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Abstract: The ef�ciency of solving computationally partial differential equa-
tions can be profoundly highlighted by the creation of precise, higher-order
compact numerical scheme that results in truly outstanding accuracy at a
given cost. The objective of this article is to develop a highly accurate novel
algorithm for two dimensional non-linear Burgers Huxley (BH) equations.
The proposed compact numerical scheme is found to be free of superiors
approximate oscillations across discontinuities, and in a smooth �ow region, it
ef�ciently obtained a high-order accuracy. In particular, two classes of higher-
order compact �nite difference schemes are taken into account and compared
based on their computational economy. The stability and accuracy show that
the schemes are unconditionally stable and accurate up to a two-order in time
and to six-order in space. Moreover, algorithms and data tables illustrate the
scheme ef�ciency and decisiveness for solving such non-linear coupled system.
Ef�ciency is scaled in terms of L2 and L∞ norms, which validate the approxi-
mated results with the corresponding analytical solution. The investigation of
the stability requirements of the implicit method applied in the algorithm was
carried out. Reasonable agreement was constructed under indistinguishable
computational conditions. The proposed methods can be implemented for
real-world problems, originating in engineering and science.

Keywords: Burgers Huxley equation; �nite difference schemes; HOC
schemes; Thomas algorithm; Von-Neumann stability analysis

1 Introduction

This paper describes the multiplex schemes solution for two dimensional non-linear Burgers
Huxley equation. Such an equation serves as the coupling between the Zxx, Zyy diffusive terms
and Z(Zx + Zy) the convectional phenomena. This equation is of high importance for showing
a prototype model describing the interaction between reaction mechanisms, convection effects
and diffusion transports. It is the combination of both Burgers & Huxley phenomena with
non-linear term means reactions kind of characteristics behaviour, to capture some features of
�uid turbulence which caused by the effects of convection & diffusion [1–3]. It is a quantitative
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paradigm which deals with the �ow of electric current through the surface membrane of a
giant nerve �bre. Nerve pulse propagation in nerve �bres and wall motion in liquid crystals.
Recently research has been measured to investigate two dimensional Burgers Huxley phenomena
for understanding the various physical �ows in �uid theory [4–6] which leads to implementing
a novel methodology for studying new insights [7,8]. It is worth mentioning that there is a vast
amount of different approaches available in the literature to calculate the solutions of non-linear
systems of partial differential equations. Seeking the Burgers Huxley equations numerical solution,
wavelet collocation methods for the solution of Burgers Huxley equations [9] have already been
studied in combination with variational iteration technique [10,11]. Moreover, the propagation of
genes (Burger & Fisher) and Reaction-Diffusion (Gray Scott) models [12,13] investigated largely by
the technique of computation [14]. On the other hand, optimal homotopy asymptotic & homotopy
perturbation method was carried out to �nd the approximate solution of Boussinesq-Burgers
equations [15]. Finally, some novel techniques also take into account like chaos theory [16], non-
linear optics and fermentation process [17,18]. Wazwaz obtained the solitary wave solutions of one
dimensional Burgers Huxley equation using tanh-coth method [19]. Hashim et al. [20,21] using
Adomian Decomposition Method. Molabahrami et al. [22] used the homotopy analysis method
to �nd the solution of one dimensional Burger Huxley equation also E�mova et al. [23] �nd the
travelling wave solution of such equation. Batiha et al. [24] used Hope-Cole transformation with
Gao et al. [25] �nd the exact solution of the generalized Burgers equation.

This research aims to deal with higher-order compact schemes with the �nite difference
methodology [8]. Our primary focus is to attain a compatible scheme which is highly ef�cient
and easy to implement with better accuracy. Although, Burgers Huxley equation can be in three
dimensions still some features kept unexplored in the two-dimensional scenario. Let us explorer
some new insights in BH equation which consists of the two-dimensional domain which can be
written as:

∂Z
∂t
=1Z+ ξZµ

∇Z+ ηZP(µ,β)(Z), (1)

where Z=Z(l, m, t) is the unknown velocity & (l, m, t) ∈3× (0 T ]. Laplacian can be de�ned as

∇ ≡
∂

l
i+

∂

m
j (2)

with two dimensional behavior,

1≡
∂2

l2 +
∂2

m2 , (3)

also Pµ,β = (Zµ
− 1)(β − Z) is a non-linear reaction term. The coef�cient ξ , η are advection

and reactions coef�cients accordingly with 0 < β < 1 & µ > 0. These parameters describe the
interaction between reaction mechanisms, convection effects & diffusion transports [26,27]. Let us
consider the initial condition,

Z (x, y, 0)=Z0 (x, y) for (x, y) ∈3, (4)

which can be seen from the upcoming Eq. (12). The Dirichlet boundary conditions are given by,
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Z(l, m, t)= p1(l, m, t), Z(s, m, t)= p2(l, m, t)

Z(l, c, t)= q1(l, m, t), Z(l, d, t)= q2(l, m, t)

}
(x, y) ∈3. (5)

where 3 is a rectangular domain in R2 & Z0, p1, p2, q1, q2 are given suf�ciently smooth functions,
and Z(l, m, t) may represent unknown velocity, whereas Z.Zl, Z.Zm represents convection terms
along with linear diffusion Zll, Zmm. Such phenomena perpetuate the ionic mechanisms underlying
the initiation and propagation of action potentials in the squid giant axon [28,29].

