Computers, Materials & Continua | < Tech Science Press

DOI:10.32604/cmc.2021.014677
Article

Statistical Histogram Decision Based Contrast Categorization
of Skin Lesion Datasets Dermoscopic Images

Rabia Javed'?, Mohd Shafry Mohd Rahim', Tanzila Saba’, Suliman Mohamed Fati’,
Amjad Rehman®" and Usman Tariq’

'School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia Johor Bahru, 81310, Malaysia
2Department of Computer Science, Lahore College for Women University, Lahore, 54000, Pakistan
3College of Computer and Information Sciences, Prince Sultan University, Riyadh, 11589, Saudi Arabia
4College of Computer Engineering and Science, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia

*Corresponding Author: Amjad Rehman. Email: rkamjad@gmail.com
Received: 08 October 2020; Accepted: 22 December 2020

Abstract: Most of the melanoma cases of skin cancer are the life-threatening
form of cancer. It is prevalent among the Caucasian group of people due to
their light skin tone. Melanoma is the second most common cancer that hits
the age group of 15-29 years. The high number of cases has increased the
importance of automated systems for diagnosing. The diagnosis should be
fast and accurate for the early treatment of melanoma. It should remove the
need for biopsies and provide stable diagnostic results. Automation requires
large quantities of images. Skin lesion datasets contain various kinds of der-
moscopic images for the detection of melanoma. Three publicly available
benchmark skin lesion datasets, ISIC 2017, ISBI 2016, and PH2, are used
for the experiments. Currently, the ISIC archive and PH2 are the most chal-
lenging and demanding dermoscopic datasets. These datasets’ pre-analysis is
necessary to overcome contrast variations, under or over segmented images
boundary extraction, and accurate skin lesion classification. In this paper, we
proposed the statistical histogram-based method for the pre-categorization
of skin lesion datasets. The image histogram properties are utilized to check
the image contrast variations and categorized these images into high and
low contrast images. The two performance measures, processing time and
efficiency, are computed for evaluation of the proposed method. Our results
showed that the proposed methodology improves the pre-processing efficiency
of 77% of ISIC 2017, 67% of ISBI 2016, and 92.5% of PH2 datasets.

Keywords: Cancer; healthcare; contrast enhancement; dermoscopic images;
skin lesion; low contrast images; WHO

1 Introduction

Skin cancer is the most-known type of cancer. It is usually categorized into two classes:
melanoma and non-melanoma. However, melanoma is one of the dangerous forms of skin cancer
that can cause patient death. Melanoma is considered a lethal disease among the other common
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skin cancer diseases like basal cell carcinoma and squamous cell carcinoma. This skin cancer is
generally associated with overexposure to ultraviolet light. According to the statistics of the year
2020 [1], the estimated new cases of invasive melanoma are around 100,350 (about 60,190 in males
and 40,160 in females) in the United States. The report also estimated that 6,850 people would
die due to melanoma (nearly 4,610 in males and 2,240 in females). Early detection thus gives
more significant chances of treatment. Hence the importance of melanoma detection is analyzed.
The dermatologist has utilized several noninvasive imaging techniques like dermoscopy, confocal
microscopy, and optical coherence tomography for skin lesion detection and classification [2,3].

Dermoscopy is one of the standards and effective imaging techniques used in the diagnosis
of skin cancer. The dermoscopy captures the 20x magnified lesion image, but sometimes due
to the lighting effects, the image contrast is varying. These variations in image contrast create
difficulty for skin lesion classification methods and reduce these method’s accuracy. Computer-
aided diagnosis (CAD) systems for skin lesion classification mostly have these fundamental steps,
including image pre-processing, lesion segmentation, feature extraction, and lesion classification.
Many researchers used the contrast enhancement technique to solve the contrast variation issue
in the image pre-processing step before moving on to the segmentation and classification steps [4].
However, due to pre-processing on large un-categorized datasets [5], the computational time is
increased, and also it reduces the efficiency of the method.

