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Abstract: This paper presents a novel method utilizing wavelets with parti-
cle swarm optimization (PSO) for medical image compression. Our method
utilizes PSO to overcome the wavelets discontinuity which occurs when com-
pressing images using thresholding. It transfers images into subband details
and approximations using a modified Haar wavelet (MHW), and then applies
a threshold. PSO is applied for selecting a particle assigned to the threshold
values for the subbands. Nine positions assigned to particles values are used
to represent population. Every particle updates its position depending on the
global best position (gbest) (for all details subband) and local best position
(pbest) (for a subband). The fitness value is developed to terminate PSO when
the difference between two local best (pbest) successors is smaller than a
prescribe value. The experiments are applied on five different medical image
types, i.e., MRI, CT, and X-ray. Results show that the proposed algorithm can
be more preferably to compress medical images than other existing wavelets
techniques frompeak signal to noise ratio (PSNR) and compression ratio (CR)
points of views.

Keywords: Image compression; wavelets; Haar wavelet; particle swarm
algorithm; medical image compression; PSNR and CR

1 Introduction

Compressing patient’s medical images is a rising demand nowadays in medical organiza-
tions due to the needs to archive and transfer large numbers of high resolutions images.
Indeed, maintaining those images costs organizations powerful servers, wide network bandwidth
and backup storage devices. The problem arises here is concerning the nature of these data
itself, medical images need special care when performing compression. Losing important medical
details in images may affect medical diagnose for patients. Therefore, any improvement in image
compression methods would help storing and transferring medical history properly.
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Many compressing algorithms have been proposed in this context, some of them utilizes
wavelet family transforms. Haar wavelet method is a member of the family, it is considered as
a popular image compression method due to its simplicity comparing to others. Nonetheless,
the main disadvantages of the Haar wavelet is features discontinuity that leads to difficulties for
simulating continuous signals [1–3].

In this paper, a modified Haar wavelet (MHW) algorithm for medical images compression
is introduced. The algorithm combines Haar wavelet with PSO as a threshold value selection
method. This modification assists in compressing medical image to maintain its purity and
preserve fine details while keeping compression ratio high.

The proposed algorithm begins by subdivide the input image into four frequency subbands:
one approximation and three detail coefficients. Haar wavelet is modified for this task in order
to work with 2 × 2 matrices instead of whole image and to keep the approximation subband
unchanged. We get one approximation of low subbands for row and column filtering (LL), high
subbands for row filtering and low subbands for column filtering (HL), low subbands for row
filtering and high subbands for columns filtering (LH), and high subbands for row and column
filtering (HH). To sum up, nine subbands are obtained by applying MHW on the details (LL–
HL–LH–HH).

A threshold is utilized for reducing search space of the coefficients while nine thresholds
assigned to their positions are selected to represent subbands (one for each subband). We use
these thresholds as particle candidates for the PSO algorithm. PSO is updated by the global best
position (gbest) for all details subband and local best position (pbest) for a subband. We developed
the fitness value to terminate the PSO to reach a target threshold. The proposed algorithm is
implemented using various types of medical images with different sizes, and it is compared with
other existing wavelets techniques. The algorithm achieved better result from PSNR and CR point
of views.

This work is organized into five sections: Section 1 introduced the work. In Section 2, related
work is depicted. Section 3 describes the proposed algorithm. The performance evaluation is
shown in Section 4. We provided the experimental results in Section 5. Finally, the conclusion is
presented in Section 6.

2 Related Work

Medical image compression techniques can be categorized into two main types depending on
the redundancy removal way, namely Lossless et al. [4–6]. Lossless allows the original image to
be reconstructed exactly from the compressed image with low compression rate [7]. In contrast,
lossy image compression characterized by degrading image quality because it does not reconstruct
exactly the original image [8].

Wavelet transform considers a well-known technique that can work as lossy or lossless com-
pression based on calculating thresholds in the details subbands [9]. Several wavelet types like
Haar, Coiflet, Symlets, Daubechies, Biorthogonal, and (5/3) and (9/7) lifting schemes can be used
for medical images compression [10]. The performance of these algorithms varies depending on its
ability to decompose signal into low and high frequency components where thresholding process
takes place for compression.