More generally, it is a challenging task for determining and preservation of physical properties
like accuracy, stability, convergence criteria and design ef�ciency for the given two-dimensional
problem. This equation can be an effective procedure for the solution of various deterministic
problems in physics, biology and chemical reactions. Also, deals in the investigation of the growth
of colonies of bacteria consider population densities or sizes, which are non-negative variables.
Most non-linear models of real-life problems are still very challenging to solve either numerically
or theoretically. There has recently been much attention devoted to the search for better and
more ef�cient solution methods for determining a solution, analytical or numerical, to non-linear
models [30,31]. In [31–34] authors present a method used to solve partial equations with the use
of arti�cial neural networks and an adaptive strategy to collocate them. To get the approximate
solution of the partial differential equations Deep Neural Networks (DNNs) has been used,
which shows impressive results in areas such as visual recognition [35]. Recently in [36], authors
develop a numerical method with third-order temporal accuracy to solve time-dependent parabolic
and �rst-order hyperbolic partial differential equations. We focused on elaborating further by
comparing analytical and numerical techniques.

2 Tanh-Coth Method

The dynamical balance between the non-linear reaction term and diffusive effects which
constitute stable waveform after colliding with each other. In (1) the negative coef�cients of
Zll, Zmm and Z3 follow the physical behaviour of two dimensional BH Eq. (1). Such an equation
can be converted into the non-linear ordinary differential equation which is as follows:

eZ′+ 2Z′′+ 2ZZ′+Z+ γZPµ,λ(Z)= 0 (6)

Let σ = x − et, the wave variable which balances the non-linear reaction term (Pµ,λ(Z))
where µ, λ are index values and diffusion transport (the highest derivative involved), we have
M + 2= 3, MM = 1. This enables us to set: Put M = 1 in (6) we get

Z(σ )= a0+ a1Y + b1Y−1 (7)

Let Y = tanh(γ σ ), and σ = ((x+ y)− et)

Then,

Z= a0+ a1Y + b1Y−1&Z′ = a1γ (1−Y2)− b1γ (1−Y2)Y−2

Z′′ =−2a1γ
2Y

(
1−Y2

)
+ 2b1γ

2 (1−Y2)2

Y3 + 2γ 2b1

(
1−Y2

)
Y

.

 (8)
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Substitutes aforementioned in Eq. (6), we have the following solution to (7)

1
Y3 ((−a2

1γ + 2γ 2a1− a3
1)Y

6
+ (−ea1γ − a0a1γ +βa2

1− 3a0a2
1+ a2

1)Y
5

+(−2a1γ
2
+ a2

1γ + 2a0a1β − 3a2
0a1− 3a2

1b1− a1β + 2a0a1)Y4

+(ea1γ + eb1γ + a0a1γ + a0b1γ +βa2
0+ 2a1b1β − a3

0− 6a0a1b1− a0β + a2
0+ 2a1b1)Y3

+(−4b1γ
2
+ 2γ 2b1+ b2

1γ + 2a0b1β − 3a2
0b1− 3a1b2

1− b1β + 2a0b1)Y2

+(−b1γ − a0b1γ + b2
1− 3a0b2

1+βb2
1)Y

+(−b3
1+ 2γ 2b1− b2

1γ )Y
0)= 0



(9)

Arranging the coef�cients of Y i, i ≥ 0, and equating these coef�cients to zero, the system
of algebraic equations in a0, a1, b1, γ and e are obtained. By solving the following set of the
algebraic system of equations, we have the following form:

Y0 : b1(b1+ 2γ )(γ − b1)= 0

Y1 : b1((β − 3a0+ 1)− γ (a0+ e))= 0

Y2 : b2
1(γ − 3a1)+ b1(−3a2

0+ (2β + 2)a0− 2γ 2
−β)= 0

Y3 : − a3
0+ a2

0(β + 1)+ ((γ − 6b1)a1+ b1γ −β)a0+ 2b1(β + 1)a1+ γ (ea1+ eb1)= 0

Y4 : (−3b1+ γ )a2
1+ (−3a2

0+ (2β + 2)a0− 2γ 2
−β)a1 = 0

Y5 : (β − 3a0+ 1)a2
1− a1γ (a0+ e)= 0

Y6 : a1(γ − a1)(2γ + a1)= 0



(10)

In Eq. (10), the solution is of the form:

Case 1: We found that b1 = 0,

a0 =
1
2

, a1 =
−1
2

, γ =
1
4

, e=
1− 4β

2
& a0 =

β

2
, a1 =

−β

2
, γ =

β

4
, e=

β − 4
2

a0 =
β + 1

2
, a1 =−

β − 1
2

, γ =
β − 1

4
, e=

β + 1
2

& a0 =
1
2

, a1 =
1
2

, γ =
1
2

, e= β − 1

a0 =
β

2
, a1 =

β

2
, γ =

β

2
, e= 1−β & a0 =

β + 1
2

, a1 =
β − 1

2
, γ =

β − 1
2

, e=−(1+β)
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Case 2: We found that a1 = 0,

a0 =
1
2

, b1 =
−1
2

, γ =
1
4

, e=
1− 4β

2
& a0 =

β

2
, b1 =

−β

2
, γ =

β

4
, e=

β − 4
2

a0 =
β + 1

2
, b1 =−

β − 1
2

, γ =
β − 1

4
, e=

β + 1
2

& a0 =
1
2

, b1 =
1
2

, γ =
1
2

, e= β − 1

a0 =
β

2
, b1 =

β

2
, γ =

β

2
, e= 1−β & a0 =

β + 1
2

, b1 =
β − 1

2
, γ =

β − 1
2

, e=−(1+β).

