
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014830

Article

Role of Fuzzy Approach towards Fault Detection for
Distributed Components

Yaser Hafeez1, Sadia Ali1, Nz Jhanjhi2, Mamoona Humayun3, Anand Nayyar4,5,* and Mehedi Masud6

1University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
2School of Computer Science and Engineering, SCE, Taylor’s University, Subang Jaya, Malaysia

3Department of Information systems, College of Computer and Information Sciences, Jouf University, Saudi Arabia
4Graduate School, Duy Tan University, Da Nang, 550000, Viet Nam

5Faculty of Information Technology, Duy Tan University, Da Nang, 550000, Viet Nam
6Department of Computer Science, College of Computers and Information Technology,

Taif University, Taif, 21944, Saudi Arabia
*Corresponding Author: Anand Nayyar. Email: anandnayyar@duytan.edu.vn

Received: 20 October 2020; Accepted: 12 December 2020

Abstract: Component-based software development is rapidly introducing
numerous new paradigms and possibilities to deliver highly customized soft-
ware in a distributed environment. Among other communication, teamwork,
and coordination problems in global software development, the detection of
faults is seen as the key challenge. Thus, there is a need to ensure the reliability
of component-based applications requirements. Distributed device detection
faults applied to tracked components from various sources and failed to
keep track of all the large number of components from different locations.
In this study, we propose an approach for fault detection from component-
based systems requirements using the fuzzy logic approach and historical
information during acceptance testing. This approach identified error-prone
components selection for test case extraction and for prioritization of test
cases to validate components in acceptance testing. For the evaluation,we used
empirical study, and results depicted that the proposed approach significantly
outperforms in component selection and acceptance testing. The comparison
to the conventional procedures, i.e., requirement criteria, and communication
coverage criteria without irrelevancy and redundancy successfully outperform
other procedures. Consequently, the F-measures of the proposed approach
define the accurate selection of components, and faults identification increases
in components using the proposed approach were higher (i.e., more than 80
percent) than requirement criteria, and code coverage criteria procedures (i.e.,
less than 80 percent), respectively. Similarly, the rate of fault detection in the
proposed approach increases, i.e., 92.80 compared to existing methods i.e.,
less than 80 percent. The proposed approach will provide a comprehensive
guideline and roadmap for practitioners and researchers.

Keywords: Component-based software; selection; acceptance testing;
fault detection

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014830

1980 CMC, 2021, vol.67, no.2

1 Introduction

Component-based software (CBS) is used in daily life everywhere viz: Multimedia, offices,
household items, etc., [1,2] and Internet of Things applications to improve medical, transportation,
military, etc. based sectors using advance artificial intelligent technology [3]. Due to complex-
ity, agility to deliver, and multiuser satisfaction; product development is divided into different
components and provide customization option to the similar multi-user of CBS according to
their preferences. Customization in CBS is the combination of different service arrangements to
facilitate a similar multi-user in one product, e.g., Microsoft Office, operating systems, mobile,
etc. Accordingly, the development team reuses most of the customized options from the previous
version or other CBS applications. The customized options for CBS selected from different sources
viz: it may be a built-in organization, it may be purchased from outsources, and used open sources
components [4,5]. Hence, the CBS components are mostly developed by a third party, and code
information is not available. CBS developed based on a component-based software engineering
approach, which is the reuse and encapsulation approach. Thus, CBS is the combination of loosely
coupled independent components with specific functionality interfaces [2,6–8]. Due to reusability,
encapsulating, and multi-sourcing of components; different issues were created during the integra-
tion of these components. As, if there are ambiguities and incompleteness among requirements of
CBS during selection and prioritization of components then it causes failure in the system. Com-
ponents requirements are the main important element for developing and managing components
from specification to verification [2,4,5,9,10]. Thus, ambiguities and incompleteness occur during
elicitation of requirements from different globally distributed stakeholders due to ignorance of the
multi-perspective of stakeholders. As, components for reuse available at different sources, i.e., in an
organization, outsource, open-source, and off-the-shelf components [4]. Therefore, the distributed
location of stakeholders and components creates challenges, for the reuse of components while a
selection from multiple distributed sources with the highest accurate integration to build a new
CBS application.

The development in a distributed environment fulfills the demand for multi-perspective stake-
holders according to modern technology. So, global software development (GSD) provides a
paradigm to build in a distributed environment, where resources, stakeholders, and project teams
are located at different locations all over the world [11,12]. Thus, GSD helped to share knowledge,
resources, skills, and decrease cost with an increase in user satisfaction and quality. Although,
there are some risks of communication, control, and coordination among stakeholders, project
teams, and development activities synchronization. Due to different times, customs, languages,
and geographical conditions [7,12]. Hence, language, distribution, and multi-perspective create
challenges of semantic, ambiguities, and incompletes highlighted by existing practices during
requirements specification and reuse of CBS requirements during development. Thus, in the case
of CBS, if components are not accurately identified due to distributed resources, stakeholders, and
distributed component sources, it affects CBS quality after integration and decreases user satis-
faction [8,9,12]. Subsequently, during validation of components requirements in acceptance testing
phases system fails and CBS cannot put into operation. This is due to the wrong identification
of components’ functionality and selection of components for identification.