Moreover, some of the high contrast images already have high contrast pixel values. After
applying the contrast enhancement techniques on these high contrast images, the segmentation
method’s accuracy will also be affected. Consequently, it is not necessary to use the image
contrast enhancement on high contrast images. In this article, we proposed a novel statistical
histogram-based decision method to address this problem. Our contributions are two-fold. Firstly,
a statistical histogram decision method is implemented for the automated categorization of skin
lesion datasets. The histogram upper bin and lower bin properties are used to separate the
high and low contrast images. Secondly, the pre-processing histogram-based contrast stretching
technique is only applied to the low contrast images. The significant contributions of this article
are as follows:

e A novel approach proposed using image histogram properties to accomplish skin lesion
datasets analysis before the pre-processing step.

e Formulate the statistical equations for separating the dermoscopic images into high/normal
and low contrast images.

e The pre-processing step’s efficiency is improved by gathering the histogram of images
metadata and enhancing only the contrast of low contrast images.

b

The rest of the paper is planned as follows. Section 2 contains some of the earlier work
focused on dataset analysis and improvements in the pre-processing step. The details of the
proposed method for skin lesion datasets categorization using the histogram-based formulation are
explained in Section 3. The experimental results are discussed in Section 4. Finally, the conclusion
with future work in Section 5.

2 Related Work

Every dataset plays a vital part in developing and validating every CAD system [6,7].
Understanding raw datasets are necessary for further processing like image segmentation, feature
extraction, and classification. The skin lesion images comprise labeled images with metadata
information, e.g., lesion type, personage, gender, etc. Many researchers used different augmentation
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techniques like geometric transformation, color space transformation [&], cropping, rotation,
translation, flipping, zooming, mixing image, blurring, and kernel filter [9] for dataset analysis.
The outcome of the research performed in existing literature states that it is highly dependent
on the number of images and their quality [10,11]. There is no established standard for capturing
the skin lesion images. That is the reason the results of automated skin lesion diagnosis are
observed to affect accuracy severely.

In the pre-processing step, some researchers solve the issue of artifacts and hair removal.
Furthermore, some of the authors focus on increasing the contrast of images through contrast
enhancement techniques [12,13]. Also, the reflection issue is solved by illumination correction
and color space transformation [14]. It was discussed by Rahman et al. [15] that when images
are acquired from different datasets using the different image capturing devices under changing
environments such as lighting, lens, textures, backgrounds, and others made the identification and
the classification tasks of lesions very difficult. The image histogram is used for many different
purposes like pre-processing, image segmentation, feature extraction [16]. Different devices appear
in the image due to the various devices, which makes the identification process more challeng-
ing [17]. The difficulty of isolating the lesion segment in the images increases if captured images
contrast is low [18]. Abbas et al. [19] proposed enhancing lesion image contrast by adjusting and
mapping the lesion pixels’ intensity values in the specified range in CIE L % a % b color space.
The color histogram properties are utilized for the discrimination between benign and melanoma
lesions [20]. The image histogram is used in the region growing method to segmentation pigmented
skin lesions [21]. The authors [22] used the histogram for thresholding value for clustering seg-
mentation of low contrast or different tone images. The histogram’s luminance level is calculated
to create a binary image that feeds to the segmentation stage.

The histogram is also utilized to extract global and local features [23,24]. The color histograms
have been applied to classify the lesion into melanoma and benign [25]. The color histogram
analysis is performed to extract the color characteristics of melanoma, and these acquired char-
acteristics are used to differentiate between melanoma and benign lesions [260]. Moreover, the
histogram techniques like histogram equalization, histogram stretching and histogram matching,
etc., are also used for image normalization. These approaches’ significant side effect is the over-
exaggeration of the noise in the area, which has a comparatively low-intensity range. Contrast
Limited Adaptive Histogram Equalization (CLAHE) is one proposed technique that might be
applied to mitigate noise’s above-mentioned side effects [27,28]. Many pre-processing procedures,
like image augmentation and normalization, are used to balance and filter skin lesion dataset’s
images. The different types of contrast enhancement techniques are used for improving the quality
of dermoscopic images [29,30]. Contrast stretching is one of the methods for image enhancement
by stretching intensity values. Different contrast stretching types exist, such as local contrast,
global contrast, partial contrast, bright contrast, and dark contrast stretching techniques. The
local contrast stretching technique is specially used for low contrast. The global stretching is also
used to enhance the image quality by taking global contrast of the image.