From Cases 1 and 2, the kink solution is of the form:

Z1 (x, y, t)=
1
2

(
1− tanh

[
1
4

(
x+ y−

1− 4β
2

t
)])

&

Z2 (x, y, t)=
β

2

(
1− tanh

[
β

4

(
x+ y−

β − 4
2

t
)])

Z3 (x, y, t)=
β + 1

2
−
β − 1

2
tanh

[
β − 1

4

(
x+ y−

β + 1
2

t
)]

&

Z4 (x, y, t)=
1
2

(
1+ tanh

[
1
2
(x+ y− (β − 1) t)

])
Z5 (x, y, t)=

β

2

(
1+ tah

[
β

2
(x+ y− (1−β) t)

])
&

Z6 (x, y, t)=
β + 1

2
+
β − 1

2
tanh

[
β − 1

2
(x+ y+ (1+ t) t)

]
Z7 (x, y, t)=

1
2

(
1− coth

[
1
4

(
x+ y−

1− 4β
2

t
)])

&

Z8 (x, y, t)=
β

2

(
1− coth

[
β

4

(
x+ y−

β − 4
2

t
)])

Z9 (x, y, t)=
β + 1

2
−
β − 1

2
coth

[
β − 1

4

(
x+ y−

β + 1
2

t
)]

&

Z10 (x, y, t)=
1
2

(
1+ coth

[
1
2
(x+ y− (β − 1) t)

])
Z11 (x, y, t)=

β

2

(
1+ coth

[
β

2
(x+ y− (1−β) t)

])
&

Z12 (x, y, t)=
β + 1

2
+
β − 1

2
coth

[
β − 1

2
(x+ y+ (1+ t) t)

]
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Now by solving (1) using the tanh-coth method, the analytical solution (kink solution ) is in
a compact form in both cases is as follows:

Z(σ )= a0+ a1tanh(γ σ )+ b1tanh(σγ )−1 (11)

with initial condition:

Z (x, t, 0)=Z0 (x, y)= a0+ a1tanh(γ (x+ y)+ b1tanh(γ (x+ y))−1 (12)

where Z is the unknown velocity, and γ & σ are wavenumbers which are developed during the
solution of BH equation.

3 Description of Compact Schemes

Let us discretize the spatial domain which consists of N and M positive integers, such that hl
and hm present step sizes along with l and m directions, respectively [37]. The spatial nodes can
be denoted by li, mj, namely, li = ihl, i = 0, 1, . . . , N − 1, N & mj = jhm, j = 0, 1, . . . , M − 1, M.
For the temporal domain, let us take dt as time-step discretization, τ =T/dt, with tn =Nτ . Also

tn+1/2 =
tn+ tn+1

2
with N = 0, 1, 2, . . . , dt−1 [37–39]. Where τ is the temporal step size. Set ZZτ =

{w |w= (w0, w1, w2, . . . , wdt)T , for any w ∈ZZτ , with some more notations:

wn+1/2
=

wn+1
+wn

2

∂

∂t
wn+1/2

=
wn+1

−wn

τ

 (13)

for n= 0, 1, 2, . . . , dt− 1.

Implementation Procedure:

Let us we divide (1) into two parts such as:

−[δ2
l Zi, j +ZZl]=Pµ,β −Zt+ δ

2
mZi, j +ZZm

−[δ2
mZi, j +ZZm]=Pµ,β −Zt+ δ

2
l Zi, j +ZZl

}
(x, y) ∈3, t> 0 (14)

Now considering one-dimensional steady convection-diffusion equation in the following form:

−α1
∂2ωrr

∂l2 +β1
∂ωrr

∂l
=

︷︸︸︷
F

−α11
∂2ωrr

∂m2 +β11
∂ωrr

∂m
=

︷︸︸︷
F

 (15)
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where α1, α11 are the constants while β1, β11 are the convective velocities.
︷︸︸︷

F is the smooth func-
tions of l and m may represent the reaction, vorticity. Now the three-point scheme is as follows:

−

(
α1+

β1h2
l

12α1

)
δ2

l ωrr (li)+β11lωrr (li)=

[
1+

h2
l

12

(
δ2

l −
β1

α1
1l

)]︷︸︸︷
F

−

(
α11+

β11h2
m

12α11

)
δ2

mωrr
(
mj
)
+β111mωrr

(
mj
)
=

[
1+

h2
m

12

(
δ2

m−
β11

α11
1m

)]︷︸︸︷
F


(16)

Now applying the Taylor series expansion to Eq. (14) we have the following results:

−

(
α1+

β2
1 h2

l

12α1

)
δ2

l Zn+ 1
2 +β11lZ

n+ 1
2 =

[
1+

h2
l

12

(
δ2

l −

(
β1

α1

)
1m

)][︷︸︸︷
F −Zt+δ

2
mZ+β11l

]}
(17)

−

(
α11+

β2
11h2

m

12α11

)
δ2

mZn+ 1
2 +β111mZn+ 1

2 =

[
1+

h2
m

12

(
δ2

m−

(
β11

α11

)
1m

)][︷︸︸︷
F −Zt+δ

2
mZ+β111m

]}
(18)

where 0≤ n≤ dt− 1 and the truncation error is

Residualn+1/2
1(i, j) =O(h4

l + h4
m), (l, m) ∈3, t> 0. (19)

By adding Eqs. (17) and (18) we have the following form (1) which yields:

−

(
α1+

β2
1 h2

l

12α1

)
δ2

l Z
n+

1
2 +β11lZ

n+
1
2 −

(
α11+

β2
11h2

m

12α11

)
δ2

mZ
n+

1
2 +β111mZ

n+
1
2

=

[
1+

h2
l

12

(
δ2

l −

(
β1

α1

)
1m

)][︷︸︸︷
F −Zt+ δ

2
mZ+β11y

]
+

[
1+

h2
m

12

(
δ2

m−

(
β11

α11

)
1m

)]
[︷︸︸︷

F −Zt+ δ
2
mZ+β111m

]
+Residualn+1/2

1(i, j)


(20)

where Residualn+1/2
1(i, j) =O(h4

l + h4
m), (l, m) ∈3, t> 0.