Acceptance testing aims to ensure that integration of all components as a single system
meets all its functionalities without any error [6,8,12]. In acceptance testing of CBS development,
all the components are validated according to user satisfaction before handover to stakeholders.
Acceptance testing involves different methods, i.e., prioritization, selection, and minimization to
identified error-prone test cases. A large set of test cases are used to validate and most of them

CMC, 2021, vol.67, no.2 1981

reuse due to the reusability property of CBS [6,12]. Therefore, the required appropriate criteria
for error-prone test case identification to detect maximum faults and reduce execution time during
validation. Most of the existing practices and adopted prioritization methods do not reduce the
size of test cases, deleted test cases permanently, and not created irrelevancy among test cases.
So, prioritization method sort all test cases according to their error occurrence chances using
different criteria i.e., time redundancy and spatial redundancy in CBS which only deals with
hardware validation and ignore software validation. For software faults detection few practices
available based on prioritizing software test cases using prioritization criteria, i.e., requirements
dependency, code coverage, history-based, etc. History-based criteria are considered as important
and frequently adopted criteria for prioritization of test cases due to the use of historical informa-
tion [13,14]. Historical information consists of faults detection rate, execution rate, change in code,
change in test cases, requirements changes bug report, etc., from previous and similar domain
components. Thus, to reduce failure and increase the faults detection rate for acceptance testing
of CBS multi-perspective of user requirements. As requirements are the main element of every
software development, which depend on user demands to fulfill modern era business and daily life
requirements. There is a need for accurate and correct selection and prioritization of components
for reuse from distributed sources.

The main objective of this research work is to propose an intelligent approach for components
selection, and prioritization of test cases in GSD for acceptance testing of multi-perspective
stakeholders without any ambiguities, irrelevancy, redundancy, and communication issues. Thus,
for components selection, we used the fuzzy approach, and the fuzzy approach is the method of
providing logic and reasons for ambiguous requirements. Thus, the fuzzy approach is the best for
managing inconsistent and ambiguous component requirements and multi-criteria problems during
components selection [12,15]. Similarly, for acceptance testing, we used historical information,
i.e., frequently failed and reused components test cases for validating CBS. As the history-based
approach is the maintenance of CBS previous versions information from CBS specification to
validation process like requirements information, code information, test execution, etc. information
which helped in CBS reuse specifically in GSD development [13,14]. In this paper, our main
contributions are as follow:

• We present components selection and acceptance testing proposed approach using fuzzy
methods and historical information criteria on multi-perspective stakeholders and less
involvement of users in GSD.

• The fuzzy method used for resolving components selection and prioritization to resolve
semantic and term mismatch issues during reusability of CBS due to diverse stakeholder
perspective intelligently. While for acceptance testing defined history-based test case priori-
tization criteria for higher user components software acceptance.

• Therefore, our approach resolves the drawback of CBS selection and acceptance testing.
The proposed approach was evaluated using an experimental study on industrial projects
of GSD for demonstrating our proposed approach.

• The proposed approach compared with existing conventional procedures and results
depicted significant improvement in components selection and acceptance testing in GSD.

• And the study provides an empirical suggestion for future investigation in the domain of
CBS development and validation.

We organized the remaining paper as follows: Section 2 describes relevant studies review and
critical analysis of literature to identified prevailing challenges. Then in Section 3, we described
our proposed approach procedure to mitigate challenges. We evaluated our approach on industrial

1982 CMC, 2021, vol.67, no.2

projects in Section 4 to illustrate their results and discussion. Finally, we conclude our research
findings and describe future research in Section 5.

2 Related Work

In this section, we provide background about GSD and CBS development and current chal-
lenges in existing studies we describe some existing relevant studies. Several studies mentioned
GSD challenges and presented different solutions in the existing literature. Therefore, Shameem
et al. [12] presented a prioritization process with success factors taxonomy in GSD for scaling
agile methodology and in [16] provide challenges of agile method development in GSD taxo-
nomical classification. Similarly, in author presented the current state of practices in GSD during
agile method scaling. The impact of changes in requirements during GSD product development
described in [17] and in [18] provided a roadmap to improve software development in GSD.
While in [19] authors supported the concept of reuse requirements automatically in GSD. All
these existing studies [20–24] mentioned that communication, team collaboration, requirements
management and verification, languages and cultural differences, temporal and geographical dif-
ferences, control, scalability, complexity, and coordination are the main challenges of product
development. As in GSD, most product development for complex and multi-perspective products
consists of different reusable components. Hence, management of components for reusability
of components for accurate and appropriate selection difficult process. Subsequently, challenges,
trends, and opportunities to manage CBS development are highlighted and described by some
existing studies [2,4,7–10]. Therefore, in [2] identified that accurate requirement selection improves
architecture of CBS, [4] presented different sources components selection for reusability and chal-
lenges of mismatch, ambiguity, and incomplete functionality highlighted, and [9] identified chal-
lenges relevant to component requirements mismatch issues during CBS development. Similarly,
Nikolaychuk et al. [25] proposed a knowledge-based platform for CBD architecture of components
management and implementation of the main CBS functionalities. The CBS existing methods and
practices highlighted components development and reused challenges in GSD requirements term
mismatch during reuse, selection inconsistency, and ambiguities during integrating components of
CBS [10,26–28].

For faults detection different techniques proposed to detect maximum faults i.e., [13–15,22]
etc. Thus, Aman et al. [14] and Mohd-Shafie et al. [29] presented a prioritization technique for
fault detection based on historical information and model-based methods respectively. Similarly,
component-based faults detection enhancement different techniques presented in existing literature,
as in [30] proposed method for prioritizing test cases for cost-effective optimization using a search-
based algorithm and in [31] provided solution optimizing test cases of configurable components
using a weighted search algorithm. The [32] provided a solution for reuse components reliability
of CBS and in [4,33] provide the solution for validating components of CBS at runtime. These
studies and other studies [34–37] elaborate that CBS testing is a complex and costly process
and not efficiently detected faults in CBS. Additionally, in literature different artificial intelligent
based methods proposed to manage and detect faults using machine learning [25,38,39] and
fuzzy approach [15,40,41] but still need to improve component selection and validation during
CBS development.

