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Abstract: Physical contamination of food occurs when it comes into contact
with foreign objects. Foreign objects can be introduced to food at any time
during food delivery and packaging and can cause serious concerns such as
broken teeth or choking. Therefore, a preventive method that can detect and
remove foreign objects in advance is required. Several studies have attempted
to detect defective products using deep learning networks. Because it is difficult
to obtain foreign object-containing food data from industry, most studies on
industrial anomaly detection have used unsupervised learning methods. This
paper proposes a new method for real-time anomaly detection in packaged
food products using a supervised learning network. In this study, a realistic
X-ray image training dataset was constructed by augmenting foreign objects
with normal product images in a cut-paste manner. Based on the augmented
training dataset, we trained YOLOv4, a real-time object detection network,
and detected foreign objects in the test data. We evaluated this method on
images of pasta, snacks, pistachios, and red beans under the same conditions.
The results show that the normal and defective products were classified with
an accuracy of at least 94% for all packaged foods. For detecting foreign
objects that are typically difficult to detect using the unsupervised learning and
traditional methods, the proposed method achieved high-performance real-
time anomaly detection. In addition, to eliminate the loss in high-resolution
X-ray images, the false positive rate and accuracy could be lowered to 5% with
patch-based training and a new post-processing algorithm.

Keywords: Deep-learning; anomaly detection; packaged food X-ray
detection; foreign substances detection; abnormal data augmentation

1 Introduction

Anomaly detection, a method that detects abnormal data from normal data, has long been
a challenge in the field of computer vision. Among the various applications of anomaly detec-
tion [1,2], industrial anomaly detection aims to find defects that rarely occur in products. This
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is difficult because if defects are not accurately detected, they can cause considerable damage
to the factory. Defective products occurring in industry appear in various forms. For example,
part of the product may be damaged or missing, or the product may contain foreign objects.
This study focused on foreign objects found in food. Food contamination can be classified into
four main types: chemical contamination, microbial contamination, physical contamination, and
allergenic contamination. Among them, physical contamination occurs when food comes into
contact with foreign objects during food delivery and/or packaging and can cause serious issues
such as broken teeth or choking. The physical contaminants that can be found in food include
jewelry, hair, plastic, bones, stones, pest bodies, and cloth. Additionally, if there are problems
with the food factory premises or equipment, items such as flaking paint or loose screws may
also enter food. Physical contaminants may even carry harmful bacteria, which poses an even
greater risk. Therefore, foreign objects must be removed from food. Skilled technical workforce
were initially employed to monitor products and detect foreign objects. However, such a method
was inefficient because it was prone to human error and was time-consuming and exerting. Thus,
it was necessary to develop technology that could automatically and accurately find foreign objects
in food. To this end, methods for detecting foreign objects with a single X-ray image have been
developed [3–5]. However, these methods are generally aimed at detecting foreign objects that
are clearly visible in relatively simple food X-ray images. In recent years, methods using deep
learning have shown very good results in various areas of computer vision, solving problems
that could not be resolved with existing algorithms. Popular deep learning-based methods include
supervised learning, unsupervised learning, and reinforcement learning. In the field of anomaly
detection, many studies have used unsupervised learning, which does not require abnormal data
and can learn only with normal data [6–9]. These studies are often performed with datasets
that are not used in the field, such as CIFAR-10 [10] and MNIST [11]. However, food factory
images always have the same background, and the shape of each product is somewhat consistent.
In addition, defective product images are slightly different from the images in commonly used
datasets because they differ from normal products only in a very small part. Because the difference
between normal data and abnormal data is very small, segmentation methods that can consider
small features in pixel units are more popular than classification methods that considers the
whole image. Existing unsupervised learning methods have been popular because it is considerably
difficult to obtain defective product or abnormal data from the food industry. However, if solely
abnormal data could be obtained, supervised learning methods would perform much better. Given
sufficient data, supervised learning methods have proven to be effective in image classification,
image segmentation, and object detection, subject to availability of data [12–14]. In this study, we
propose a method to accurately detect defective products through supervised learning with a very
small amount of industrial abnormal data. In this study, we aimed to detect stone, metal pieces,
and glass fragments in the packaged foods of pasta, pistachios, snacks, and red beans. The data
used in this study have not been utilized by any previous studies. Because supervised learning
networks require training data, we augmented X-ray image training data in a cut-paste manner.
The test data were constructed from defective product X-ray images collected in the field. We
used our training data to train YOLOv4 [15], an object detection network capable of real-time
detection. By predicting the test data with the learned YOLOv4, normal and defective products
were classified with at least 94% accuracy for all foods. In addition, we were able to improve
accuracy and false positive rate (FPR) with our own post-processing algorithm and a training
method optimized for high-resolution images.
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The contributions of this study can be summarized as follows:

(1) We proposed a method that can accurately detect and classify foreign object using a
supervised learning method with a small set of abnormal data.

