] = call fun_replace(pop)

17: SP_fv[pop_new] = calculate — fitness(pop_new)
18: if (SP_fv[popuew] < SP_fv[pop]) then

19: SP_CHs = pop_new

20: return SP_CHs

21: end if

22: end procedure

5 Proposed Supervisory Protocol (SP)

VANETs need decent clustering algorithms to inaugurate the association amongst vehicles,
which change their topology very often, while maintaining the QoS during VANET operations.
In VANETs, the movement of vehicles is very high, and the vehicles’ functional area changes
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regularly. One particular clustering scheme may not be able to give an ideal outcome in all the
scenarios/environments or MMs; relatively, an alternative clustering algorithm may outperform
in the new scenario and MM. The dynamic nature of the topology, MMs and performance
parameters of the VANETs stress dynamic clustering algorithms. The suggested algorithm is a
reactive/responsive SP working on the top of a clustering algorithm/protocol. The SP examines the
efficiency of the VANET for different clustering algorithms in a particular environment/scenario or
MM and analyzes the microscopic mobility features to discover a working environment/scenario
and MM. The microscopic mobility features assume each vehicle as a separate entity and deal
with its exact particulars, for instance, its acceleration, position and speed [l14]. Those micro-
scopic features are then utilized to generate traces, which deliver patterns perceived in real-life
systems, for modelling MMs. In our experiments, the whole thing is deterministic. The need,
as mentioned above, is a massive amount of contributors and lengthy surveillance time. The
available traces used in our experiment were loaded into our traffic simulator [15]. Vehicle and
driver behaviours are influenced by environment/situation, varying road settings, rush hour traffic,
driving plans/policies, own node manners, climate change and other ecological contributors [16].
The traces were generated with the help of a traffic emulator, as in our previous work [I1]. To
generate traces, the Multi-agent Microscopic Traffic Simulator (MMTS) needed a long simulation
time. The suggested SP guesses the environment/scenario employing existing traces for realistic
MMs [16]. The SP is armed with environmental awareness through these traces, which specify
variations in the surroundings. The suggested SP announces a code to the VANET, and the code
is allied with a clustering algorithm for the new adoptable MM/scenario. The VANET switches
communication with a new clustering algorithm. Tab. 1 below describes the notations used in
supervisory protocol Algorithm 3.

Table 1: Notations used in SP

Symbol Description

n Number of vehicles in VANET

k Number of clusters

X Position of vehicle at x-axis

y Position of vehicle at y-axis

theta Angular history

1 Links with other nodes

ngh Neighbor nodes

LH Location history

Trace Patterns for mobility models

TV Trace value

RWPV The random waypoint mobility value
RPMV The reference point mobility value
SMV The value if nodes are moving in a statistical fashion
MM The underlying mobility model

LN Number of live nodes




CMC, 2021, vol.67, no.2 1361

Algorithm 3: Pseudo code of the supervisory protocol

Global Variable MM = RWPV

1: procedure SP

2: begin

3: Input: traces, n

4: QOutput: CHs

5: while (LN >= 0) then//Monitor direct mobility metrics/microscopic mobility characteris-
tics (Traces)

6: if (TV=RWPYV) then

7: broadcast a message to all nodes

8: call procedure memeHoc_cluster (MM, n) //
9: elseif (TV = RPMYV) then

10: MM = RPMV

10: call procedure HBAC _cluster (MM, n) [11]
11: else

12: MM = SMV

12: call procedure GBTC_cluster(MM,n)

13: end if

14: end while
15: end procedure

SP empowers VANET to select the clustering algorithm declared/affirmed as best for a par-
ticular MM based on the performance history of the clustering algorithm. To conclude, VANET
remains consistent/steady in different altering environments/scenarios with an improved outcome.
Algorithm 3 illustrates the proposed SP for the described problem.

The computational complexity of the SP depends on the clustering scheme adopted at a spe-
cific time. The worst-case complexity is calculated by adding together the worst-case complexities
of all clustering schemes under consideration. Here, the worst-case computational complexity of
HBAC is O (n*k*m). Here, the total number of vehicles is n, k is the total number of clusters
in VANET and m is the maximum value of the round until an optimal solution is not found.
The computational complexity of GBTC is O (n*k*m), and the complexity of memeHoc is O
(n*k). Adding the complexities of these three clustering schemes, we get O (m=*n=k). Hence, the
computational complexity of SP is O (m*n x k).

6 Simulations Results and Analysis

The simulation comprises three parts. The central part simulates the clustering schemes in
constrained and statistical mobility settings alone. The outcome of this experiment confirms the
efficiency of an algorithm in a specific scenario. In the second part, the clustering algorithms are
tested for efficiency in a constrained atmosphere for some time and then changed to statistical
afterwards. The algorithm result is not steady because of variations in the environment. The third
part represents the proposed scheme. SP identifies the change in a scene from traces, then SP
changes the algorithm when the setting changes to statistical during the mobility of vehicles.
Consistent performance was achieved using supervisory clustering protocols. The efficiency will not
affect the amendment in operating environments. Moreover, a simulation-based study is dedicated
to computing efficiency and the scalability of different algorithms in different scenarios.
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The results obtained during simulations are presented in the subsections for the three diverse
scenarios. The first two scenarios certify the assertion that one specific clustering algorithm out-
performs other algorithms, but their performance differs with the underlying MMs. The altering
operating scenarios result in the inconsistent performance of the clustering algorithms. The reac-
tive SP observed the movement and invoked the best clustering algorithm to achieve consistent
performance. A suitable clustering scheme was selected based on its former performance history
in a specific MM.