Rao et al. [11] had evaluated comparison analysis of image compression techniques based on
Haar wavelets. Their studies concentrated on relation between compression efficiency and short
processing time in case of data transfer over the internet or any channel. Zanaty et al. [12]
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combined wavelets by a region growing technique for compressing region of interest. Mohamed
et al. [13] integrated Haar wavelet with quad tree to enhance mammogram image compression.
Umezu et al. [14] introduced Z-map models depending on irreversible compression algorithm
using a two-dimensional Haar wavelet transform in order to resolve tight memory situation for
an ordinary PC, see [15] for more mathematical theories. Nahar et al. [16] proposed double
density wavelets transform (DDW) for image compression based on discrete wavelets transform
(DWT) [17]. Priya et al. [18] compressed medical image based fuzzy segmentation applying a
fuzzy C-means clustering into a region of interest (ROI) and non-region of interest (NROI). ROI
is compressed using DWT coding while NROI is compressed using well-known context adaptive
variable length decoder. Benyahia et al. [19] used wavelet packet coupled with the progressive coder
SPIHT for developing compression techniques for medical images by preserving detailed structures
to produce high quality images. Reisenhofer et al. [20] presented Haar wavelet algorithm based
on perceptual similarity index. The algorithm uses similarity measures for full reference image to
evaluate quality level assessment. Vasanth et al. [21] mixed Haar wavelet with Huffman encoding
for image compression. Rao et al. [22] examined the performance of principle component analysis
(PCA) and wavelet difference reduction (WDR) techniques when applied to x-ray and CT images.
Agarwal et al. [23] reviewed various image compression using wavelet-based methods including
subband coding (SBC), decoding for medical pitch (EHT) [24] and transform coding (IATC).
More compression technique is stated in [25,26] for combinational hybrid compression algorithm
of medical image in [27,28] and to analyzing the relation between resultant image details of
different granularities.

From the stated methods, we have noted that there is no universal algorithm for providing an
optimal compression. Each algorithm has its own specific drawbacks like compressing ratio, speed,
image types, or memory usage. Therefore, effort is needed in order to overcome such drawbacks.

3 Modified Haar Wavelet with PSO

In this section, we describe the proposed algorithm for medical image compression. The
novelty of this algorithm is the use of POS for the shrinkage of the transforming coefficients.
Fig. 1 shows the proposed compression scheme. In the following subsections, the compression
steps of the proposed algorithm are described. First, the modified Haar wavelet transform step is
explained. Then, the thresholding process is addressed. Finally, using the POS is discussed.

Figure 1: The proposed compression scheme
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3.1 Modified Haar Wavelet
Haar wavelet transform is the simplest orthogonal wavelet transform, and it is computed by

iterating difference and averaging between odd and even pixels of digital images. Haar wavelet
transform can be utilized in various ways for compressing images by decomposing its matrix to
sparser one [29–33]. In order to preserve more image quality and clarity, we modified Haar wavelet
(MHW). MHW introduces a new transformation capable to achieve better compression results
than the classical one in [34,35], and to reach better PSNR and CR values.

Instead of performing Haar wavelet levels on rows then perform the same step on resulting
matrix (on columns) as what in [36–38], we make the one step transform just one time on all rows
follow by one step transform on resulted columns as [39]. For that, we use MHW for dividing the
original image of W ×H dimensions into 2× 2 matrices and apply the transform as in Eqs. (1)
and (2):⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣
a · · · b
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. . .

...
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⎡
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(2)

where values of A, B, C and D are calculated as follow:

A= a+ b+ c+ d
4

, B= a− b+ c− d
4

, C = a+ b− c− d
4

, D= a− b− c+ d
4

(3)

For reconstruction, we can gain a, b, c and d as follow:

a=A+B+C+D, b=A−B+C−D, c=A+B−C−D, d =A−B−C+D (4)

Eq. (4) can be reformatted as:⎡
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In a similar way, the reconstruction equation:⎡
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3.2 Subbands and Thresholding
We use thresholding process in order to reduce searching space of coefficients. First, subbands

coefficients are evaluated by applying MHW on the input image to obtain four subbands details
(coefficients). This means that the positions in Eq. (1) are replaced by coefficients in Eq. (5)
to become:⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣
A · · · B
...

. . .
...

C · · · D

⎤
⎥⎦ · · ·

...
. . .