(2) Anomaly detection was performed on a new real-world dataset that had not been stud-
ied before.

(3) A training dataset was constructed by augmenting X-ray images, which are difficult to
acquire, in a cut-paste manner.

(4) By using patch-based training, we could improve detection performance and predict
any size of high-resolution image. Moreover, our post-processing algorithm was able to
improve accuracy.

2 Related Works

2.1 X-Ray Imaging Methods
To reduce human effort, a method that automatically detects foreign objects in packaged food

is required [16,17]. In early research, there were many studies on rule-based algorithms using X-
ray imaging. Reference [18] presented a method for detecting foreign objects in food products
using grating-based multi-modal X-ray imaging. Wood chips, insects, and soft plastics, which were
not commonly detected by grating-based multi-modal X-ray imaging, could be detected through
their X-ray image enhancing method. In [3], machine vision was used to automate fish bones
detection, which was previously conducted by human touch and vision. These studies did not
perform well when the foreign object to be detected was thin or had a low density. In addition,
expensive equipment was required for each of these methods, and only limited types of food could
be detected. In other words, these methods cannot be applied to the packaged foods that we aimed
to detect. In this study, we performed foreign object detection in completely different food items
than those studied previously, and we propose a method that can detect various foreign objects
in various foods using deep learning. In addition, while previous studies could not detect foreign
objects in food if it was larger than the X-ray equipment, our proposed method can detect foreign
objects with identical performance capacity regardless of size if patch-based training is performed.

2.2 Unsupervised Learning Methods
In anomaly detection studies using deep learning, unsupervised learning methods are generally

more popular than supervised learning because it is difficult to collect abnormal data due to the
scarcity [19,20]. Among unsupervised learning methods, one class classification (OCC) learns the
distribution of features of a normal image and judges all data that do not follow that distribution
as abnormal [21–23]. However, many studies have used the MNIST [11], CIFAR-10 [10], and
ImageNet [24] datasets, which have very different features for each class. For example, if a wolf
image is entered into a deep learning network that only trains on tiger images, it will be judged
as abnormal because the appearances of the wolf and tiger are very different. However, there
are many cases in industry where normal and abnormal cases are judged to be similar. Products
in industry have only slight differences, and it is difficult to distinguish between them using
OCC because all other parts are similar. Therefore, in industrial anomaly detection, one class
segmentation (OCS) is widely used [25,26]. In OCS, generative deep learning networks, such as
the autoencoder [27], variational autoencoder [28], and generative adversarial network (GAN) [29]
are used [30–33]. OCS trains with normal product images as input and output of the neural
network so that the network learns to reconstruct a normal product image. When an abnormal
product image is entered as input to the trained network, the image is reconstructed similar
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to a normal product. Then, the difference between the reconstructed image and input image is
converted into an anomaly score, and anomaly detection is performed with an appropriate thresh-
old value. Likewise, defective food products containing foreign objects can be considered similar
because of the small difference from normal food products. However, anomaly detection is more
difficult because it includes a gray-scale image, not an RGB image. In [34], anomaly detection was
performed on industrial datasets using various OCS methods, but their performances varied for
each product type. This means that OCS methods do not exhibit the same detection performance
on all packaged foods. Therefore, OCS methods were not suitable for our data because we aimed
to detect foreign objects efficiently in any food item. In addition, OCS methods could not be used
for our food data due to their poor reconstruction performance.

2.3 Supervised Learning Methods
2.3.1 Image Classification and Image Segmentation

Currently, most computer vision studies apply deep learning as a supervised learning method
except for anomaly detection. Having already advanced to a high level, supervised learning
networks generally show satisfactory performance on any sufficiently large dataset. Supervised
learning is generally widely used for image classification, object detection, and image segmentation.
Assuming that an image classification network [12–14] is used in our study, we can perform
binary classification into a normal class and defective class. However, this is practically impossible
because it is very difficult to obtain data corresponding to the defective class. Furthermore, as
mentioned in Section 2.2, because most image classification networks extract features from whole
images, it is difficult to distinguish between normal and defective food products. Moreover, as an
image undergoes a number of convolution and pooling layers in a neural network, the foreign
object parts become increasingly small; thus, there is a high probability that information of the
foreign object may gradually disappear. Foreign objects in food can also be detected pixel-wise
using image segmentation networks [35,36]. Similar to the case of image classification, however,
they are difficult to train due to the lack of defective food product data; even if there are
sufficient defective food product data, the process of directly labeling the boundaries of very small
foreign objects in pixel units is time-consuming. For these reasons, image classification and image
segmentation were not suitable for our packaged food data.