Hence, few studies describe challenges of CBS management and validation in GSD environ-
ment. Thus, Ali et al. [5] presented a framework to resolve change in CBS functionality verification
in the cloud environment, and [8] described acceptance testing for maximum faults detection of
cloud-based CBS. The author of [22] presented a method to analyze modification impact analysis

CMC, 2021, vol.67, no.2 1983

in-service orientation architecture using test case prioritization for faults detection. The existing
studies described that with an increase in software development using distributed environment
using CBS development with an increase in benefits, some challenges of CBS management and
validation also raised in GSD [42]. The authors [43] identified those faulty components of CBS
that affect the whole system and utilized all available distributed resources and proposed an
optimistic monitoring method to identify faulty components in a specific virtual machine. The
study [8] provided a fault detection method for CBS requirements acceptance testing in a cloud
computing environment. In [7], authors access systematically factors that affect CBS development
in GSD. The study [44] provided automated classification and prioritization test cases for product
line families. These existing studies [5,8,45–49] defined different challenges, i.e., faults detection,
and faults localization according to customers’ satisfaction.

Table 1: Compassion of literature

Parameters [24] [47] [9] [48] [44] [42] [49] [12]

Coordination and control ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • ◦ ◦ • • •
Lack of semantics • ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
Ambiguities • • • • • • • • • • ◦ ◦ • ◦ ◦ • • • • ◦ ◦ • ◦ ◦
Inconsistency • • • • ◦ ◦ • • • • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦
Components requirements identification • • • • ◦ ◦ • • • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦
Term mismatch • ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Components requirements Prioritization • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦
Components requirements selection ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦
Components requirements elicitation • • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦
Components testing ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Lack of Artificial intelligent method ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Faults detection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
Highlighted= •• • Partially Highlighted= •◦ ◦ Not Highlighted= ◦◦ ◦

From existing literature, we analyzed that during reused and integration of components in
GSD its complex to be identified, selection and validate components of CBS in GSD due to
lack of semantic and term mismatch, diverse perspective of multi-stakeholders, lack communica-
tion among stakeholders and project teams, inconsistency, ambiguities, and improper validation
activities [7,9,19,50,51]. Comparative analysis of all these existing literatures depicted in Tab. 1. If
exiting research work mention any of challenges then recognized as highlighted, and if not then
used as not highlighted. In case if describe or highlighted these issues different words and contexts
then recognized as partially highlighted. Consequently, we concluded for CBS development in
GSD following outcomes of existing literature:

• Communication breakdown among components, stakeholders, and development team
required to improve for detecting accurate components requirements in GSD.

• Components accurate and correct selection and priority after components require-
ment elicitation.

• Faults identification methods are required to improve CBS testing using histori-
cal information.

• Components requirements required higher user acceptance to validate CBS during GSD.

1984 CMC, 2021, vol.67, no.2

Therefore, we proposed an approach for enhancing components selection acceptance testing
activities of CBS using the fuzzy approach and historical information in GSD.

3 Proposed Approach

In this section, we propose an approach called a fuzzy approach and historical information
(FAHI) approach for CBS. The FAHI approach divided into two main phases as depicted in
Fig. 1. The first phase is components selection and priority, which is initiated after the changes
request occurs in components requirements from stakeholders and components prioritize using
fuzzy approach. Then the second phase is the acceptance testing to verify the changes of
requirements in CBS.

Figure 1: Fuzzy approach and historical information approach

CMC, 2021, vol.67, no.2 1985

3.1 Components Selection and Priority
The fuzzy approach was adopted to mitigate the challenges of handling changing component

requirements and validation of these requirements by accurate selection of components. We have
applied the preference relationship on α-level weights to handle multi-criteria decision making for
changing components requirements in the pre-development phase. We also have applied linguistic
variable set theory in the post-development phase, i.e., handover in GSE. The fuzzy concepts
through fuzzy set theory, a linguistic theory of variables, preferencerelation(PR), and fuzzy triangu-
lar numbers. Set theory is defined as: the universe of discourse Ud , a fuzzy set S is characterized
by subset function f S(d), f S : Ud → [0,1] and the subset function relates with every subset member
of d of Ud , where the number of f S(d) in the interval [0,1] representing subset member ranking
of d in S.

A linguistic theory of variables is defined as variables with values in form of words or full
sentences in natural or machine language [41]. Values of linguistic variable could be in form of
responses like; poor, fair, good, average, etc. Fuzzy numbers can be used in the decision-making
process and are represented in many forms e.g., Gaussian, Triangular Sigmoid, or Trapezoidal. But
most commonly used are triangular fuzzy numbers (TFN) due to ease of use in both conceptual
simplicity and complexity [12]. TFN is defined in Eq. (1):

μs (d)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i− l)
(j− l)

, l ≤ i≤ j

(k− i)
(k− j)

, j ≤ i≤ k

0 otherwise

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

Let there be a fuzzy universal set comprising all subsets which are represented on a real line
“R”. Then there exists a piecewise relationship of form, linear function μs, where “s” could be
convex or normal fuzzy subset members. TFN is then denoted as S= (l, j,k). Preference relation
is helpful in the decision-making stage. It is used when group aggregate responses are computed
based on individual variable responses. Preference relationship is defined as [16]; PR on R is
member subset R2 relationship function fPR(S,X −US,X € R2), here fPR(S,X)represent the range
of preference of S over X.

(1) PR is reciprocal if, fPR(S,X)= 1− fPR(X ,S),S,X €R2
(2) PR is transitive if, fPR(S,X)≥0.5 and fPR(X ,Y)≥ 0.5→ fPR(S,Y)≥ 0.5−US,X ,Y€R2.