Apply Crank–Nicholson time discretization, which leads to:
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1
2

[
α1+

β2
1 h2

l

12α1

]
δ2

l Zn+1
i, j +

1
2

[
α11+

β2
11h2

m

12α11

]
δ2

mZn+1
i, j −

1
2
β11lZ

n+1
i, j +

1
2
β111mZn+1

i, j

+
1
τ

[
1+

h2
l

12

(
δ2

l −

(
β1

α1

)
1l

)]
Zn+1

i, j +
1
τ

[
1+

h2
m

12

(
δ2

m−

(
β11

α11

)
1m

)]
Zn+1

i, j

+
1
2

[
1+

h2
l

12

(
δ2

l −

(
β1

α1

)
1l

)]
δ2

mZn+1
i, j +

1
2

[
1+

h2
m

12

(
δ2

m−

(
β11

α11

)
1m

)]
δ2

l Zn+1
i, j

+
1
2

[
1+

h2
l

12

(
δ2

l −

(
β1

α1

)
1l

)]
β11mZn+1

i, j −
1
2

[
1+

h2
m

12

(
δ2

m−

(
β11

α11

)
1m

)]
β111lZ

n+1
i, j

=

[
1+

h2
l

12

(
δ2

l −
β1

α1
1l

)]
F

n+
1
2 +

[
1+

h2
m

12

(
δ2

m−
β11

α11
1m

)]
F

n+
1
2

+
1
τ

[
1+

h2
l

12

(
δ2

l −

(
β1

α1

)
1l

)]
Zn

i, j

+
1
τ

[
1+

h2
m

12

(
δ2

m−

(
β11

α11

)
1m

)]
Zn

i, j +
1
2

[
1+

h2
l

12

(
δ2

l −

(
β1

α1

)
1l

)]
δ2

mZn
i, j

+
1
2

[
1+

h2
m

12

(
δ2

m−

(
β11

α11

)
1m

)]
δ2

l Zn
i, j

+
1
2

[
1+

h2
l

12

(
δ2

l −

(
β1

α1

)
1l

)]
β11mZn

i, j +
1
2

[
1+

h2
m

12

(
δ2

m−

(
β11

α11

)
1m

)]
β111lZ

n
i, j

+
1
2

[
α1+

β2
1 h2

l

12α1

]
δ2

l Zn
i, j −

1
2

[
α11+

β2
11h2

m

12α11

]
δ2

mZn
i, j +

1
2
β11lZ

n
i, j −

1
2
β111mZn

i, j +Residualn
(i, j)



(21)

where Residualn
(i,j) = O(h4

l + h4
m + τ

2) represents the truncation error [36–39]. The existence and
uniqueness of the solutions of the scheme (21) can be easily found by positive de�nite property.
By applying operators and simplifying the (21) in compact form, The scheme is a system of
linear equations based on variable Zn

i, j, then after applying operators 21 can be written in the

following way:

T1Zn+1
i, j +T2Zn+1

i+1, j +T3Zn+1
i−1, j +T4Zn+1

i, j+1+T5Zn+1
i, j−1+T6Zn+1

i+1, j+1+T7Zn+1
i−1, j+1

+T8Zn+1
i+1, j−1+T9Zn+1

i−1, j−1 =T11Zn
i, j +T22Zn

i+1, j +T33Zn
i−1, j +T44Zn

i, j+1+T55Zn
i, j−1

+T66Zn
i+1, j+1+T77Zn

i−1, j+1+T88Zn
i+1, j−1+T99Zn

i−1, j−1+ ff1F
n+ 1

2
i, j + ff2F

n+ 1
2

i+1, j + ff3F
n+ 1

2
i−1, j

+ff4F
n+ 1

2
i, j+1+ ff5F

n+ 1
2

i, j−1


(22)
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where T1, T11, T2, T22, ff1, . . . , are all constants coef�cients of Zn+1
i, j , Zn

i, j and ff
n+ 1

2
i, j which includes

α1, α11, β1, β11, hl, hm, τ and constant values. Let Zj = [Z1, jZ2, j … ZM−1, j]transpose where 0≤ j ≤M.
The matrix form of the compact scheme is as follows

D1Zn+1
j +D2Zn+1

j+1 +D3Zn+1
j−1 =D11Zn

j +D22Zn
j+1+D33Zn

j−1+ f 1F
n+ 1

2
j + f2F

n+ 1
2

j+1 + f3F
n+ 1

2
j−1

}
(23)

By calculating and simplifying the terms, we have the following tridiagonal matrix if of
the form:

D1 D2

D3 D1 D2

. . . . . . . . .

D3 D1 D2

D3 D1





Zn+1
1

Zn+1
2

...

Zn+1
M−2

Zn+1
M−1


=



D11 D22

D33 D11 D22

. . . . . . . . .

D33 D11 D22

D33 D11





Zn
1

Zn
2

...