2.3.2 Object Detection
Object detection allows for the localization of an object in an image and the classification

of multiple objects [37,38]. There are two reasons for using an object detection network to
detect foreign objects in this study. First, object detection networks do not consider only the
features of the entire image, as in image classification; these networks also consider the features
of each part of an image to find where the object of interest is likely located. In a packaged
food product, a foreign object is differently shaped than the food. Second, labeling in object
detection is simple. Unlike segmentation annotation, only a bounding box must be drawn at the
location of the foreign object. Note that object detection usually detects multiple objects and
classifies each of them, but it is also possible to detect only one object by training the network
as such. We judged that the detecting the existence of a foreign object itself is more important
than knowing the type of foreign object. Accordingly, this study aimed to detect all types of
foreign object as a single class. Object detection networks are classified as one-stage [39,40]
or two-stage detectors [41,42]. However, recent studies have proposed one-stage detector-based
networks with better performance and faster speed than two stage detector-based ones [43,44].
Accuracy is an essential factor in industrial anomaly detection. However, networks with slow
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speeds cannot be used in the field. Therefore, one-stage detectors with high speed are more
suited to our research even though their performance is relatively lower than that of two-stage
detectors. One-stage detector-based networks include YOLO [41], SSD [37], and EfficientDet [43].
Among the various one-stage detector-based networks, few have real-time capabilities. Here, real-
time refers to approximately 30 frames per second (FPS) or higher. On the COCO [45] dataset,
EfficientDet-D7 [43] showed state-of-the-art performance, but due to the high computational cost,
it recorded 6.5 FPS, which is very slow. SSD [37] and networks that use similar methods [42,46]
have relatively poor performance. Reference [41] proposed YOLOv1, a one-stage detector with very
high speed and competitive performance compared to two-stage detectors at that time. Since then,
YOLOv2 [47], YOLOv3 [48], and YOLOv4 [15] have been proposed and developed. EfficientDet
ranges from D0 to D7 depending on the size of input image and depth of network. Among these,
the real-time methods reach D2. Comparing the real-time performance of EfficientDet-D2 and
YOLOv4, YOLOv4, which has a two-fold difference in speed but offers similar performance, is
more advantageous in the field. In our study, the YOLOv4 network was the most suitable among
object detection networks.

2.3.3 Anomaly Detection Data Augmentation
Training supervised learning networks requires a considerable amount of data. In particular,

object detection requires at least thousands of object images per class. However, abnormal data are
insufficient in the field. To date, data augmentation has supplemented training data that are insuf-
ficient in most supervised learning networks by using algorithms such as random crop, random
rotation, horizontal flip, blurring, and elastic deformation on the original data. This augmentation
changes the shape of the original image and increases the size of the original dataset by several
times. Among the traditional data augmentation methods, those that change the texture of the
image result in a difference between the original image and augmented image. Because packaged
food images captured by X-ray equipment are always taken under the same conditions, changing
the texture of the image is not suitable. In addition, data augmentation methods that transform
the image do not change the texture of the image. In industrial anomaly detection, however,
abnormal data are very scarce; thus, even if the data are augmented by the transformation
augmentation method, there will be insufficient data to train the network. Furthermore, because
a foreign object in an image does not change, the features of the objects learned by the network
are always similar. As such, existing data augmentation methods may cause network performance
degradation, and we must apply a method that can augment realistic data very similar to the test
data without changing the texture. Various studies have been conducted to generate realistic fake
data for anomaly detection [49–51]. Reference [49] proposed a method of augmenting real normal
data using an adversarial autoencoder (AAE) instead of the aforementioned simple algorithm.
The AAE, which learned the latent space of the training data, generated data similar to the
training data by sampling images within the latent space distribution range of the training data.
Reference [50] proposed a method to derive the learning data necessary for OCC in a well-
trained autoencoder in almost every epoch. In [51], AnoGen was used to provide realistic data
for validating and testing machine learning models. References [49–51] used a latent space, but
because defective food images are similar to normal food images, these methods are not suitable
for our study because the latent spaces are similar.

2.3.4 Object Detection Data Augmentation
In the field of object detection, various data augmentation methods have been proposed for

learning objects [52–54]. For example, a multi-scale strategy [52], patch cropping [53], and random
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erasing [54] have been applied to original images to vary their spatial structures. However, these
methods have a disadvantage in that it is difficult to change the visual content and context of
objects. Recently, several augmented object detection datasets using a cut-paste approach have
been proposed [55–57]. For example, data was augmented by shooting a background scene with
no objects and attaching objects to be detected [56]. In [56], a dataset was augmented in a
cut-paste manner and trained on Faster R-CNN [38] and VGG-16 [57]. For detection on real
images, it showed competitive performance with a model trained on human-curated datasets.
When data augmentation is performed in a cut-paste manner, a large amount of data containing
various foreign objects can be augmented from high-resolution X-ray images without damaging
them. In this study, training data required for supervised learning were augmented in a cut-paste
manner. Packaged food X-ray images have a more common, uniform background than the images
considered in [55–57]. Fig. 1 shows X-ray images of packaged foods used as background in our
study compared to the background images used in [56]. Because the intensity of radiation is
constant in X-ray equipment, the background does not vary and is always constant. In addition,
because packaged food is always packaged similarly, its shape is also constant. Our data can be
considered simpler than the data used in [55–57] because the background and packaged foods
are always similar and uniform in the X-ray images. Moreover, the foreign objects that we aim
to detect are much smaller than the objects in [55–57] and are more difficult to detect because
they are highly similar to the background. Moreover, detection with a one-channel grayscale
image is more difficult compared to detection with a three-channel RGB image. We created the
boundary that occurs when we paste objects on the background using few algorithms. In addition,
by utilizing the features of X-ray, the thickness and density of foreign objects can be learned
in various ways. Fig. 2 illustrates the process of augmenting packaged food X-ray data in a
cut–paste manner.