In this phase after requirement elicitation project team identify the requirement of com-
ponents and stakeholders of the CBS project. Then updated in the team server foundation
repository (TFS). In TFS all the stakeholders and project team members communicated and
coordinated one to one, synced activities, and monitor projects at every stage. Stakeholders are
primary and secondary, primary stakeholders are the ones having direct concern, e.g., decision-
makers, financer, beneficiary, etc., while secondary stakeholders are the testers, developers and
operators, etc. requirement elicitor is responsible for gathering requirements and objective from
primary stakeholders. Identified requirements are segregated into functional and non-functional
requirements and constructed based on AND/OR graph. If associated non-functional and sub-
requirements are fulfilled then it is AND decomposition and if non-functional is not dependent
on any functional requirement then it is OR decomposition. Let the decomposed requirements be

1986 CMC, 2021, vol.67, no.2

R1,R2,R3 . . .Rm. After this extract components and segregate these components into functional
and non-functional components. Then applied the following steps:

3.1.1 Apply MCDM Process and Collect Decision Makers Fuzzy Assessment
Let “N” number of decision-makers (DM) associated with requirement phase (pre-

development) for extracting requirements from the requirement gathering stage. Fuzzy assessment
of decision-makers is collected according to the assigned importance to each requirement. The
importance is given in form of linguistic variable theory. As knowledge and roles differ therefore
views also differ.

3.1.2 Aggregate Fuzzy Performance Rating and Weights
Performance rating is done according to weights and the performance matrix is formed based

on decision-makers’ responses. Scalar multiplication and extended addition are applied to generate
the matrix in which performance fuzzy ratings are stored. Performance Fuzzy Rating using Eq. (2)

and TFN is formed using Pab=
(
1
n

)⊙
P

1
ab

⊕∑P
n
ab

P
1
ab
.

Based on which weights are calculated to form the comprehensive vector V. Decision matrix
(Dm) stores comprehensive weights using Dm(ab) =Pab�Pb. This is a fuzzy subset of requirements
of the form [15] as shown in Eq. (2):

λ1ab,λ2ab,λ3ab,Dm(ab),Δ1ab,Δ2ab,Δ3ab (2)

where,

λ1ab= (V2b−V1b)(P2ab−P1ab),λ2ab=V1b (P2ab−P1ab)+P1ab (V2b−V1b) ,λ3ab=V1bP1ab,

Δ1ab= (V3b−V2b)(P3ab−P2ab),Δ2ab=V3ab (P3ab−P2ab)+P3ab (V3b−V2b) ,Δ3ab=V3abP3ab

Dab=V2bP2ab

3.1.3 Define Set Theory for Both Functional and Non-Functional Requirements:
Each requirement is handled as a fuzzy variable number Sa,a= 1,2,3,n by pre-defined

criteria C as shown in Eq. (3).

Sa= 1
C

� (Dm(a1) ⊕Dm(a2) ⊕ · · ·⊕Dm(aC) (3)

Parabolic function is defined as follows in Eq. (4) for the above criteria

λ1a,λ2a,λ3a,Sa,Δ1a,Δ2a,Δ3a (4)

where,

λia= 1
C

C∑
b=1

λi(ab), i= 1, 2, 3 . . . , Δia = 1
C

C∑
b=1

λi(ab), i= 1, 2, 3 . . . , Sa= 1
C

C∑
b=1

Dm(ab)

3.1.4 Calculate Preference Relationship (PR)
Let preference relationship be PR

if (λ3a−Δ3)≤ 0, (Δ3a−λ3)≥ Sa ≥ S, then PRa=PRa(1)

else if (λ3a−Δ3)≤ 0, (Δ3a−λ3) > 0, Sa ≤ S then PRa=PRb(0)

CMC, 2021, vol.67, no.2 1987

else if (λ3a−Δ3)= 0, (Δ3a−λ3)= 0, Sa= S then PRa=PRb(0.5)

3.1.5 Select Requirement with Highest Preference Relationship Values
Arrange all the preference relationship values from the decision matrix and sort them

in ascending or descending order. Choose the maximum values and shift values as the
best alternative.

3.2 Acceptance Testing
In this phase, we extracted test cases of high priority selected components for verifying

changes in CBS. The define priority criteria for test case execution to identify maximum faults as
soon as possible without irrelevancy and redundancy. For priority of test cases (TC) acceptance,
we defined two criteria i.e., frequently reuse and frequently failed. As literature highlighted that
multi-criteria improve faults rate and helpful in breaking ties among similar test frequencies.
After sorting TC, executing high priority TC to identify maximum faults as earlier as possible.
F-measure [5,52] used to verify that selected components’ selection accuracy and after bug identi-
fication verify the correctness of faults identification rate. For computing faults identification rate
used average percentage of faults detection (APFD) [5,15,52].

4 Results and Discussion

In this section, we defined the steps of two experiments performed for FAHI evaluation
and described experiment results to investigate and compared FAHI approach effectiveness. The
experiment has to approve that FAHI increases faults detection rate with accurate selection and
prioritization of components using fuzzy approach during acceptance testing of CBS requirements.
Therefore, the complete experiment design is described in Fig. 2. We design two experiments and
both experiments consist of pre and post-test on four different CBS projects.