The SP algorithm’s performance was validated through a series of simulation experiments in
EstiNet 8.1, as in [13], and Matlab. The EstiNet 8.1 simulators used for validating the clustering
schemes used in the first two sections does not allow a network of more than two hundred
vehicles. We selected MATLAB for two reasons. First, the programming code for clustering written
in EstiNet is in line with the MATLAB syntax. The programming code converted to a new
syntax with little effort. Second, the simulation runs significantly faster than other simulators. For
evaluation, we also simulated three clustering algorithms, namely HBAC [1 1], our proposed GBTC
(clustering based on the Honey Bee Algorithm, Tabu search and Genetic Algorithm) [12] as well
as memeHoc (clustering based on memetic algorithm) [13]. Initially, a variation in the number
of clusters formed with each technique was measured when we increased the number of vehicles
in the network. The variation in the lifetime of the CHs selected in each method was measured
against the maximum vehicle speed.

An additional experiment was conducted in which we measured the number of re-affiliations
that occurred in each clustering algorithm against the speed of each vehicle or maximum transmis-
sion range changes. We assessed the control message overhead of the three clustering algorithms
for multiple values of full vehicle speed.

We considered three different mobility models in our simulation experiments. First, we ran
experiments supposing the vehicles are moving according to the random waypoint (RWP) mobility
model. We also evaluated the performance of the clustering algorithms according to the reference
point group mobility model (RPGM). The algorithms also tested the statistical mobility model.
BonnMotion, a tool for analysis and generation of mobility scenarios, was used to generate the
scenarios for the RWP and RPGM.

The RWP model did not form the best-case scenario for the HBAC and GBTC algorithms
compared to the memeHoc algorithm due to the basic supposition of associated vehicle movement
breakdowns in this model. Vehicles are free to move in this model, and the only association that
happens with RWP derives from the point that neighboring cars that are at a specific interval will
remain neighbors for some additional period unless the vehicles are within the communication
range of one another.

Inversely, reference point mobility is the ideal setting for HBAC, as vehicles are moving
in groups and their movements are related and more estimated. The distributed nature of this
algorithm performs well when compared with GBTC and memeHoc.

Statistical mobility is well-suited for the GBTC algorithm to measure during the simulation
due to the constraining nature of communication between vehicles. The HBAC algorithm performs
well after GBTC in statistical movements (urban areas where obstacles exist). The memeHoc result
is worse in this scenario due to the algorithm’s centralized nature.
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6.1 Number of Clusters

In this subsection, we present the simulation results of cluster count against each mobility
model to check the effect of the mobility model on network performance. We believe that a
clustering algorithm does not perform consistently if the mobility model changes. The change
in mobility may happen if the vehicles move from the streets to the forest or ground. The
transmission range of cars is 200 m, as in Fig. 2, and 300 m, as in Fig. 3. The vehicles are moving
on a random waypoint mobility model for the first 20 mins. The mobility model then changed to a
reference point mobility model after 20 min. The statistical mobility model was applied next after
40 mins. The SP first assumes random mobility for the first 5 to 20 mins. Then the reference point
mobility model went for 20 to 35 mins. Finally, the statistical mobility pattern was assumed for 35
to 50 mins in the network. Similarly, the mobility models considered for memeHoc, HBAC, and
GBTC were random waypoint, reference point and statistical model, respectively. The maximum
speed of vehicles in the simulation was set to 70 km/h in 50 simulation runs.
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Figure 2: Average number of clusters vs. simulation time (transmission range = 100 m)

10

| —+—memeHoc
.......... 3% GBTC

Number of Clusters

i 1 I i ! i 1
5 10 15 20 25 30 35 40 45 50
Simulation Time (min)

Figure 3: Average number of clusters vs. simulation time (transmission range =200 m)
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The curves in Fig. 2 clearly show that the number of clusters is less for memeHoc when the
mobility model is RWP, from 5 to 20 min on the horizontal line. Similarly, when the mobility
model is changed to reference point mobility, the HBAC performs well, as shown in the curves
on the horizontal line from 20 to 35 mins. The HBAC performance degrades when the mobility
model changes to the statistical model after 40 mins. In the last 15 mins of the simulation, GBTC
performs well. The number of clusters in SP is less compared to other clustering schemes under
consideration because SP changes the clustering algorithm according to the movements of vehicles.

Fig. 3 presents the results to compare the total number of clusters when the transmission
range is changed to 200 m. All other parameters remain constant, as in Fig. 2. The graph suggests
that in the random waypoint mobility model from 5 to 20 mins, memeHoc produced fewer clusters
compared to the HBAC and GBTC algorithms. The performance of HBAC is better from 20
to 35 mins during the simulation using the reference point mobility model. Again, the SP forms
a fewer number of clusters for the whole life of the simulation, since SP changes the clustering
algorithm whenever the mobility model changes.