Figure 1: Background comparison of packaged food data and data in [56]

2.3.5 Patch-Based Training
When training a deep learning network, an increase in the size of the input image increases

the computational cost exponentially. In addition, a small batch size is necessary due to insuf-
ficient memory capacity, which greatly delays the training and prediction time of the network.
Thus, in general, regardless of image size, it is resized to a specific size in the network and
then trained [12,13,29,35]. However, there is a high possibility that important information in the
original image will be lost in the process of resizing. In particular, very small objects in the image
are lost as they pass through the layers of the deep learning network. Reference [58] showed that
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the network performance can be improved by resolution scaling that increases the size of the input
image. Because foreign objects in packaged food are very small, it is very important to maintain
the image size. Among the various methods for learning a network while maintaining the size
of the input image, dividing the image into small pieces and training it in units of patches is
effective [59–61]. In [59], high-resolution images were trained in tens of thousands of patch units
to segment retina vessels. In [60], to learn the characteristic patterns of animals, small patches on
the bodies of animals were cut out and trained. In [61], anomaly detection and segmentation of
MVTec [34] data in patch units was performed using Patch SVDD, which is an extension of Deep
SVDD [23]. However, the size of patch used in [59–61] is extremely small for object detection. The
study most similar to ours was presented in [62]. In [62], YOLOv3 [48] was trained by splitting
one input image into six patches to prevent loss when had high-definition image captured in a
driving system was resized. As a result, it was possible to further reduce the FPR for small objects.
Similar to our study [62], high-resolution food images were each cut into four patches. However,
there were many cases where the network makes incorrect judgements at the edge of an image.
We applied a post-processing algorithm to address this limitation so that the accuracy could be
further improved alongside FPR. In addition, an experiment was conducted using YOLOv4, which
is more advanced than the YOLOv3 learned in [62].

Figure 2: Cut-paste data augmentation process

3 Proposed Method

3.1 Types of Food and Foreign Objects
Various types of foreign objects are found in food, including glass fragments, stones, metal

pieces, insects, and vinyl. Among them, vinyl, flies, and wood chips are difficult to detect, even
with human eyes [63]. Therefore, an automatic detection technology that saves human effort is
required. Accordingly, our study aimed to detect stones, metal pieces, and glass fragments that
could be identified by human eyes and to classify them as defective food products. In this study,
foreign objects were detected in packed pasta, pistachios, snacks, and red beans. Fig. 3 shows the
types of packaged food, and Fig. 4 shows three types of foreign objects that we attempted to
detect in these packaged foods.

The difficulty of detection depends on the characteristics of the food. This is because different
foods have different thicknesses and densities in X-ray images. In the process of packaging, foods
overlap with each other inside the packaging, and thin foods may appear thick. Snacks and pasta
are grains of food in the form of ovals. In the wrapping paper, the grains can be laid horizontally
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or vertically. Vertically stacked granules in X-ray can appear to be thick. However, because red
beans and pistachios have spherical shapes, they show the same thickness in an X-ray image from
any angle. Therefore, pasta and snacks are relatively more difficult to detect foreign objects than
pistachios and red beans. Fig. 5 shows enlarged images of each type of food.

Figure 3: Types of packaged food captured by X-ray equipment

Figure 4: Types of foreign object captured by X-ray equipment

Figure 5: Enlarged views of each packaged food in X-ray images
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We considered metal, stone, and glass as types of foreign object, as shown in Fig. 4, ranging
from high to low density. Metal pieces have a high density, but because their shapes are diverse,
a variety of metal pieces are required to implement a universal network. Glass fragments are
generally not dense; thus, when their thickness is low, they appear faint, similar to vinyl. Stones
have a mid-range density, but most of them are very small, making them difficult to detect. Fig. 6
shows the foreign objects contained in each food. It is the most difficult to detect stone and glass
fragments in pasta and snacks with relatively difficult conditions.