Zn
M−2

Zn
M−1



+



f1 f2

f3 f1 f2

. . . . . . . . .

f3 f1 f2

f3 f1





f
n+ 1

2
1 −D2Z0

f
n+ 1

2
2

...

f
n+ 1

2
M−2

f
n+ 1

2
M−1−D2ZM


where D11 matrix is the same as the matrix D33. The Eq. (23) is a tridiagonal block matrix.

XZn+1
i, j =QZn

i, j +Rf n+1
i, j (24)

The matrix we have generated is diagonally dominant and can solve through Thomas
algorithm. Which authenticate the consistency & accuracy of the solution of the form
O(h4

l + h2
m+ τ

2).

4 Description of Six order Compact Finite Difference Scheme

For complex systems the results will be dependent on the formation of the mesh, We apply
higher-order compact scheme at the system in Eq. (1) with a uniform mesh at 1l =1m= hl = hm.
Scheme description is as follows:
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Interior Boundary Points:

The compact schemes at interior boundary points are as follows:

3o(ll) = λo3
′′

o(i−1, : )+3
′′

o(i, : )+ λo3
′′

o(i+1, : ) =
a0

4h2
l

(
3o(i+2, : )− 23o(i, : )+30(i−2, : )

)
+

a1

h2
l

(
3o(i+1, : )− 23o(i, : )+3o(i−1, : )

)
3o(mm) = λo3

′′

o( : ,j−1)+3
′′

o( : ,j)+ λo3
′′

o( : ,j+1) =
a0

4h2
m

(
3o( : ,j+2)− 23o( : ,j)+3o( : ,j−2)

)
+

a1

h2
m

(
3o( : ,j+1)− 23o( : ,j)+3o( : ,j−1)

)
3o(l) = λo3

′

o(i−1, : )+3
′

o(i, : )+ λo3
′

o(i+1, : ) =
a0

4hl
(3o(i+2, : )−30(i−2, : ))

+
a1

2hl
(3o(i+1, : )−3o(i−1, : ))−3o(i−1, : ))

3o(m) = λo3
′

o( : ,j−1)+3
′

o( : ,j)+ λo3
′

o( : ,j+1) =
a0

4hm
(3o( : ,j+2)−3o( : ,j−2))

+
a1

2hm
(3o( : ,j+1)−3o( : ,j−1))



(25)

Above schemes in Eq. (25) constitute λo family of tridiagonal structure with parametric values

a1 =
4
3
(1 − λo) & a0 =

1
3
(−1 + 10λo). For λo = 0, we get fourth-order accurate scheme while

using λo = 2/11, the scheme becomes sixth-order accurate which leads to a1 =
12
11

& a0 =
3

11
[36–39]. Also, near boundary points, we have to construct a sixth-order compact scheme to sustain
accuracy throughout the two-dimensional domain [36–39].

First Boundary Point 1:

At the �rst boundary point, the six order compact scheme is of the following form.

3′′o(1, : )+λo3
′′

o(2, : )=
1
h2 (d13o(1, : )+d23o(2, : )+d33o(3, : )+d43o(4, : )+d53o(5, : )+d63o(6, : )+d73o(7, : ))

3′′o( : ,1)+λo3
′′

o( : ,2)=
1
h2 (d13o( : ,1)+d23o( : ,2)+d33o( : ,3)+d43o( : ,4)+d53o( : ,5)+d63o( : ,6)+d73o( : ,7))

3′o(1, : )+λo3
′

o(2, : )=
1
h
(d13o(1, : )+d23o(2, : )+d33o(3, : )+d43o(4, : )+d53o(5, : )+d63o(6, : )+d73o(7, : ))

3′o( : ,1)+λo3
′

o( : ,2)=
1
h
(d13o( : ,1)+d23o( : ,2)+d33o( : ,3)+d43o( : ,4)+d53o( : ,5)+d63o( : ,6)+d73o( : ,7))


(26)
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Above system in Eq. (26), the coef�cients can be found by matching Taylor’s series expansion
comparing with various orders up to order O7, as a result, construction of the linear system
is obtained. By constructing the linear system values of d ′s, which can be solved in the usual

way to get the following along l direction, d1 =
2077
157

, d2 =
−2943

110
, d3 =

573
44

, d4 =
167
99

, c5 =
−18
11

,

d6 =
57

110
, d7 =

−131
280

, λo =
126
11

[36,37]. Others ones can found in the same way.

2nd Boundary Point 2:

λo3
′′

o(1, : )+3
′′

o(2, : )+ λo3
′′

o(3, : ) =
1
h2

(
d13o(1, : )+ d23o(2, : )+ d33o(3, : )+ d43o(4, : )+ d53o(5, : )

+d63o(6, : )+ d73o(7, : )
)

λo3
′′

o( : ,1)+3
′′

o( : ,2)+ λo3
′′

o( : ,3) =
1
h2

(
d13o( : ,1)+ d23o( : ,2)+ d33o( : ,3)+ d43o( : ,4)+ d53o( : ,5)

+d63o( : ,6)+ d73o( : ,7)
)

λo3
′

o(1, : )+3
′

o(2, : )+ λo3
′

o(3, : ) =
1
h

(
d13o(1, : )+ d23o(2, : )+ d33o(3, : )+ d43o(4, : )+ d53o(5, : )

+d63o(6, : )+ d73o(7, : )
)

λo3
′

o( : ,1)+3
′

o( : ,2)+ λo3
′

o( : ,3) =
1
h

(
d13o( : ,1)+ d23o( : ,2)+ d33o( : ,3)+ d43o( : ,4)+ d53o( : ,5)

+d63o( : ,6)+ d73o( : ,7)
)



(27)