The most crucial problem in lesion detection and classification is the low contrast dermoscopic
images. The low contrast images affect the segmentation performance due to the similarity between
healthy skin and infected lesion areas. The second major issue is lesion boundary extraction
due to lesions irregular and different shapes. The third issue is the accurate classification of the
lesion into benign and melanoma because a wide range of color similarity exists among lesion
types. Currently, in existing work, all of these issues are present because of un-categorized skin
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lesion datasets. Before using the skin lesion datasets for lesion detection and classification of
dermoscopic images, there should be methods to analyze these datasets.

3 Proposed Method

The proposed methodology is divided into two phases. In phase 1, the analysis of skin lesion
datasets is performed, then an automated intelligent histogram-based method is implemented
that categorized the dermoscopic images into high and low contrast images. In phase 2, the
pre-processing is performed only on identified low contrast images. The proposed method is
graphically represented in Fig. 1. The detail of each phase is explained below:

Phase 1: Skin Lesion Datasets Cateqgorization
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Figure 1: A proposed method for categorization into high and low contrast images

3.1 Skin Lesion Dataset Analysis

The skin lesion datasets ISBI (International Symposium on Biomedical Imaging) 2016, ISCI
(International Skin Imaging Collaboration) 2017, and PH2 contain various dermoscopic images.
Huge variations and challenges exist in these datasets. For this research, the skin lesion datasets
images are categorized into three classes: (1) artifacts images, (2) variations in image contrast,
and (3) variations in lesion properties. The first class (artifacts images) contains different types of
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artifacts in images like (a) dark corner, (b) maker ink, (c) gel bubbles, (d) circle chart, (e) ruler
marks, and (f) skin hairs. An artifact is anything rather than the lesion that is detected while
capturing the lesion from dermoscopy. These artifacts are naturally not present in the skin. Some
of them create a problem during the digital image processing steps that will be performed for
lesion classification. These artifacts reduced the performance of the pre-processing step and also
created problems in lesion boundary extraction. The second class (variations in image contrast)
has two types of images: (a) high contrast images and (b) low contrast images.

The low contrast or quality of images shows that human eyes cannot easily differentiate
between healthy/normal skin and cancerous/lesion skin. The third class (variations in lesion prop-
erties) is divided into (a) under segmented images and (b) over segmented images. The under
segmented images mean that the lesion size is too small and difficult to analyze. The over
segmented images are like pigmented skin where a lesion is spread all over the skin area. The
contrast is defined as uniquely different in terms of shade or glows representing an object (in real
or captured digitally). The same view’s objects should have distinguishable features such as color
or brightness labeled as high contrast images or objects. Some contrast enhancing techniques such
as contrast stretching or normalization work by expanding or stretching the intensity values to
the desired intensity values. The contrast of the image can be high or low. It depends on the
tone range of the image. In a high contrast image, the full range of tone appears from bright to
dark. The high contrast images contain normal images that are high in contrast. A high or well-
contrasted image has gray levels (histogram) spread out over much of the range. A low contrasted
image has gray levels (histogram) cluttered in the center.

3.2 Skin Lesion Datasets Categorization

The first phase of the proposed method is the categorization of images into high and low
contrast. The purpose of categorizing images is to minimize the time consumed during the pre-
processing step performed on the large datasets. The researched method is achieved in five steps,
as illustrated in Fig. 2. Step 1 is to create the histogram for all images, followed by step 2 that
calculates the histogram properties, while step 3 is to select the two histogram properties BinLow
and BinHigh. The lower (L) and upper (U) limits of an image are calculated in step 4, followed
by step 5 that decides whether an image is a high or low contrast based upon the formula.