Figure 6: Foreign objects contained in each food

3.2 X-Ray Images of Packaged Food
X-ray images of packaged foods were captured by X-ray equipment [64]. With X-ray equip-

ment, it is possible to capture images according to the size of the food, but the width and length
of the image can be expanded as much as possible. Because the X-ray equipment only takes
an image of one type food, there are no data on two food types in one image. The captured
packaged food X-ray images were 1000 × 1024 (height × width) pixels. Then, we padded them
to square images of 1024× 1024. The captured X-ray images were one-channel grayscale images
in .bmp format. Blurring was applied as an image pre-processing technique to remove noise.
Finally, the one-channel grayscale images were converted to three-channel images to improve
performance. Details on this procedure are provided in Section 3.5. Fig. 7 shows the overall
process of capturing X-ray images of the packaged foods and their pre-processing.

Figure 7: Pre-processing of packaged food X-ray data

3.3 X-Ray Data Augmentation
Among the supervised learning methods, the detection of foreign objects with an object

detection network requires many training data. However, in industrial anomaly detection, it is
difficult to obtain images of defective food product. Therefore, we augmented the data in a
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cut–paste, as in [55–57]. This requires a background image with no object and an object image to
be pasted onto the background. In our study, the normal data are X-ray images of packaged food
containing no foreign objects, and the abnormal data are images of packaged food containing
foreign objects.

Therefore, the background images are regular packaged food images, and the object images
are images showing only the foreign objects without packaged food. In [55–57], segmented objects
attached to a background were filmed under different lighting. The difference in brightness
between the background and object creates a sense of difference. To eliminate this for foreign
objects, we imaged foreign objects and packaged foods under the same conditions with X-ray
equipment so that the backgrounds of foreign objects and packaged foods have the same rough-
ness. In this way, it is possible to generate images as close as possible to defective food data in
the real-world. We captured 500 images of each food product to create various backgrounds. Fifty
foreign objects to be pasted on the background were photographed for each type.

Fig. 8 shows the whole process by which we augmented the training data in a cut-paste
manner. The augmentation process consists of three steps. The first step involves extracting only
the food mask to paste foreign objects from the X-ray area, as illustrated in Fig. 9. First, one
image is randomly selected from 500 normal packaged food images, and binarization is performed
with a threshold value of 200. Because there are many holes in the binarized image, a dilate
operation is applied twice to eliminate them, followed by an erode operation. Finally, to create
more diverse backgrounds, a random flip is applied to the food images. Through this process, the
mask of the packaged food area is obtained from the image. The second step is the segmentation
of foreign objects, as illustrated in Fig. 10. First, one of the three foreign object types is selected
at random, and then one of the 50 foreign objects corresponding to the selected type is also
randomly selected. Then, blurring is applied to remove noise, followed by binarization with a
threshold value of 200. Next, the mask to be segmented is obtained by applying the erode
operation once.

Figure 8: Cut-paste data augmentation process for packaged food X-ray images

To make various shapes, random rotation and flip are applied to the foreign object mask.
Finally, the foreign object area corresponding to the mask is segmented. The third step is to attach
the divided foreign objects to the packaged food image. Foreign objects are attached at random
locations within the packaged food masks. As we have seen in [55–57], when an object is attached



CMC, 2021, vol.67, no.2 2557

to the background, a sense of heterogeneity occurs at the boundary. This is because when attached
to the background, the background pixel is replaced with the object pixel. Because we imaged the
object and background under the same conditions, there is much less disparity. However, if the
pixels of the foreign object are simply replaced with the pixels of the background, some sense
of foreignness occurs. For this, we propose an X-ray image-specific method. X-ray images express
the relative degree of radiation attenuation, which can be expressed through Eq. (1).

I = I0e
−uT (1)

Figure 9: Process of extracting food area from normal X-ray food image

Figure 10: Foreign object segmentation process

where I0 represents the X-ray background. Usually the background is white with a value of 255
because there is nothing present. u is the attenuation coefficient or density of a particular object.
e is a natural constant, and T is the thickness of a particular material. When a material is
captured with X-ray equipment, the background becomes inversely proportional to the thickness
and density of the material, and the final brightness value is indicated as I0. Therefore, the higher
the density of a specific material, the lower the brightness. Even if a specific material has a low
density but is thick, it can appear to have a high density. If two materials are superimposed on
such an X-ray image, it can be expressed as Eq. (2).

I = I0e
−(u1T1+u1T2) (2)

In terms of packaged food and a foreign object, u1 is the density of the packaged food; T1 is the
thickness of the packaged food; u2 is the density of the foreign object, and T2 is the thickness of
the foreign object. Eq. (2) can be converted into Eqs. (3) and (4).