Figure 2: Design overview

The pre-test of both experiments evaluated the current knowledge of participants for CBS
development. While in post-test steps after providing training of FAHI approach to EG1 and
EG2 and enhanced existing knowledge of CG1 and CG2 to evaluate the effectiveness of FAHI
approach. For the effectiveness of the FAHI approach, we compared it with conventional

1988 CMC, 2021, vol.67, no.2

procedures (CP) i.e., requirement coverage criteria (RCC), and communication coverage criteria
(CCC). The FAHI approach implemented for component selection using fuzzy logic and TC
priority for acceptance testing used historical information. RCC is used components selection
and TC priorities based on highest requirements coverage which means those components which
cover maximum requirements functionality selected for validation and used their TC for error
identification. Subsequently, CCC used components interaction or communication with each other,
which means if one component communicates with maximum components then have high chances
of selection and error detection. The CP identifies and validates changes with requirements and
code coverage criteria for increasing faults detection rate (FDR). Therefore, we select four real-
world projects as dataset and 64 participants of software technologies company as described in
Tab. 2. These projects are CBS and consist of different reusable components, historical informa-
tion, and versions, which are required for experiment conduction. The selected projects save in the
organization repository and repository linked to all offices at distributed locations.

Table 2: Projects detail

Detail Project 1 Project 2 Project 3 Project 4

Constraints 6 8 7 4
Features 35 54 32 18
Requirements 52 68 39 37
Test cases 1110 2450 1450 940
Faults 21 35 18 12
Versions 6 13 4 3

Project 1 (P1), P2, P3, and P4 (i.e., Car alarm, biometric system, health care system, and
online management system respectively) are the CBS applications and the project team has
been located at different sites. The project team consists of Stakeholders (St), project manager
(PM), team leaders (TL), requirement engineer (RE), components designer (Cd), developers (Ds),
and quality engineer (QE). The data collection based on a questionnaire and consists of dif-
ferent questions based on some parameters identified from literature, i.e., component selection
improves, easy to adopt, coordination and control improves, Communication breakdown among
stakeholders improves, the accuracy of component selection and prioritization increases, faults
detection increase, historical information helps to increase faults identification, user requirements
important for acceptance testing and fuzzy approach important during component selection and
prioritization. We implemented the FAHI approach and other procedures for comparison in a
software house. The employees of the organization were agreed to implement these procedures
for CBS development in GSD to investigate user satisfaction level (SL) and quality of product
with accurate component selection and acceptance testing. Therefore, for experiment conduction,
we divided participants into an experiment or treatment group (EG) to implement FAHI and a
control group (CG) to implement other procedures viz RCC and CCC. The participants in EG
is 30 and in CG 34 performed both experiments. In the first experiment we validate P1 and P2,
these are desktop applications while in the second experiment we changed the type of project and
include web-based CBS, i.e., P3 and P4. The change in type and size of projects helped that FAHI
approach useful in different scenarios. The experiments started after the initiation of changes and
components selection process conducted with all procedures viz: FAHI approach, RCC, and CCC.

CMC, 2021, vol.67, no.2 1989

The APFD was used to verify that FAHI (i.e., lies between 90 percent to 100 percent)
approach identified faults earlies as compared to RCC and CCC (i.e., lies between 80 percent to
90 percent respectively). This means that the FAHI approach has identified faults as earlier than
RCC and CCC procedures. Similarly, in Tab. 3 we compared APFD value with existing research
APFD values to define the effectiveness and efficiency of the proposed FAHI approach. Therefore,
in Tab. 3 we explained the comparison of APFD and analysis proved that the FAHI approach
has a maximum fault detection rate than existing studies.

Table 3: APFD values comparison

Approaches FAHI [13] [15]

APFD 92.80 79.44 75.00

Hereafter, we verified the accuracy of selected components using F-measure. F-measure is
a combination of precision and recall to measure the accuracy of procedures effectiveness. The
results of F-measures for all procedures are depicted in Fig. 3. The x-axis and y-axis depicted the
procedures results and their values respectively. Hence, Fig. 3 results depicted that FAHI approach
values more than 85 percent and other procedures both RCC and CCC values less than 85
percent. After components selection accuracy, we performed further steps of experiments to select
and prioritize TC. Similarly, Fig. 3 depicted results of all approaches accuracy values of priorities
of TC for faults identification accuracy. The x-axis depicted the procedures results against each
project and the y-axis describes the priority accuracy values of all procedures.

Figure 3: F-measure for components selection and F-measure of TC

For data collection, we used questioner and involved all participants in fulfilling the question-
naire. And results of all project team participants SL of Experiment 1 depicted in Fig. 4, which
is more than 65 percent in the case of the FAHI approach and less than 65 percent in other cases
like CCC and RCC. Similarly, SL of participants after Experiment 2 more than 70 percent using
the FAHI approach and less than 50 percent in RCC and CCC cases as depicted in Fig. 4.

1990 CMC, 2021, vol.67, no.2

Figure 4: Experiments 1 and 2 SL

Subsequently, to validate questionnaire results used statistical analysis using SPSS 23 software.
For statistical analysis, we used two tests i.e., descriptive and hypothesis tests. These tests analysis
used for validating procedures effectiveness using three null hypotheses as described in Fig. 2.
The results of hypothesis and descriptive testing are described in Tab. 4. The results depicted that
there is a significant difference between mean and standard deviation (SD) of all procedures while
implementing changes in all projects. The p-value, i.e., 0.00 is less than the significance level i.e.,
0.05, thus we rejected null hypotheses and alternative hypotheses. Additionally, for evaluating and
verifying the FAHI approach for a maximum number of faults identification as compared to RCC
and CCC procedures. The FDR results of both experiments for all projects are depicted in Figs. 5
and 6. The x-axis of all projects describes the FDR percentage and y-axis TC execution.