Above system in Eq. (27), by constructing the linear system values of d ′s, which can be

solved in the usual way to get the following along l direction, d1 =
585
512

, d2 =
−141

64
, d3 =

459
512

,

d4 =
9

32
, c5 =

−81
512

, d6 =
3

64
, d7 =

−3
512

, λo =
11

128
[36–39]. Others ones can found in the same way.
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Nth Boundary Point:

At Nth boundary point of six order compact scheme is of the following way:

λo3
′′

o(N−1, : )+3
′′

o(N, : ) =
1
h2

(
d13o(N, : )+ d23o(N−1, : )+ d33o(N−2, : )+ d43o(N−3, : )

+d53o(N−4, : )+ d63o(N−5, : )+ d73o(N−6, : )
)

λo3
′′

o( : ,N−1)+3
′′

o( : ,N) =
1
h2

(
d13o( : ,N)+ d23o( : ,N−1)+ d33o( : ,N−2)+ d43o( : ,N−3)

+d53o( : ,N−4)+ d63o( : ,N−5)+ d73o( : ,N−6)
)

λo3
′

o(N−1, : )+3
′

o(N, : ) =
1
h

(
d13o(N, : )+ d23o(N−1, : )+ d33o(N−2, : )+ d43o(N−3, : )

+d53o(N−4, : )+ d63o(N−5, : )+ d73o(N−6, : )
)

λo3
′

o( : ,N−1)+3
′

o( : ,N) =
1
h

(
d13o( : ,N)+ d23o( : ,N−1)+ d33o( : ,N−2)+ d43o( : ,N−3)

+d53o( : ,N−4)+ d63o( : ,N−5)+ d73o( : ,N−6)
)



(28)

Above system in Eq. (28), by constructing the linear system values of d ′s, which can be solved
in the usual way as done in boundary point 1 and 2.

Implementation Algorithm:

By arranging Eqs. (26)–(28) in the following algorithm:

3o(ll), j =
1

(1l)2
C−1D3o(j), (Ix−

1
2
1t
(1l)2

C−1D)3?o(j)

=3n
o(j)+

1
2
1t[3n

o(mm)(,j)+P(3n
o(i, j),3

n
r(i, j))](Il −

1
2
1t
(1l)2

A−1B)3n+1
o(i,)

=3?o(i,)+
1
2
1t[3?o(ll)(i,)+P(ωn

o(i, j),3
n
r(i, j))],


(29)

where P are mentioned in Eq. (1), also matrices A and B are Nm × Nm sparse with triangular
nature along C and D are Nl ×Nl sparse with triangular in shape.

Theorem:

The truncation error in the compact six order �nite difference scheme for equations in the
system (1) is,

Rn
(i, j) =O

(
h6

x+ h6
y+ τ

2
)

, (l, m) ∈3, t≥ 0 [36–40]. (30)
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4.1 Error Analysis
The convergence benchmark, ef�ciency and accuracy of the proposed scheme in terms of

norms can be de�ned as:

L∞Z = max
1≤o≤L

max
1≤q≤M

L∑
o=1

M∑
q=1

|(Zexact
o, q −Zapprox

o, q )| (31)

Relative Error=

√√√√∑L
i, j=1(Z

exact
i, j −Zapprox

i, j )2∑L
i, j=1(Z

exact
i, j )2

(32)

L2(w.r.t.Z)=
√
ρ(uexact

o, q, k− uapprox
o, q, k )

t(Zexact
o, q −Zapprox

o, q ) (33)

where Zexact
o, q denoted as an analytical solution while Zapprox.

o, q represents the numerical solution by

mesh points (lo, mq, tn). In this experiment ρ(uexact
o, q, k−uapprox

o, q, k )=max(λλ), where λλ is an eigenvalue

of (uexact
o, q, k− uapprox

o, q, k ) respectively.

4.2 Stability Analysis
The stability is concerned with the growth or decay of the error produced in the �nite-

difference solution. For the representation of theoretical analysis, we set P = 0 in Eq. (1).
Assuming the boundary conditions are accurately propagating, we can apply the Fourier analysis
method to our proposed equation.

De�nition : For a time-dependent PDE, the corresponding difference scheme is stable in the
norm ‖.‖ if there exists a constant M such that

‖en
‖ ≤M‖e0

‖, for all n∇t≤ tF

where M is independent of ∇t, ∇x and initial condition e0.

Following the Von Neumann stability analysis criteria, �x the non-linear terms so that for
linear stability, the numerical solution can be displayed in the following way:

Qn
i,j = 0

ne
√
−1(i8lhl+j8mhm) (34)

where 0 is the amplitude at time level n,
√
−1 is called the imaginary unit. 8l, 8m leads to wave

number in l, and m directions with 8lhl, 8mhm are phase angles. The ampli�cation factor is
de�ned by

E(8l, 8m, τ)=
ζ n+1

ζ n (35)
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By using Eqs. (30) and (35) and dividing by r.h.s of Eq. (35) and simplifying, we have the
following form:

0n+1
{T1+T2eI(l8lhl)+T3eI(−l8lhl)+T4eI(j8mhm)T5eI(−j8mhm)+T6eI(l8lhl+m8mhm)+

T7eI(−l8lhl+m8mhm)T8eI(l8lhl−m8mhm)+T9eI(−l8lhl−m8mhm)}

= 0n
{T11+T22eI(l8lhl)+T33eI(−l8lhl)+T44eI(j8mhm)+T55eI(−j8mhm)+T66eI(l8lhl+m8mhm)

+T77eI(−l8lhl+m8mhm)T88eI(l8lhl−m8mhm)+T99eI(−l8lhl−m8mhm)}


(36)

where I =
√
−1 and Eq. (37) is of the following way:

0n+1

0n =
R
S

(37)

where R & S are the compact forms of Eq. (37). For stability, it has to satisfy the
following condition:

|E(8l,8m, τ)| ≤ 1 (38)

After simpli�cation to an aforementioned condition which holds true. Therefore, |E| ≤ 1
[38–41]. Hence the scheme is unconditionally stable.