I = I0e
−u1T1 ∗ I0e−u2T2 (3)

I = Ipackaged food ∗ Iforeign object (4)
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In the end, in the X-ray image, the pixels of the foreign object in the packaged food are
equal to the product of the brightness of the food and brightness of the foreign object. In other
words, the X-ray image of a packaged food containing a foreign object at the same location can
be considered the same as the X-ray image of a packaged food augmented with a foreign object.
We could make the segmented foreign object similar to the real data by multiplying the food
mask instead of replacing it. Because significant noise occurs in an X-ray image, it cannot be said
that the image is exactly the same. Here, we multiply the entire segmented foreign object by a
random real number between 0.5 and 1.5. We must change the brightness of the foreign object
because it can make the thickness of the foreign object very diverse. We made annotations based
on the location and size of foreign objects in each food. At this time, all kinds of foreign objects
were defined as one class because it enables is the detection of similar foreign objects besides
glass, metal, and stone. If anything that appears to be a foreign object in the packaged food is
found, it is classified as a defective food product. At that moment, it is unnecessary to know the
type of foreign object. If each foreign object is defined as a class, several problems may arise.
Because glass and stone are similar in shape, a trained network can misrepresent glass as stone
or vice versa.

3.4 Packaged Food Dataset
All augmented images were used as training and validation data. We augmented 3000 training

data per food item. Separately, 100 data were augmented and used as validation data. For the
test data, X-ray images of actual defective food products were directly collected. For anomaly
detection, it is important to detect abnormal data efficiently as well as to detect normal data
correctly. Therefore, the composition of our test data was different from that in other deep
learning methods [6,7]. Accordingly, we additionally collected normal data for each food in the
test dataset. Tab. 1 describes the packaged food dataset constructed in this study.

Table 1: Packaged food X-ray dataset

Packaged food Train Test

Normal Abnormal

Pasta 3000 989 164
Pistachio 3000 264 155
Snack 3000 513 135
Red bean 3000 505 140

3.5 Object Detection Network
For the detection method to be used in a factory, accurate performance and high speed are

important. To this end, we used an object detection network called YOLO [41]. YOLO is the
most representative network among one-stage detectors, offering overwhelming speed with high
accuracy. In addition, it is highly suitable for use in the field because it shows high speed even
on a single GPU, and detection methods that are GPU-intensive are a burden in factories. YOLO
divides one image into certain grids, predicts coordinates, and classifies images in each grid using
one neural network. Owing to continuous research [15,41,47,48], YOLO has been upgraded from
v1 to v4. Currently, YOLOv1 and YOLOv2 are not often used due to their low performance
compared to state-of-the-art networks [15,43,46]. YOLOv4 [15] is better than YOLOv3 [48] in
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terms of performance, but because YOLOv3 is known to be faster than YOLOv4, it is more
beneficial to adopt a faster network. Therefore, we conducted our tests on both YOLOv4 and
YOLOv3. As discussed in Section 3.4, the training dataset does not contain normal food data.
Unlike YOLOv1, YOLOv3 and YOLOv4 predict an objectiveness score for each bounding box,
where an objectiveness score of 0 represents background where there is no object for each part
of the image. This means that an objectiveness score of 0 is learned for the parts of the defective
food images not including foreign objects. Accordingly, normal food data can be viewed as images
in which all parts have an objectiveness score of 0. In the defective food data, the background
is overwhelmingly larger than the foreign object; thus, sufficient learning is performed on the
part where the objectiveness score is 0. Therefore, normal food data with only background were
not included in the training data. In YOLOv3, the feature extractor was changed from Darknet-
19 to Darknet-53, and multi-scale training was performed. Fig. 11 shows the basic structure
of YOLOv3.

Figure 11: Basic architecture of YOLOv3

Because YOLOv3 cannot efficiently detect small objects, YOLOv4 has an increased image
resolution to compensate for this limitation, and convolution layers are added to increase the
receptive field. In addition, bag of freebies (BOF) and bag of specials (BOS) were added based on
algorithms in other studies, which helped improve its performance. In addition, YOLOv4 changed
the feature extractor in YOLOv3 from Darknet-53 to CSPDarkNet-53. Tab. 2 lists the details
of YOLOv3 and YOLOv4. Fig. 12 illustrates the process of training on foreign objects in the
YOLO network.

It is generally known that better performance can be achieved if transfer learning is used.
Transfer learning with weights trained with ImageNet [24] in the feature extractor of YOLOv4 and
YOLOv3 results in better performance. Therefore, we merged three identical one-channel grayscale
X-ray images into a three-channel X-ray image to enable transfer learning. The input size of
YOLOv4 was set to 608 horizontally and vertically, and those of YOLOv3 were each set to 416.
The batch size was set to 1. Data augmentation used in YOLOv3 and YOLOv4 was not used
except for mosaic augmentation. Other settings were the same as in [15,48]. In general, factories
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often produce only one type of product. Therefore, we trained separate networks for each food
data type separately.