3.2.1 Create a Histogram for All Images

A histogram is a visual representation of an image that presents the intensity values of pixels.
These intensity values are plotted on the x-axis (vertical) by different intervals, also known as bars
or bins. The histogram gives a detailed view of all pixel values of an image that helps inspect
an image.

Also, the brightness and contrast of an image are easily identified by analyzing the distributed
intensity values. The histogram decision creates the histogram for all the dermoscopic images
presents in benchmark datasets ISIC 2017, ISBI 2016, and PH2. The histogram of the skin
lesion image is generated and each bar defines a range of values between the minimum and
maximum values.

3.2.2 Calculate Histogram Properties

Histogram properties, as define in MathWorks, control the appearance and behavior of the
histogram. Some of the properties of the histogram are: (i) the number of bins (BinCounts),
(i) width of bins (BinWidth), (iii) edges of bins (BinEdges), and (iv) bin limits (BinLimits). The
bin limits are further comprised of two values, which are bin low and bin high limit. For the
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analysis of skin lesion images, the histogram properties/features such as bin count, bin edges, bin
low value, bin high value, and bin width are calculated. Here, the first ten images detail results
are shown in Tab. 1.
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Figure 2: Process of histogram-based decision method

The same procedure is followed for the datasets ISBI 2016 and PH2. Firstly, the histogram
is created for all the images; then, the histogram properties are calculated. The detailed results of
the first ten images are shown in Tab. 2.

The complete histogram properties are also calculated for the PH2 dataset, as shown in
Tab. 3.
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Table 1: Histogram properties for ISIC 2017 dataset images

Image name Histogram properties
BinCounts BinEdges BinLow BinHigh BinWidth

ISIC_0000000 47 48 20 255 5
ISIC_0000001 109 110 10 228 2
ISIC_0000002 85 86 0 255 3
ISIC_0000004 51 52 0 255 5
ISIC_0000006 118 119 0 236 2
ISIC_0000007 83 84 0 249 3
ISIC_0000008 79 80 12 249 3
ISIC_0000009 112 113 0 224 2
ISIC_0000010 203 204 6 209 1
ISIC_0000011 74 75 0 222 3

Table 2: Histogram properties for ISBI 2016 dataset images

Image name  Histogram properties
BinCounts  BinEdges BinLow BinHigh BinWidth

1002 160 161 55 215 215
1003 85 86 0 255 255
1004 132 133 50 182 182
1005 73 74 9 228 228
1007 92 93 72 255 255
1008 134 135 78 212 212
1009 166 167 11 177 177
1010 157 158 10 167 167
1011 124 125 61 185 185
1012 59 60 36 213 213

Table 3: Histogram properties for PH2 dataset images

Image name  Histogram properties
BinCounts  BinEdges BinLow BinHigh BinWidth

IMDO002 128 129 0 255 255
IMDO003 128 129 0 255 255
IMD004 128 129 0 255 255
IMDO006 255 255 0 255 255
IMDO008 255 255 0 255 255
IMDO009 255 255 0 255 255
IMDO010 128 129 0 255 255
IMDO014 249 250 6 255 255
IMDO15 128 129 0 255 255
IMDO016 128 129 0 255 255
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Here, Tabs. 1-3 show that the BinLow and BinHigh values are varied mostly except for other
histogram properties. In this research, the BinLow and BinHigh values are selected for making
the decision. Select the BinLow and BinHigh values for decision. After comparing the histograms
of high and low contrast images, we concluded that image contrast variation depends on BinLow
and BinHigh values. These two properties are selected for the histogram decision formula. Tab. 4,
presents the images with the BinLow and BinHigh values for high and low contrast dermoscopic
images. In this research, the BinLow and BinHigh values are selected for calculating the lower (L)
and upper (U) limits of the dataset’s images.