Table 4: Statistical analysis of experiments

Procedure Projects Mean SD P-value Mean SD P-value

Pre-test Post-test
FAHI 1 52.80 0.238 0.000 82.80 0.383 0.000

2 51.80 0.271 0.000 81.80 0.378 0.000
3 55.40 0.279 0.000 91.40 0.392 0.000
4 49.80 0.167 0.000 89.80 0.383 0.000

RCC 1 45.40 0.131 0.001 64.30 0.267 0.000
2 48.60 0.167 0.000 68.40 0.273 0.000
3 47.00 0.165 0.001 71.00 0.285 0.000
4 46.50 0.164 0.000 69.50 0.279 0.000

CCC 1 38.91 0.130 0.000 58.19 0.232 0.000
2 35.29 0.134 0.000 63.91 0.235 0.000
3 44.45 0.142 0.000 54.15 0.231 0.000
4 48.51 0.138 0.001 60.51 0.241 0.000

CMC, 2021, vol.67, no.2 1991

The first highest priority TC of FAHI approach executed and identified more than 90 percent
faults during P1 execution as depicted in Fig. 5. While the RCC approach identified 40 percent
faults in the first TC execution and CCC identified 20 percent faults in the first TC execution.
Therefore, as compared to the second and thirds execution of TC with the FAHI approach
there is less need to execute other test cases because maximum faults are identified without any
ambiguities, irrelevancy, and redundancy. If these faults are removed earlier then testing effort
reduces and user requirements acceptance increases with higher product quality and utilization
of fewer resources. Subsequently, in other cases the more utilization of development resources
and less productivity due to irrelevant test selection, redundant test priority, and redundant faults
detection. As faults identification not stable and changed in every execution of RCC and CCC
TC. This reduces FDR and increases faults redundancy.

Figure 5: FDR for P1 and P2

For example, if 2 faults out of 5 identified in the first execution of TC and 3 identified in the
second TC execution. These three faults may have only identified 1 new fault and two old faults
which were identified during the first TC execution. This results in redundant faults and increases
efforts with less productivity. Therefore, it proves that FAHI significantly performed during the
development of different CBS types of projects irrespective of size, type, and development location
without any coordination, time zone, and limited resources issues. Hence, in other P2, P3, and
P4 similar results were identified which conclude while describing results of P1. It means that the
FAHI approach identifies in all projects after first execution more than 90 percent faults without
any redundancy or repetitions in faults and decrease while executing TC further. Similarly, RCC
and CCC identified less than 50 percent faults while first TC execution and get similar faults in
further TC execution. Which increase time and efforts of the project team and ultimately impact
software quality due to a decrease in user acceptance rate as depicted in Figs. 5 and 6.

At last, all results concluded that FAHI approach resolves components selection and val-
idation after changes to increase user satisfaction and requirements in the global software
development environment. And FAHI approach identified maximum faults as earlier as possible
in comparison to RCC and CCC procedures. The FAHI approach outperform from existing
practices, i.e., [13,15,22,30,31,34] in terms of improving faults detection rate using fuzzy approach.

1992 CMC, 2021, vol.67, no.2

Figure 6: FDR for P3 and P4

Therefore, after changes in component functionality, there are chances of term mismatch
during the selection of the specifications of multi-perspective stakeholder components during
function and non-functional components functionality. As most of the changes were initiated from
the market and stakeholders’ reviews and feedback in natural language. Therefore, for actual and
sematic based component functionality extraction required aspect based sentimental analysis to
improve validity and increase faults detection of CBS after changes.

Hence, for experimental assessment, numerous threats arise disagreement among theoretical
and practical rationality of literature and experimental results. Thus, it requires repetition in
research to accept or refute findings. The basic main four threats are: internal validity (IV),
external validity (EV), construct validity (CV), and reliability validity (RV) [13,52,53].

IV is related to factor identification and critical analysis regarding components selection and
testing. To report IV threat, different resources to search relevant existing industrial and practical
studies to develop a theory for critical analysis of studies and challenges of CBS in GSD.
And another threat relevant to IV is the unbiased and rationality of data collection during the
empirical evaluation of FAHI we used a questionnaire and statistical analysis for validation of the
questionnaire. EV concerns to FAHI practical applicability and outcomes in industrial projects.
Therefore, we used four industrial projects of different sizes and functionality in distributed
organizations for FAHI approach applicability and compared results with conventional procedures
for generalization analysis.

The relations between the different concepts and reflections are considered by CV. This
includes the use of various metrics to determine the validity of the various component selection
activities and acceptance testing criteria using FAHI as compared to other procedures. After
introducing FAHI and other procedures, the CV threat relevant to the identification of accurate
satisfaction level of participants. Therefore, we mitigate this threat we used questioner based on
factors identified from the literature and used multi-project for evaluation using two different pre
and post-test experiments. Later, we compared statistical results of pre and post-tests observation
for reducing conflicts and provide guidelines to researchers regarding this research work validity.
RV relates to the associations between action and consequence. This can be mitigated via a

CMC, 2021, vol.67, no.2 1993

rigorous practical assessment of the various decisions employed for FAHI authentication. Thus,
to mitigate RV threat all authors participated in evaluation for data collection and counteractions
on analysis of results with a multi-perspective of stakeholders and project team.

5 Conclusion and Future Work

In this research work, we proposed a FAHI approach to enhance the selection of components
and acceptance testing after requirement change for component-based product production in GSD.
This reduces component selection, higher user acceptance, and project team coordination in GSD
using fuzzy logic and historical information. The fuzzy logic method helped in the identification
of high priority components for selection and historical information, i.e., frequently reuse and
change components information helped to prioritized test cases. Thus, fuzzy logic also reduces
irrelevancy during the selection of components and test cases while historical information helped
in reducing redundancy in test cases and identified faults. For effectiveness analysis of the pro-
posed FAHI approach, an experimental study was conducted with statistical. The results show that
the proposed FAHI approach has a significant mean difference and higher satisfaction, i.e., greater
than 80 percent as compared to other procedures viz: RCC and CCC, i.e., less than 80 percent
in CBS. Thus, the proposed FAHI approach enhanced the selection of CBS components during
product development and increase detection of faults rate distributed environment. Therefore, the
FAHI approach provides a roadmap for researchers and industrialists in the domain of CBS
user acceptance testing activities. In future work, we will be extended our proposed framework
in a cloud computing environment to resolve specification, prioritization, and testing issues of
CBS. And mitigate the problem of quality analysis in the embedded components development
environment after continuous modification of CBS.