Table 2: Details of YOLOv3 and YOLOv4

Type YOLOv3 YOLOv4

Feature extractor DarkNet-53 CSPDarkNet-53
Optimizer Adam Adam
Training epoch 200 200
Input size 608 608
Learning rate 0.01 0.01
Mosaic augmentation yes yes

Figure 12: Training process of YOLO networks

3.6 Patch-Based Training
The input images were resized when entering the YOLOv4 network. Because low-resolution

images are problematic due to the large loss of data, high-resolution images were used because
small foreign objects become smaller. The images detected had a resolution of 1000 × 1024
pixels, but images with higher resolution can be sufficiently detected depending on the food type.
A higher resolution leads to a lower model performance. To this end, we cropped and learned
high-resolution X-ray images in patches as the input size of the network, as with the method
in [62]. However, when cropped to a patch, the object may be cut off. We left all cropped objects
larger than 100 pixels. Thus, training and prediction were possible with an image of any resolution
and in a network of the same size. Fig. 13 shows the resized training process and training process
by cropping an image into patches. When the network makes predictions, similar to when training,
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the test image is split into patch units and recombined after the prediction is made. However,
because patch-based training predicts as many patches as possible, there is a disadvantage that
the inference time of one sheet is slowed by the number of patches. The packaged food data are
made up of four 608×608 patches. Accordingly, the training data as well as the training time and
prediction time are increased fourfold. Food is often cut in cropped images. Cut foods that are
visible at the edges of the image can look similar to foreign objects. In [62], the high-definition
image was cropped into patches, trained, and predicted, but it can be seen that false detections
are made at the edge. In this study, prediction at the edge was removed through a post-processing
algorithm. Because the four patches have many overlapping parts, even if the prediction at the
edge is removed, it is possible to predict normally because the intact object exists in another patch.
This was possible because the object to be detected was a small foreign object.

Figure 13: Difference between resized and patch-based training

3.7 Performance Evaluation
In general, an object detection network conducts performance evaluation based on the number

of correctly detected objects in a test image and the result of classifying the object class. However,
in this study, the performance was evaluated on a different basis. As mentioned previously, all
types of foreign objects were classified as a single class because it is unnecessary to classify the
types of objects. The only important factor to ensure is that foreign objects are not detected in
normal food images and are detected in defective food images. Thus, if a foreign material was
not detected in a normal food image, it was classified as a true positive (TP); if a foreign material
was detected in a normal food image, it was classified as a false positive (FP); if a foreign material
was detected in a defective food image, it was classified as a true negative (TN); if no foreign
material was detected in a defective food image, it was classified as a false negative (FN). The
classification results were expressed as a confusion matrix, and the precision, recall, FPR, and
accuracy were evaluated accordingly.
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4 Experiment Results and Discussion

In industrial anomaly detection, FPR is the most important performance indicator [3,4]. FPR
is the rate at which a defective food product is incorrectly predicted as a normal food product. In
industry, misclassifying a normal product as defective is acceptable to some extent. This is because
the cost incurred by discarding the product can be covered. However, if a defective product is
classified as normal, it will be sent directly to the consumer, which can cause harm to them.

4.1 Environment
The testing was conducted on a GeForce GTX 2080Ti GPU on a 16.04 LTS Ubuntu operat-

ing system. For Cuda, version 10.0 was used, and for Cudnn, version 3.7.5 was used. The Pytorch
framework was used for the deep learning network.

4.2 Detection Results
We trained and compared YOLOv3 [48] and YOLOv4 [15] on our augmented training data,

and the results are listed in Tab. 3. First, a high accuracy was achieved for all foods using
YOLOv3; precision and recall are also high. This means that the augmented training dataset is
similar to the test data collected in the real world. In addition, the similar performance for all
food types indicates that the proposed method is universally applicable. Based on these results, the
proposed method will be able to detect foreign objects efficiently in other packaged foods and clas-
sify them as defective food products. However, it can be seen that most of the FPRs exceed 5%.
In particular, the FPR for the snacks is 15.71%, which is the most difficult packaged product to
evaluate. In industry, it is important to maintain the FPR below 1%. YOLOv3 certainly performs
well, but its FPR requires further improvement. As mentioned in Section 3.5, YOLOv4 was able
to detect small objects better by increasing the size of the input image and changing the network
to CSPDarkNet-53. As a result of training YOLOv4 under the same conditions, the performance
improved significantly compared to YOLOv3. In particular, the FPR decreased dramatically. For
pistachios and red beans, it can be seen that the FPR was reduced to less than 1%, so that
it can be applied in real-world scenarios. In addition, the FPR was also reduced for pasta and
snacks, and in particular, it was approximately 9% for snacks. In our experimental environment,
the inference time of YOLOv4 was 50 FPS, which is sufficient for real-time application.