Table 4: BinLow and BinHigh Values Images

35

BinLow alu =0 BinLow Value=30 BinLow Value =0 BinLow Value =5
BinHigh Value =210 BinHigh Value=255 BinHigh Value =255 BinHigh Value =255
N |

" :
BinLow Value =38 BinLow Value =55 BinLow Value =18 BinLow Value =15
BinHigh Value =194 BinHigh Value =180  BinHigh Value =220 BinHigh Value =234

Now, the lower limit and upper limit is calculated for all images presents in three datasets.
The low and high interval is estimated for analyzing the threshold value of the lower and upper
limit. Linear transformation mapping is utilized to calculate the low and high interval. In Fig. 3,
the low interval of an image is shown by the histogram. Here, the low interval of an image is
between 0 to 60. The design formula computes the low limit for all the images present in datasets
explained in step 4.

Like the lower (L) limit, the upper (U) limit is calculated with the help of the BinHigh value
of an image in the histogram. The estimated high interval for the upper limit is highlighted in
Fig. 3. For this image, the high interval is between 200 to 255. The upper (U) limit is calculated
for all dataset images. The upper limit (U) formulation is explained in step 4.

3.2.3 Calculate the Lower (L) and Upper (U) Limits of an Image

The BinLow property of the histogram is used for calculating the lower limit, and the
BinHigh property is utilized for upper limit calculation. The lower limit for all the images is
calculated by summarizing the average and standard derivation of BinLow values. The average
(Avg) denoted as BinLoway,, is calculated by adding all BinLow values and then divided by the
total number of images (n), as shown in Eq. (1).

1 n
BinLowayg = " Z BinLow; (1)

i=1
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Figure 3: Estimated low interval of the image histogram

The standard derivation (SD) for all the BinLow values of n number of images is calculated
as explained in Eq. (2). Here, n is the number of images of datasets.

BinLow; — )
BinLOWSD=\/ 2 (Bin I(l)wl W (2

Then summation of these values is computed from the arithmetic mean, and standard
derivation is taken for lower limit (L).

L= BinLowAVg + BinLowgp 3)

Same as lower limit calculation, the upper limit is calculated by taking the average and
standard derivation of BinHigh values. The average of BinHigh values is computed as seen in
Eq. (4).

1 n
BinHighyy, = — > " BinHigh, 4)
i=1

The standard derivation (SD) for all the BinHigh values of n number of images is calculated
as explained in Eq. (9).

\/ " (BinHigh; — )’

BinHighgp, = (5)

For upper (U) limit as defined in Eq. (6) of images is calculated by taking the negation after
getting the average denoted as BinHigh,,, and standard derivation represented as BinHighgp

of BinHigh values. The only difference in the upper limit calculation is that the average value’s
negation and standard derivation are performed.

U = BinHighy,, — BinHighgp, (6)
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The contrast evaluation process starts with the computation of histogram decision denoted
as HD that measures the lower (L) and Upper (U) limits of images. The HD is formulated as
explain in Eq. (7).

high contrast if BinLow < L v BinHigh > U
low contrast if BinLow > L v BinHigh < U

HD = Z f (image;) = (7

i=0

where image; is the number of images present in the dataset, the calculated values for the lower (L)
and upper (U) limits are applied in the HD formulation. The lower (L) and upper (U) limits are
compared with BinLow and BinHigh values of the input image. After the experiments, the analysis
shows that if the BinLow value of an image is less than the lower (L) limit or the BinHigh value
of this image is greater than the upper (U) limit. Then it is considering a high contrast image. In
the low contrast case, if the BinLow value of an image is greater than the lower (L) limit or the
BinHigh value is less than the upper (U) limit, then it is a low contrast image. For dataset ISIC
2017, the high contrast images had the BinLow value less than 34.1 (L), and the Binhigh value is
greater than 201.9 (U). While the low contrast images had the BinLow value is greater than 34.1
(L), and the BinHigh value is below 201.9 (U). For dataset ISBI 2016, the high contrast images
had the BinLow value less than 30.1 (L), and the BinHigh value is greater than 191.9 (U). The
low contrast images had the BinLow value greater than 30.1 (L), and the BinHigh value is below
191.9 (U). For dataset PH2, the high contrast images had the BinLow value less than 6.2 (L), and
the BinHigh Value is greater than 246.4 (U). Although the BinLow value is greater than 6.2 (L)
for the low contrast images, the BinHigh value is less than 246.4 (U). The proposed histogram
decision formulation is based on the BinLow and BinHigh values of an image histogram. After
this decision, the skin images are categorized into two contrast variations: (i) high and (ii) low, as
described in Tab. 5.