5 Experimental Results

The novel numerical scheme is compared with the analytical results of Eq. (1) by using tanh-
coth method. For this objective, we consider the same parameter α = µ= η = 1, and varying β.
Numerical and analytic solutions are compared and justi�ed in term of error norms to magnify
the importance of higher accuracy.

Furthermore, to avoid turbulence, by varying β values in the Tab. 1 with grid size (15× 15),
dt= 0.001 and grid space =0.3125 with respect to time= 1 is observed. Improvement in accuracy
is noted by varying the values of β parameter. Also, the BH equation produced the best results
by using six order compact �nite difference scheme. At different β values, Tab. 2 indicates error
which increased at a very low rate by changing the values of β from high to low which make
the comparison to previous work give authentication for accuracy [34]. The truncation error is
calculated in Tab. 3, using L2, Relativeerror and L∞ with �xed grid size (31× 31). By changing
time steps dt= 0.001 with the same grid size showed results in the Tab. 4. The approximate results
using six order compact scheme correspond to error norm are shown in the Tab. 6. In this, table
the comparison of fourth-order and six order are analyzed by re�ning the temporal space, which
shows this scheme is better than the corresponding fourth-order. In the Tab. 7 six order and
fourth-order compact �nite difference scheme comparison is carried out which measured in term
of L∞ norm. Different parameters are also observed under the same scheme. In the Tab. 8 scheme
ef�ciency encountered using L∞, L2 & Relativeerror norms. Graphical representation of numerical
schemes on BH equation is observed. Comparison of analytical and numerical results by using
fourth and sixth-order compact �nite difference scheme has been analyzed. At t = 2, β = 0.1,
dt= 0.0001, grid = (21× 21) can be seen from the Fig. 1. While six order scheme at β = 0.1 with
time-space dt= 0.0001 and grid space (21×21) is seen from the Fig. 2 which shows more accurate
and re�ne results as compared with Fig. 1 using the same parameter. In Figs. 3 and 4, analysis
shows that the error norm using fourth-order scheme at β = 0.001. While in Fig. 5, we choose
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β = 0.0001 using a higher-order scheme to analyze error pro�le at grid size (51×51). In summary,
it is aspirant from the �gures and tables; the analytical and numerical solutions are best �tted
with generation encrypting. In the end, the novel six order compact scheme is the best agreement
with the analytical solution.

Comparison between approximation and analytical solutions is made at the �nal time of
computation time= 2 s at the critical point (1, 1) using fourth-order compact scheme at grid size
(15× 15).

Table 1: Fourth-order compact scheme

Numerical solution at α = η=µ= 1, dt= 0.001, h= 0.3125

β Zexact Zapprox |Zexact−Zapprox|

0.5 4.0448 4.4171 4.9715e−04
0.1 0.5467 0.5463 4.210e−04
.01 0.8794 0.8792 3.717e−04
.001 0.8972 0.8970 2.29e−04
.0001 0.8989 0.8987 2.27e−04

Comparison between approximation and analytical solutions is made at the �nal time of
computation time = 1 at the critical point (1, 1) using fourth-order compact scheme at grid size
(31× 31).

Table 2: Six order compact scheme

Numerical solution at α = η=µ= 1, dt= 0.0001, h= 0.3125 Present work CSC method (34)

β Zexact Zapprox |Zexact−Zapprox| L∞−Z L∞

0.5 0.006792 0.006693 1.66203e−07 6.1461e−08 6.073× 10−5
0.2 0.497500 0.497493 6.2248e−06 5.9791e−07 3.421× 10−5
0.1 0.268941 0.268938 2.94916e−06 5.3642e−07 1.076× 10−4
.01 0.475020 0.475014 5.985021e−06 6.2480e−06

Table 3: O(dt2
+ h4

l + h4
m)

Error estimation at a different time at dt= 0.001, β = 0.001

Time t L2 Rerror L∞ Self-time (s) Total time (s)

0.1 2.124 3.8013 3.79993 8.428 23.34
0.05 2.123 3.7999 3.79989 20.345 48.456
0.025 2.018 3.7508 3.74980 35.234 70.431
0.0125 1.918 3.74981 3.74970 50.761 101.342
0.005 1.723 3.3.74898 3.74890 100.345 202.451
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Table 4: O(dt2
+ h6

l + h6
m)

Error estimation at a different time at dt= 0.001, β = 0.0001

Time t L2 Rerror L∞ Self-time (s) Total time (s)

.1 5.4109 6.2484e−06 6.2474e−06 7.214 22.341

.05 5.2312 6.2482e06 6.2472e−05 4.213 13.561

.025 5.1345 6.2480e05 6.2470e−05 2.341 7.112

.0125 5.0234 6.2470e05 6.2459e−05 1.10 3.561

.005 4.9081 6.2419e−05 5.2494e−05 0.55 1.123

Tab. 3 shows error pro�le data by using fourth-order compact scheme at gridsize= (31× 31)
for unknown value Z(l, m, t). Selftime: is the time spent in a function excluding the time spent in
its child functions while Totaltime is the time to execute the algorithm.