Funding Statement: Taif University Researchers Supporting Project No. (TURSP-2020/10), Taif
University, Taif, Saudi Arabia.

Conflicts of Interest: There are no conflicts of interest to report regarding the present study.

References
[1] I. Gambo, R. Ikono, P. Achimugu and A. Soriyan, “An integrated framework for prioritizing soft-

ware specifications in requirements engineering,” International Journal of Software Engineering and Its
Applications, vol. 12, no. 1, pp. 33–46, 2018.

[2] B. Imam Ya’u and M. Nura Yusuf, “Building software component architecture directly from user
requirements,” International Journal of Engineering and Computer Science, vol. 7, no. 2, pp. 23557–
23566, 2018.

[3] V. Singhal, S. S. Jain, D. Anand, A. Singh, S. Verma et al., “Artificial intelligence enabled road vehicle-
train collision risk assessment framework for unmanned railway level crossings,” IEEE Access, vol. 8,
pp. 113790–113806, 2020.

[4] M. Borg, P. Chatzipetrou, K. Wnuk, E. Alégroth, T. Gorschek et al., “Selecting component sourcing
options: A survey of software engineering’s broader make-or-buy decisions,” Information and Software
Technology, vol. 112, no. 8, pp. 18–34, 2019.

[5] S. Ali, Y. Hafeez, N. Z. Jhanjhi, M. Humayun, M. Imran et al., “Towards pattern-based change ver-
ification framework for cloud-enabled healthcare component-based,” IEEE Access, vol. 8, pp. 148007–
148020, 2020.

[6] S. Y. Shin, S. Nejati, M. Sabetzadeh, L. C. Briand and F. Zimmer, “Test case prioritization for accep-
tance testing of cyber physical systems: A multi-objective search-based approach,” in Proc. of the 27th
ACM SIGSOFT Int. Sym. on Software Testing and Analysis, Amsterdam, Netherlands, pp. 49–60, 2018.

1994 CMC, 2021, vol.67, no.2

[7] M. J. Khan and S. Mahmood, “Assessing the determinants of adopting component-based development
in a global context: A client-vendor analysis,” IEEE Access, vol. 6, pp. 79060–79073, 2018.

[8] M. Smara, M. Aliouat, A. S. K. Pathan and Z. Aliouat, “Acceptance test for fault detection in
component-based cloud computing and systems,” Future Generation Computer Systems, vol. 70, no. 1,
pp. 74–93, 2017.

[9] C. Ayala, A. Nguyen-Duc, X. Franch, M. Höst, R. Conradi et al., “System requirements-OSS compo-
nents: Matching and mismatch resolution practices–An empirical study,” Empirical SoftwareEngineering,
vol. 23, no. 6, pp. 3073–3128, 2018.

[10] B. Graics, V. Molnár, A. Vörös, I. Majzik and D. Varró, “Mixed-semantics composition of statecharts
for the component-based design of reactive systems,” Software and Systems Modeling, vol. 19, no. 6,
pp. 1483–1517, 2020.

[11] M. Shameem, B. Chandra, C. Kumar and A. A. Khan, “Impact of requirements volatility and flexible
management on GSD project success: A study based on the dimensions of requirements volatility,”
International Journal of Agile Systems and Management, vol. 12, no. 3, pp. 199–227, 2019.

[12] M. Shameem, A. A. Khan, M. G. Hasan and M. A. Akbar, “Analytic hierarchy process based priori-
tisation and taxonomy of success factors for scaling agile methods in global software development,”
IET Software, vol. 14, no. 4, pp. 389–401, 2020.

[13] M. A. Hasan, M. A. Rahman and M. S. Siddik, “Test case prioritization based on dissimilarity
clustering using historical data analysis,” in Int. Conf. on Information, Communication and Computing
Technology, Singapore, Springer, pp. 269–281, 2017.

[14] H. Aman, T. Nakano, H. Ogasawara and M. Kawahara, “A topic model and test history-based test
case recommendation method for regression testing,” in Int. Conf. on Software Testing, Verification and
Validation Workshops, Vasteras, pp. 392–397, 2018.

[15] C. Hettiarachchi and H. Do, “A systematic requirements and risks-based test case prioritization using
a fuzzy expert system,” in Proc. 19th IEEE Int. Conf. on Software Quality, Reliability and Security, Sofia,
Bulgaria, pp. 374–385, 2019.

[16] M. Shameem, R. R. Kumar, M. Nadeem and A. A. Khan, “Taxonomical classification of barriers
for scaling agile methods in global software development environment using fuzzy analytic hierarchy
process,” Applied Soft Computing, vol. 90, no. 5, 106122, 2020.

[17] R. Sinha, M. Shameem and C. Kumar, “SWOT: Strength, weaknesses, opportunities, and threats for
scaling agile methods in global software development,” in Proc. of the 13th Innovations in Software
Engineering Conf. on Formerly Known as India Software Engineering Conf., Jabalpur India, pp. 1–10, 2020.

[18] A. A. Khan, J. Keung, M. Niazi, S. Hussain and M. Shameem, “GSEPIM: A roadmap for soft-
ware process assessment and improvement in the domain of global software development,” Journal of
software: Evolution and Process, vol. 31, no. 1, e1988, 2019.