...
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

Redistributing the coefficients of this matrix to be:
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where i = 1, 2, . . . ,W , and j = 1, 2, . . . ,H. In the four subbands, one is called approximation and
three are called details (approximation LL—horizontal details LH—vertical details HL—diagonal
details HH) as shown in Fig. 2.

Figure 2: The matrix is subdivided into four subbands

In order to reach optimal PSNR, MHW is applied again to LH, HL and HH subbands to get
12 subbands: three approximation, and nine details. The approximation subbands (LL) includes
the important information (approximation) as shown in Fig. 3. The details are then employing the
thresholding process and arranged to nine subbands (HL1, LH1, HH1, HL2, LH2, HH2, HL3,
LH3, HH3) as follows:
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LL

LL1 HL1

LH1 HH1

LL2 HL2 LL3 HL3

LH2 HH2 LH3 HH3

Figure 3: The coefficients matrix consists of nine subbands

Secondly, we select an element xij for each subband of N ×N dimensions and compute the
corresponding threshold T using the following equation:

T (x)=

⎧⎪⎨
⎪⎩
0 if μ− σ < x< μ+ σ

or if |x−μ|< σ

xij otherwise

(9)

where μ is mean of the detailed subband coefficients (consists of nine values) and σ is the
coefficients standard deviation. μ is calculated in every detailed subband as:

μ=
∑N

i=1
∑N

j=1 xij
N2 (10)

Also, σ is computed as:

σ =
∑N

i=1
∑N

j=1
(
xij −μ

)2
N2 (11)

3.3 Particle Swarm Optimization (PSO)
PSO has appeared as a rising algorithm for solving various optimization challenges itera-

tively [40–44]. In PSO, population is called a swarm and individuals are called particles. The
movement of swarming particle depends on two components: A deterministic and stochastic
component [45,46].

In our methods, the nine positions are the population assigned to particle values (i.e., a
threshold value for a subband) as in Fig. 3. PSO estimates best achievable threshold for each
subband. This step leads us to get best achievable PSNR for reconstructed image, and to get
acceptable CR and MSE values, as well. The resultant nine subband details represent input
particles candidates for the PSO algorithm. The largest value in the population is named as gbest
global best, pbest represents local best value for the input subband. The fitness value is evaluated
by assigning a value to a particle’s position. rand () is selected randomly from thresholds spaces of
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a subband, Particles are flying around in the search space and every particle redefines its position
depending on the global best position gbest, local best position pbest and can be represented by
the following formula:

v[]= v[]+ c1 ∗ rand() ∗ (pbest[]−pr[])+ c2 ∗ rand() ∗ (gbest[]−pr[]) (12)

pr[]= v[]+pr[] (13)

where v [] and pr [] represent the guided particle’s fitness value and the initial state of the particle
(start by 0), respectively, while c1, c2 are learning factors equal to 2 [47,48].

The population is updated by rand () value for each iteration, and consequently gbest and
pbest are updated if rand () is greater than pbest. The process stops if the fitness function f (pbest)
is smaller than a prescribe value where the best threshold is obtained for a subband:

f (pbest)= pbest− p̃best (14)

where p̃best successor value of pbest for iteration.

3.4 Overview of the Proposed Algorithm
The proposed algorithm starts by input a given image to MHW transformation. MHW works

on detailed subbands instead of approximation subbands. Then, the subbands are reconstructed
while thresholding process is completed; particle swarm optimization is used for thresholding
details of subbands based on the fitness function. Briefly, the proposed algorithms can be
described as the following steps:

1. Step 1. Applies MHW (Eq. (5)) on an original image to get four subbands (approximation
LL—horizontal details LH—vertical details HL—diagonal details HH) as shown in Fig. 2.

2. Step 2. Applies MHW (Eq. (5)) again only on details of LH, HL, and HH as shown in
Fig. 3.

3. Step 3. Uses threshold (Eq. (9)) for nine subbands (HL1, LH1, HH1, HL2, LH2, HH2,
HL3, LH3, HH3).

4. Step 4. Finds input particles that consist of nine positions assigned to threshold values.
5. Step 5. Applies PSO (Eqs. (12) and (13)) on input particles for a subband.
6. Step 6. Updates the position and velocity (Eqs. (12)) until the result for the fitness function

leads to best value. The processes are stop if the fitness function f (pbest) (Eq. (14)) is
smaller than the prescribe value.