Tab. 4 shows error pro�le data by using Six order compact scheme at gridsize= (31× 31) for
unknown value Z(l, m, t).

Tab. 5 shows a comparison of two schemes at gridsize= (51×51) and β = 0.001 for unknowns
Z(l, m, t).

Tab. 6 shows a comparison of two schemes at gridsize= (41× 41) for unknowns Z(l, m, t).

Table 5: Error comparison

Comparison of two schemes at dt= 0.1 at different times level

FourthOrder SixOrder

Time-space L∞−Z L∞−Z

5 6.2241e−04 6.2249e−06
2 5.2449e−04 6.2240e−06
1 4.98e−03 6.2279e−05
0.5 4.97e−03 6.2239e−04

Table 6: Error comparison

Comparison of two schemes at t= 5 s, dt= 0.01 at different β level

FourthOrder SixOrder

β L∞−Z L∞−Z

.1 3.7494e−04 3.7500e−06

.01 5.9993e−04 5.9998e−06

.001 6.2250e−04 6.2250e−06

.0001 6.2474e−04 6.2475e−06
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Figure 1: Results obtained by using 4th order scheme at dt= 0.00011 & β = 0.1 at time= 5

Figure 2: Results which obtained by using 6th order scheme at dt= 0.0001, & β = 0.1 at a time
level 2

Figure 3: Results for error estimation by using 4th order scheme at dt = 0.001 & β = 0.001 at
time 1
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Figure 4: Results for error estimation by using 6th order scheme at dt = 0.001 & β = 0.001 at
time 1

Figure 5: Results obtained by using 6th order scheme at β = 0.0001 at time level 0.5
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6 Central Processing Unit Performance

A combinatorial logic circuit executes the mathematical operation for each function in the
algorithm within the central processing unit. To establish the platform of CPU performance
along physical memory transmission capacity is observed when the higher-order compact scheme
is developed by using MATLAB software [35,39,42,43]. By increasing the grid size, the number
of calculations is increased, and it is dif�cult to overcome such issue which can take a longer
time to execute. Because of numerical schemes ef�ciency, the computational experiment is done
on two different computer machines like Lenovo 6th generation having 2.4 GHz 8 cores and
16 GB memory along 5th generation Dell machine having 4 physical cores and 16 logical cores.
Different feathers involved in two computational experiments can be analyzed from the following
data tables.

Tab. 7 shows results for the different grid using 6th order compact scheme on Lenovo CPU
oriented computational machine (MATLAB software).

Tab. 8 shows results for the different grid using 6th order compact scheme on DELL CPU
oriented computational machine (MATLAB software).

Table 7: Central processing unit performance

Estimation of the time evolution using Lenovo idea pad 320 machine

Grid size Self-time (s) Total time (s) Calls C.Fn

17× 17 80.307 170.579 120,102
31× 31 101.345 250.345 487,882
51× 51 150.23 380.34 1250,434

Table 8: Central Processing Unit Performance

Estimation of the time evolution using DELL machine

Grid size Self-time (s) Total time (s) Calls C.Fns

17× 17 76.206 165.123 117,001
31× 31 100.673 245.342 469,319
51× 51 146.54 365.123 1211,729

To check the relative performance and execution time, here in this algorithm which used two
machines, Dell and Lenovo, as follows:

Performance=
1

execution time
(39)

where,

Relativeperf =
perfmachine1

perfmachine2
=

Exetimemachine2

Exetimemachine1
(40)
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The execution time of the Lenovo machine at (17 × 17) grid size is 170.579 s, and Dell
machine execution time at the same grid size is 165.123 s. To calculate the relative performance
we have

Exelenove

ExeDell
=

170.579 s
165.123

= 1.033 s.

Results conclude that Dell machine is 1.033 faster than the Lenovo machine.

Clock cycle can be de�ned as:

CPUtime = no cycles× clock cycletime =
no cycles
clockrate

(41)

where clock cycletime =
1

clockrate
. For CPU time, the clockrate = 2 GHz, of Lenovo machines and

clock rate, is 10 s, by increasing the clockrate means increase clockcycle. The clockrate of Lenovo

machine =
no clockcycle

no of CPUtime
. To calculate the clockrate we have clockcycle = 1.2. So

clockrate Dell =
1.2× clockcycleL

6 s

clockcycleL =CPUtimeL× clockrateL = 10× 2 GHz= 20× 1009
cyc
sec

Clock rate performance of Dell machine is, CRDell =
1.2× 20×09

6 s
= 4 GHz

Comparison is performed to analyze Dell with Lenovo machines with both clock rate perfor-
mance and relative performance. Thus MATLAB handles problems with care, and we can analyze
results at each point of the loop and any iteration during computations.

7 Conclusion

Higher-order schemes for determining the two dimensional Burgers Huxley equation was
developed in this paper. As it was not studied before by using such schemes of diffusive dissipation
of errors. We came to know that the BH equation in two dimensional which is studied to �nd
ef�ciency, accuracy and stability and by comparing with analytical and numerical approaches in
terms of L2, L∞ & relative errors. It is evident from the fact that computed numerical experi-
ments of two dimensional Burgers Huxley equation, solutions obtained by fourth and six order
schemes are in good agreement with the analytical solutions. Figures and tables clearly show
the tendency of fast and monotonic convergence of the results toward the analytical solution.
Also, the computational discretization of the proposed model results in a sparse tridiagonal
structure of the matrix, which can be overcome by the Thomas algorithm. Results lead to a
remarkable improvement in accuracy, ef�ciency and computer performance which can be seen
from data tables.
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