6.2 CH Duration

In this section, we measure the cluster duration concerning vehicle speed. The mobility model
is random waypoint when the vehicles are moving at a slow speed, i.e.,, from 0 to 40 km/h.
Reference point mobility is assumed when the cars are moving in a speed range from 40 to 60
km/h. The mobility model changes to the statistical model from 60 km/h onward. The curves
in Fig. 4 show that the stable cluster is formed via the memeHoc algorithm when the mobility
model is RWP. HBAC performs well when the mobility model is reference point mobility even
with high-speed networks. The SP forms stable clusters throughout the simulation. Again, this is
because the clustering mechanism changed according to the mobility model. The simulation test
presented in Fig. 5 also shows the average CH duration vs. vehicle speed when the transmission
range increased to 300 m. The curves show that SP produced long life clusters with both high-
and low-speed vehicles. The HBAC, GBTC and memeHoc algorithms have a similar effect with
vehicles in the high transmission range.
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Figure 4: Average CH duration vs. vehicle speed (transmission range =200 m)
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Cluster Lifetime

Figure 5: Average CH duration vs. vehicle speed (transmission range = 300 m)

6.3 Re-Affiliation Rate
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This section demonstrates the re-affiliations rate measured in clustering schemes as a function
of the maximum vehicle speed (Fig. 6) and the maximum transmission rate of each vehicle
(Fig. 7). There were 50 vehicles deployed in an area sized 1000 x 1000 m.

Re-affiliation Rate

Figure 6: Average number of re-affiliations per vehicle vs. vehicle speed
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The re-affiliation may increase with vehicle speed, as the mobility of vehicles may destroy
the clustering structure quickly. Vehicles move from one cluster jurisdiction to another and re-
affiliate. As compared to other algorithms, the SP is influenced less frequently from re-affiliation.
In this algorithm, the clustering scheme changes when the vehicle mobility pattern changes. In
this protocol, we assume that vehicles may join the new cluster only if it lost contact with its CH.
In the cluster setup phase, a vehicle that has the highest probability (compared to other CHs) of
being a neighbor for a long time joins the CH. In this way, the re-affiliation will be minimized.

In Fig. 7, it is evident that the re-affiliation rate will increase for high values of transmission
range, especially for the HBAC, GBTC and memeHoc approaches. There were very few neighbors
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of the vehicle when the transmission range of the cars was small and the re-affiliation rate was
low. Conversely, cars with a high transmission range have a large number of neighborhoods, and
vehicle mobility may not influence vehicle neighbors. The re-affiliation is high for the transmission
range intermediate values.
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Figure 7: Average number of re-affiliations per vehicle vs. vehicle transmission range

6.4 Control Message Overhead

The control message overhead of the HBAC, GBTC and memeHoc approaches and the SP
algorithm showed different values of vehicle maximum speed, seen in Figs. & and 9. The discovery
mechanism for finding the neighbors is the same in all clustering schemes for the exchange of
hello messages and was not considered in the tests. In this experiment, 50 vehicles were deployed
in a square area of 1000 x 1000 m2. The transmission range was set to 200 and 300 m, respectively.
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Figure 8: Average number of control messages per vehicle vs. maximum vehicle speed (200 m)

In comparison to other schemes, SP also shows fewer control messages sent from each vehicle
per second. SP observed the mobility pattern of cars and changed the clustering algorithm when
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a change in mobility followed. The number of control messages decreased. Moreover, minimizing
re-clustering in some part of the network further reduces the control message received or sent
during re-clustering.

107 =

—+—memeHoc
PR JRTRSENSE SN RURTINUTN WA — ——GBTC
] : : : —5—HBAC
0 10 20 30 40 50 BID 7i3 80
MN Speed (kmih)

Control Messages Overhead
=)

Figure 9: Average number of control messages per vehicle vs. maximum vehicle speed (300 m)

7 Conclusion

The selected MMs greatly influenced VANETS clustering scheme performance. The efficiency
of clustering schemes also differs from the variation in the operating environment. In VANETSs,
this deviation is high due to high-speed vehicles. The VANETs may operate in different domains,
like in rural or urban areas, constrained environments or in a statistical fashion. The surroundings
in metropolitan areas were guarded due to other structures like houses, shops, restaurants, parks,
etc., and the vehicles passed over many streets or link roads throughout their operations.

In contrast, the surroundings in rural areas are typically random for vehicles. The suggested
supervisory protocol reduces the variation in the efficiency of a clustering scheme caused by
variations in the surroundings. This permits the VANETs to work in altered locations with
high augmented performance. Simulations have been executed for altered scenarios and different
MMs. The simulation was executed for VANETs with different numbers of nodes. The responsive
supervisory clustering scheme for VANETs offers better performance with both MMs:RWP and
constrained. The SP performed well when the vehicles were moving at high speeds. Similarly,
SP outperformed others in terms of cluster life, re-affiliation rate, control message overhead and
cluster count.
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