7. Step 7. Updates the rand () by pbest and select an arbitrary threshold from the
next subband.

8. Step 8. Repeats to reach 9th subband.
9. Step 9. Finds the best threshold pbest from the output nine thresholds

10. Step 10. Reconstructs the compressed image f ′ (x,y) (threshold matrix) assigned to the
original image f (x,y), where x and y are coordinates.

4 Performance Evaluation

After reconstructing the subbands (thresholds matrix) by applying the transformation
(Eq. (6)). We examine our algorithms performance. Various image similarity indexes were used like
PSNR, MSE, CR, and percentage difference in order to prove efficiency of the proposed method.
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4.1 Mean Square Error (MSE)
MSE measures the error between two images. Root mean squared error or RMSE calculated

using the square root of MSE. MSE can be evaluated for monochrome images by:

MSE=
√∑W−1

x=0
∑H−1

y=0 [f (x,y)− f ′ (x,y)]2

WH
(15)

where W and H are dimensions of a reconstruction matrix. f (x,y) and f ′ (x,y) represent original
and compressed image pixels, respectively. Compression methods aim to minimize the MSE.

4.2 Peak Signal to Noise Ratio (PSNR)
PSNR represents the ratio between original signal variance and reconstruction error variance.

PSNR is expressed in Decibel scale. The PSNR used as a measure of the reconstruction quality
gained during image compression process. Compression methods aim to maximize PSNR values.

PSNR= 10 ∗ log10
2552

MSE
(16)

Assuming pixels are represented using eight bits while 255 represents the maximum pixel value of
the image, PSNR values takes range between zero and infinity, infinity for perfect identical images
and 0 for images that have no commonality.

4.3 Peak Signal to Noise Ratio (PSNR)
CR is defined as the ratio between the original image size and compressed image size.

CR=
∑W−1

x=0
∑H−1

y=0 f (x,y)∑W−1
x=0

∑H−1
y=0 f ′ (x,y)

(17)

where f ′ (x,y) is compressed image, and f (x,y) represent original image.

4.4 Percentage Difference (PD)
The absolute value of the change in method results, divided by the average of them, then

multiplied by 100. it is calculated for finding percentage differences between method performances.

PD=
∑ |Δv|[∑

v
2

] × 100 (18)

5 Experiment Results and Discussion

In this section, various compressing methods are compared aiming to compress medical
images. We experimentally study the performance of these methods, where the performance is
assessed using a wide number of medical images of different sizes from MRI and CT types.
To run this experiment, five different grey-scale medical images were used: MRI for posterior
cruciate ligament (1280 × 1280), CT horizontal view for (937 × 937), CT vertical view for and
neck (800×600), X-ray image for chest (1060×1227), and MRI for circulatory system (024×610).
The test images are shown in Fig. 4. The images have been chosen carefully to help in distin-
guishing between the methods. The sharp edges in the posterior cruciate ligament image helps in
demonstrating how various methods compress edges, whereas the fine details in and neck image
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helps in demonstrating how various methods preserve image clarity. The grey gradations in chest
image provide insight into the amount of compressing that has been applied to images. We
have implemented our proposed algorithm on a machine has processor Intel Core i7-4510U-
CPU 2.00 GHz-internal memory 8.00 GB RAM. In the following subsections, the methods are
evaluated both quantitatively and qualitatively.

(a) (b) (c)

(d) (e)

Figure 4: Various testing images (a) horizontal view for the (937× 937), (b) vertical view for the
and neck (800× 600), (c) vertical view for the and neck (800× 600), (d) chest view (1060× 1227),
(e) circulatory system (1024× 610)

The images were compressed by existing Haar, Coiflet, Daubechies, Biorthogonal, Dmeyer,
Symlets, and the proposed algorithm. Then, the inverse transformation was used to con-
struct the final images (constructed image). All method outputs were compared quantitatively
and qualitatively.