Table 3: Performance evaluation results on YOLOv3 and YOLOv4

Packaged food TP TN FP FN Precision Recall Accuracy (%) FPR (%)

Pasta-v3 976 151 13 13 98.66% 96.86% 96.18 7.92
Pasta-v4 976 155 9 13 99.08% 98.68% 98.09 5.48
Pistachio-v3 262 148 7 2 97.39% 99.24% 97.85 4.51
Pistachio-v4 262 154 1 2 99.61% 99.24% 99.28 0.61
Snack-v3 486 118 22 19 95.66% 96.23 93.64 15.71
Snack-v4 481 131 9 24 98.16% 95.24% 94.88 6.42
Red bean-v3 511 125 10 2 98.08 99.61% 98.14 7.40
Red bean-v4 513 134 1 0 99.80% 100% 99.84 0.74

When predicting with the trained YOLOv4, the detection range can be changed through
the confidence threshold. The confidence threshold is the threshold of the objectiveness score
predicted by the model. In this study, all objectiveness scores above 0.5 were set to be printed
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out. However, FNs can be lowered further by adjusting the confidence threshold. Tab. 4 lists the
experimental results when changing the confidence threshold for pasta. By varying the confidence
threshold from 0.3 to 0.9, it can be seen that the FPs decreased to 5 when the confidence threshold
was 0.3, while contrarily, FPs increased to 39 when the confidence threshold was 0.9. There was
a trade-off between FPs and FNs according to the confidence threshold, and it is important to
find an appropriate value. Decreasing FPs is acceptable, but several many FNs are not acceptable.
Therefore, it was decided to fix the confidence threshold at 0.5, where FNs and FPs are balanced.

Table 4: Confidence threshold test results for pasta data

Confidence threshold TP TN FP FN

0.3 950 159 5 39
0.4 961 157 7 28
0.5 976 155 9 13
0.6 982 153 11 7
0.7 986 150 14 3
0.8 987 146 18 2
0.9 989 141 23 0

4.3 Patch-Based Training Results
YOLOv4 has been shown to detect foreign objects in packaged foods efficiently. The FPR of

pistachios and red beans was sufficiently low to be applied in the field, but the FPR of snacks
and pasta was insufficient. We performed patch-based training on pasta and snacks, excluding
pistachios and red beans, which showed satisfactory performance. Because one image is cut into
four patches, the training data size increased to 12000. As a result of patch-based training, images
can be learned without loss, resulting in more accurate results, and the prediction results are listed
in Tab. 5. For pasta, the FPR decreased by 4.27%. In addition, the FPR decreased by 1.42% for
snacks, proving that patch-based training is effective.

Table 5: Patch-based training results for pasta and snack

Packaged food TP TN FP FN Precision (%) Recall (%) Accuracy (%) FPR (%)

Pasta 973 162 2 16 99.79 98.38 98.43 1.21
Snack 487 133 7 18 98.58 96.43 96.12 5

When we augmented the data for patch-based training, we removed the foreign objects with
cut areas less than 100. Thus, as shown in Fig. 14, the model detected the edge as a foreign object,
similar to the training data. That is, the parts of the food cut from the edges in normal food
products were incorrectly predicted as foreign objects. Most of the false negatives in Tab. 5 were
detected at the edges of normal images. Therefore, we conducted another experiment to apply a
post-processing algorithm that removes all objects detected at the edge, and the results are listed
in Tab. 6. Through the post-processing algorithm, it was possible to reduce the FNs and improve
the accuracy slightly. The accuracy for pasta improved by 0.26%, and that for snacks improved
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by 0.77%. The performances for pistachios and red beans can also be improved with patch-based
training, but it was not applied due to its slow speed.

Figure 14: Errors detected at the edges of image when using the patch-based training model

Table 6: Post-processing after patch-based prediction results

Packaged food TP TN FP FN Precision (%) Recall (%) Accuracy (%) FPR (%)

Pasta 973 162 2 13 99.79 98.68 98.69 1.21
Snack 487 133 7 13 98.58 97.42 96.89 5

5 Conclusion

We proposed a real-time anomaly detection method for packaged food X-ray images using a
supervised learning network. To acquire defective food product data, which is difficult to obtain,
a training dataset was constructed using X-Ray data augmentation. , foreign objects were pasted
using composition by reflecting X-ray characteristics. As a result, realistic defective food images
could be augmented. With the augmented data, 3,000 training data were built, and test data were
collected directly. By training YOLOv4, the accuracy was at least 94% for all foods. In addition,
patch-based training was applied to reduce the loss in high-resolution images, and the accuracy
was further improved through post-processing algorithms. The performance on test data shows
that our augmented training dataset is highly similar to real data in the field. Furthermore, our
method will perform similarly for other types of food.

6 Future Works

The study has some limitations. Currently, the YOLOv4 used in this study can achieve 50 FPS.
However, in the case of patch-based training, its prediction is approximately four times slower.
In addition, because more patches are augmented for high-resolution images, a method to speed
up the prediction is required. Moreover, a complex image lowers the performance. The proposed
method may yield a low performance when used for food with complex structure, and thus, a
deeper and larger model than CSPDarkNet-53 may be required. Three types of foreign objects
were included in our training dataset, but various other foreign objects, such as insects and hair,
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were not considered. Therefore, it is necessary to build a dataset containing more diverse types of
foreign object.
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