Table 5: Image categorization of dataset ISCI 2017, ISBI 2016, and PH2

ISIC 2017 ISBI 2016 PH2

Image name Status Image name Status Image name Status
ISIC_0000000 High 1002 Low IMDO002 High
ISIC_0000001 High 1003 High IMDO003 High
ISIC_0000002 High 1004 Low IMDO004 High
ISIC_0000004 High 1005 High IMDO006 High
ISIC_0000006 High 1007 Low IMDO008 High
ISIC_0000007 High 1008 Low IMDO009 High
ISIC_0000008 High 1009 Low IMDO010 High
ISIC_0000009 High 1010 Low IMDO014 High
ISIC_0000010 High 1011 Low IMDO15 High
ISIC_0000011 High 1012 High IMDO016 High

Now, the images of the three datasets are separated into two types of images. After making
the histogram-based decision, the contrast enhancement or stretching technique is applied only on
the low contrast images.
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3.3 Pre-Processing for Low Contrast Images

The acquisition of images from three datasets does not suitable for the segmentation process.
So, before the lesion segmentation phase, it is necessary to pre-process the input image. The pre-
processing phase is an essential step to obtain high accuracy in the next phases. The pre-processing
steps for low contrast images are explained in detail. Image contrast stretching enhancement
technique is performed on dermoscopic images to improve the contrast of low-quality images. In
this technique, the normalization of the image is changed by defining the range for intensity value.
From the histogram, change or stretch out the old gray values or levels to the new gray values
using the piecewise linear stretching function. The mapping function is used to stretch the values
and then create the histogram for the new image. In contrast, stretching technique, the minimum
and maximum values that define the image’s intensity are increased. After that, the mapping
function is implemented to map the histogram’s values then the contrast of the image is enhanced.
The difference between the low contrast image and contrast stretch image is easily visualized.
Now, the skin lesion in the low contrast image is more apparent. Moreover, the similarity problem
between background and lesion is also resolved after contrast stretching.

4 Experimental Results

Some fundamental prerequisites are needed to lead this research. Keeping in mind the end
goal to diminish processing time, a Graphical Processing Unit (GPU) with higher handling power
and more significant memory is best. Be that as it may, constraints to limited hardware access
could limit CPU utilization alone. The minimum requirements are the 2.7 GHz processor and
10 GB Random Access Memory (RAM). Moreover, for the software side, this research utilizes
MATLAB version R2019a. The operating system used is Windows 10. MATLAB is picked
because it employs high-level language and helps programming libraries for numerical calculation,
graphics, and programming.

This section encompasses two subsections where Section 4.1 analyses the histogram deci-
sion method’s performance while Section 4.2 evaluates the performance of image contrast
categorization.

4.1 Analysis of Histogram Decision Formulation

The histogram lower (L) and upper (U) limits values are utilized for checking the image
contrast. The lower (L) and upper (U) limits are compared with the input image’s BinLow and
BinHigh values. After experimenting with different values, it was observed that if the BinLow
value of an image is less than the lower (L) limit or the BinHigh value of this image is greater
than the upper (U) limit, then the input image is considered a high contrast image. In the low
contrast case, if the BinLow value of an image is greater than the lower (L) limit or the BinHigh
value is less than the upper (U) limit then the input image is a low contrast image. These rules
are then applied to all three datasets. For the validation of the research method, the statistics
performance measures are used in three datasets. After comparing skin lesion datasets, the stats of
high and low contrast images are shown in Tab. 6. The quantity of high contrast images is more
than low contrast images. The ISCI 2017 dataset has 900 total images containing 698 high contrast
images and 202 low contrast images. The dataset ISBI 2016 includes 910 number of images in
which 608 images are high contrast, and 302 number of images are low contrast. Moreover, after
the histogram decision, the dataset PH2 contains the 15 number of low contrast images based on
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observation. So, the contrast enhancement technique will only be applied to low contrast images.
The detailed results of the experiments are discussed below:

Table 6: Comparison of ISIC 2017 and PH2 on high and low contrast images

Phase 1: skin lesion datasets categorization Dataset

ISIC 2017 ISBI 2016 PH2
High contrast images 698 608 185
Low contrast images 202 302 15
Total images 900 910 200

4.2 Performance Measures Results

Two performance measures, the processing time and efficiency, are calculated to evaluate
the statistical HD method. The MATLAB time function technique is utilized to measure the
processing time of an image in per-processing. This function returns the total time by taking two
timestamps, one at the starting and one at the processing image’s ending. The processing time is
given for, before the HD method and after the HD method as represented in Tab. 7.

Table 7: Processing time before and after statistical histogram decision method

Dataset Processing time
Before the statistical HD method applied After the statistical HD method applied

ISIC 2017 One image pre-processing time =10 s One image pre-processing time =10 s
900 images pre-processing time = 90010 s 202 image pre-processing time = 202*10 s
=9,000 s=2.5h~3h =2,020 s=1/2h
ISBI 2016 One image pre-processing time = 10 s One image pre-processing time =10 s
910 images pre-processing time =910*10 s 302 image pre-processing time = 302*10 s
=91,00 s=2.5h =3,020 s=1/2h
PH2 One image pre-processing time = 10 s One image pre-processing time =10 s
200 images pre-processing time = 200*10 s 15 image pre-processing time = 15*10 s
=2,000s=12h =150 s=2.5 min

The graphical representation is also shown in Fig. 4, which shows the processing time
improved after the proposed method. The blue color indicates the processing time before the
proposed method, and the red color shows the processing time after the proposed method. The
low contrast ratio (LCR) is computed from the equation. Here, in the equation, a low contrast
image is represented as LCI, and N is the total number of images in the dataset, as seen in
Eq. (8). LCI is determined after the categorization of skin lesion datasets using the proposed
statistical histogram decision-based method.

LCI
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The efficiency of the pre-processing step is also calculated for the evaluation of the proposed
method. The efficiency is intended by the equation, as can be seen in Tab. 8. The efficiency in
Eq. (9) is denoted as E.

E=100—LCR (9)

Processing Time

4
3
3
5 25
| . .
1
025
) i -
ISIC 2017 ISBI 2016 PH2
i Before Proposed Method & After Proposed Method
Figure 4: Graphical representation of processing time
Table 8: Efficiency evaluation for pre-processing step
Efficiency
ISIC 2017 ISBI 2016 PH2
LCR = 2 x 100 = 22.4% LCR = 3% x 100 = 33% LCR = 555 x 100 =7.5%
E=100-22.4=77% E=100-33=67% E=100-7.5=92.5%

Before the proposed statistical HD method, the processing time and efficiency are not
improved. After the proposed method, the efficiency is improved by 77% for ISIC 2017 dataset.
The ISBI 2016 dataset displayed 67%. The PH2 dataset showed a 92.5% increase the efficiency.

5 Conclusion

This study proposes a unique perspective to categorize images into low and high by checking
the image contrasted through the histogram properties. It is an innovative endeavor to explore
image histogram properties to solve pre-processing issues on a vast and diverse dataset. In skin
lesion classification, the histogram bin limits values were never utilized before to categorize images
into high and low contrast. We have also come up with a statistical formula approach to make the
distinction between the images. This has isolated the pre-processing to be done only on a subset of
datasets. Due to image categorization, the overall performance is increased by avoiding the extra
processing on high contrast images. Through the histogram decision method, the performance
of existing skin lesion classification methods is improved. The skin lesion categorization method
can be enhanced by incorporating the depth analysis of skin lesion datasets. The histogram’s
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other properties can be explored like bin width, bin count, and bin height to further research
pre-processing on skin lesion datasets.
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