5.1 Quantitative Evaluation
In this subsection, we use numerical indicators to evaluate the methods. Eqs. (16)–(18) were

exploited for MSE, PSNR and CR, respectively. Various existing wavelets for images compression
were compared. The results are computed by measuring the differences between original and
compressed images. Tab. 1 shows the obtained performance of the methods.
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Table 1: Results of using various transformations for the methods

Posterior cruciate ligament image CR PSNR MSE

Haar 2.5682 26.3769 2.82337
Coiflet 1.7829 40.0881 0.66357
Daubechies 2.0491 30.1964 0.68032
Biorthogonal 2.0239 32.0253 0.10366
Symlets 2.9024 35.0815 0.20952
Dmeyer 1.1393 30.2387 0.68699
The proposed algorithm (LH–HL–HH) 14.8163 48.6944 0.87829
The proposed algorithm (LL–LH–HL–HH) 24.0887 43.2569 1.1718

Human brain image CR PSNR MSE

Haar 2.6466 25.2462 2.17622
Coiflet 2.1025 36.6308 0.29933
Daubechies 2.3615 25.4495 0.22804
Biorthogonal 2.406 28.2878 0.43839
Symlets 2.905 29.9912 0.64893
Dmeyer 1.359 25.9514 0.2559
The proposed algorithm (LH–HL–HH) 6.5342 55.7653 0.17241
The proposed algorithm (LL–LH–HL–HH) 7.1814 45.5216 1.8236

Human brain and neck image CR PSNR MSE

Haar 2.9457 25.0598 2.08477
Coiflet 2.3498 34.6629 0.19026
Daubechies 2.6602 31.3664 0.89067
Biorthogonal 2.6526 32.5322 0.11649
Symlets 2.6041 26.2899 0.27673
Dmeyer 1.5495 31.5563 0.93049
The proposed algorithm (LH–HL–HH) 4.5104 48.697 0.87776
The proposed algorithm (LL–LH–HL–HH) 6.0169 47.7986 1.0795

Chest image CR PSNR MSE

Haar 2.5855 23.3738 1.41404
Coiflet 2.3429 37.1228 0.33524
Daubechies 2.6775 30.1408 0.67167
Biorthogonal 2.5292 30.4901 0.72792
Symlets 2.8059 32.1218 0.1059
Dmeyer 1.4911 30.1177 0.66811
The proposed algorithm (LH–HL–HH) 13.3651 61.0245 0.0228
The proposed algorithm (LL–LH–HL–HH) 21.9901 46.3964 0.6897

Circulatory system image CR PSNR MSE

Haar 2.4085 29.0192 5.18799
Coiflet 1.9801 35.5678 0.23434
Daubechies 2.2243 30.6045 0.74736
Biorthogonal 2.3521 30.8809 0.79647
Symlets 2.3521 27.706 0.383422
Dmeyer 1.2881 30.8763 0.795632
The proposed algorithm (LH–HL–HH) 5.6097 55.9211 0.16633
The proposed algorithm (LL–LH–HL–HH) 8.0881 44.6618 2.2228
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The proposed methods on the sub details (LH–HL–HH) and (LL–LH–HL–HH) gave better
results than the existing wavelets like Haar, Coiflet, Daubechies, Biorthogonal, Dmeyer, and
Symlets. The proposed methods are the best whether they are used for compressing MRI or
CT types.

Figure 5: The performance graph for the methods with various testing images

When we applied the proposed method (LH–HL–HH) to the MRI images posterior cruciate
ligament and circulatory system, the results overcame the second best obtained (Coiflet) results
by 17.67%, and 57.22%, respectively-from PSNR point of view. In case of the CT horizontal
view for human brain and human brain and neck images, the method’s performance significantly
exceeded (Coiflet) by 34.31%, and 28.81% respectively-from PSNR point of view. Moreover, when
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we applied the method to the X-ray image for the chest, it achieved 39.17% better than (Coiflet)-
from PSNR point of view.

Similarly, when we applied the proposed method (LL–LH–HL-HH) to the MRI images
posterior cruciate ligament and circulatory system, it overcame second best obtained results (Coiflet)
by 7.32%, and 20.36%, respectively-from PSNR point of view. In case of the CT horizontal view
for human brain and human brain and neck, the method’s performance exceeded (Coiflet) by 19.53%,
and 27.48% respectively-from PSNR point of view. Moreover, when we applied the method to the
X-ray image for the chest, it achieved 19.99% better than (Coiflet)-from PSNR point of view.

When we utilized Eq. (18) for finding the percentage differences among the method we noticed
that (LH–HL–HH) achieved generally better percentages than (LL–LH–HL–HH). We believed
that (LH–HL–HH) keeps the LL subband constant during the decompositions phase. A chart
graph shows results of the various methods when compressing the various images, in Fig. 5.

5.2 Qualitative Evaluation
In this subsection, a comparison between reconstructed images of the posterior cruciate lig-

ament using various transforms are shown in Fig. 6. Reconstructed images of the human brain
are shown in Fig. 7. Fig. 8 shows a comparison between reconstructed images of human brain
and neck. A comparison between reconstructed images of the chest using various transforms are
shown in Fig. 9. Fig. 10 shows comparisons between reconstructed images of circulatory system.

(a)(a1) (b) (c) (d)

(a)(a2) (b) (c) (d)

(e)

Figure 6: Reconstructed images of the MRI posterior cruciate ligament image. (a1) (a) Original
image, (b) Haar wavelet, (c) Coiflet wavelet, (d) Db wavelet, (e) Bior wavelet, (a2) (a) Symlets
wavelet, (b) Dmeyer wavelet, (c) Proposed 1 method 1, (d) Proposed method 2
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(a)(a1) (b) (c) (d)

(a)(a2) (b) (c) (d)

(e)

Figure 7: Reconstructed images of the CT horizontal view for the human brain image. (a1) (a)
Original image, (b) Haar wavelet, (c) Coiflet wavelet, (d) Daubechies wavelet, (e) Bior wavelet,
(a2) (a) Symlets wavelet, (b) Dmeyer wavelet, (c) Proposed method 1, (d) Proposed method 2

(a)(a1) (b) (c) (d)

(a)(a2) (b) (c) (d)

(e)

Figure 8: Reconstructed images of the CT vertical view for the and neck. (a1) (a) Original image,
(b) Haar wavelet, (c) Coiflet wavelet, (d) Daubechies wavelet, (e) Bior wavelet, (a2) (a) Symlets
wavelet, (b) Dmeyer wavelet, (c) Proposed method 1, (d) Proposed method 2
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(a)(a1) (b) (c) (d)

(a)(a2) (b) (c) (d)

(e)

Figure 9: Reconstructed images of the X-ray chest image. (a1) (a) Original image, (b) Haar
wavelet, (c) Coiflet wavelet, (d) Daubechies wavelet, (e) Bior wavelet, (a2) (a) Symlets wavelet, (b)
Dmeyer wavelet, (c) Proposed method 1, (d) Proposed method 2

(a)(a1) (b) (c) (d)

(a)(a2) (b) (c) (d)

(e)

Figure 10: Reconstructed images of the MRI Circulatory system image. (a1) (a) Original image,
(b) Haar wavelet, (c) Coiflet wavelet, (d) Daubechies wavelet, (e) Bior wavelet, (a2) (a) Symlets
wavelet, (b) dmeyer wavelet, (c) Proposed method 1, (d) Proposed method 2

6 Conclusion

In this paper, we have introduced a novel algorithm based on merging wavelets and PSO to
overcome the medical image compression problems like trade-off between CR and PSNR. Keeping
CR high affects PSNR, and vice versa. The algorithm has been designed to keep the PSNR as
high as possible using the PSO. It has been applied to challenging applications like MRI, CT,
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X-ray images in order to prove its efficiency. The output results were compared with the existing
wavelets techniques like Haar, Coiflet, Daubechies, Biorthogonal, Dmeyer and Symlets. Applying
the algorithm on (LH–HL–HH) keeps the LL subband constant during the decompositions, and
that assists in achieving high compression.

The performance of the proposed algorithm has showed superiority in all tests over the
existing wavelets even with high detailed images like circulatory system images, from PSNR point
of view. PSNR and CR values were increased for horizontal view for the CT (brain image) and
MRI image (posterior cruciate ligament), respectively. Compressing X-ray (chest view) overcame
best existing methods by six times.

The PSNR value is enhanced, when applied the proposed algorithm only on the detailed
subbands. That can give greater flexibility towards our target either to gain more cleared image
(high PSNR value) or saving more space (high CR value).

Future research, it is possible to integrate intelligence techniques with the proposed algorithm
to create a learning dictionary that accelerates and helps in the process of compressing images
of a convergent nature, which may lead to continuous improvement of the values of image
compression, purity and speed up the process as a whole.
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