[19] J. M. Carrillo de Gea, J. D. Nicolás, J. L. Fernández-Alemán and A. Toval, “Automated support
for reuse-based requirements engineering in global software engineering: Automated support for reuse-
based RE in global software engineering,” Journal of Software: Evolution and Process, vol. 29, no. 8,
e1873, 2017.

[20] A. A. Alsanad, A. Chikh and A. Mirza, “A domain ontology for software requirements change
management in global software development environment,” IEEEAccess, vol. 7, pp. 49352–49361, 2019.

[21] T. Kamal, Q. Zhang and M. A. Akbar, “Toward successful agile requirements change management
process in global software development: A client-vendor analysis,” IETSoftware, vol. 14, no. 3, pp. 265–
274, 2020.

[22] H. Wang, M. Yang, L. Jiang, J. Xing, Q. Yang et al., “Test case prioritization for service-oriented
workflow applications: A perspective of modification impact analysis,” IEEEAccess, vol. 8, pp. 101260–
101273, 2020.

[23] E. H. Trainer and D. F. Redmiles, “Bridging the gap between awareness and trust in globally
distributed software teams,” Journal of Systems and Software, vol. 144, no. 10, pp. 328–341, 2018.

CMC, 2021, vol.67, no.2 1995

[24] C. Burnay, S. Bouraga, J. Gillain and I. J. Jureta, “What lies behind requirements? A quality assessment
of statement grounds in requirements elicitation,” Software Quality Journal, vol. 8, pp. 1–29, 2020.

[25] O. A. Nikolaychuk, A. I. Pavlov and A. B. Stolbov, “The software platform architecture for the
component-oriented development of knowledge-based systems,” in 2018 41st Int. Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics, Opatija, pp. 1064–1069, 2018.

[26] M. Arias, A. Buccella and A. Cechich, “A framework for managing requirements of software product
lines,” Electronic Notes in Theoretical Computer Science, vol. 339, pp. 5–20, 2018.

[27] M. Chakraborty and N. Chaki, “A new framework for configuration management and compliance
checking for component-based software development,” in Advanced Computing and Systems for Security.
New Delhi: Springer, pp. 173–188, 2016.

[28] V. D. Moreno, G. Génova, E. Parra and A. Fraga, “Application of machine learning techniques to the
flexible assessment and improvement of requirements quality,” Software Quality Journal, vol. 56, no. 3,
pp. 1–30, 2020.

[29] M. L. Mohd-Shafie, W. M. N. Wan-Kadir, M. Khatibsyarbini and M. A. Isa, “Model-based test case
prioritization using selective and even-spread count-based methods with scrutinized ordering criterion,”
PLoS One, vol. 15, no. 2, e0229312, 2020.

[30] A. Arrieta, S. Wang, G. Sagardui and L. Etxeberria, “Search-based test case prioritization for
simulation-based testing of cyber-physical system product lines,” Journal of Systems and Software,
vol. 149, no. 3, pp. 1–34, 2019.

[31] S. Y. Shin, K. Chaouch, S. Nejati, M. Sabetzadeh, L. C. Briand et al., “Uncertainty-aware specifica-
tion and analysis for hardware-in-the-loop testing of cyber-physical systems,” Journal of Systems and
Software, vol. 171, 110813, 2020.

[32] A. Mohan and S. K. Jha, “Predicting and accessing reliability of components in component based
software development,” in 2019 Int. Conf. on Intelligent Computing and Control Systems, Madurai, India,
pp. 1110–1114, 2019.

[33] S. Shirata, H. Oyama and T. Azumi, “Runtime component information on embedded component
systems,” in 2018 IEEE 16th Int. Conf. on Embedded and Ubiquitous Computing, Bucharest, pp. 166–
173, 2018.

[34] G. Buchgeher, S. Fischer, M. Moser and J. Pichler, “An early investigation of unit testing practices
of component-based software systems,” in 2020 IEEE Workshop on Validation, Analysis and Evolution of
Software Tests, London, ON, Canada, pp. 12–15, 2020.

[35] M. Azizi and H. Do, “A collaborative filtering recommender system for test case prioritization in
web applications,” in Proc. of the 33rd Annual ACM Sym. on Applied Computing, New York, NY, USA:
Association for Computing Machinery, pp. 1560–1567, 2018.

[36] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke and G. Saake, “Effective product-line testing using
similarity-based product prioritization,” Software & SystemsModeling, vol. 18, no. 1, pp. 499–521, 2019.

[37] R. He, L. Tang, X. Han, W. He and Z. Zhao, “Software component reliability evaluation method
based on characteristic parameters,” in 2018 IEEE Int. Conf. on Software Quality, Reliability and Security
Companion, Lisbon, pp. 235–241, 2018.

[38] A. J. Fernández-García, L. Iribarne, A. Corral, J. Criado and J. Z. Wang, “A recommender system for
component-based applications using machine learning techniques,” Knowledge-Based Systems, vol. 164,
no. 1, pp. 68–84, 2019.

[39] K. Sheoran, P. Tomar and R. Mishra, “A novel quality prediction model for component-based software
system using ACO-NM optimized extreme learning machine,” Cognitive Neurodynamics, vol. 14, no. 4,
pp. 509–522, 2020.

[40] M. G. Akbari and G. Hesamian, “Testing statistical hypotheses for intuitionistic fuzzy data,” Soft
Computing, vol. 23, no. 20, pp. 10385–10392, 2019.

[41] Y. Wang, F. Subhan, S. Shamshirband, M. Z. Asghar, I. Ullah et al., “Fuzzy-based sentiment analysis
system for analyzing student feedback and satisfaction,” Computers,Materials &Continua, vol. 62, no. 2,
pp. 631–655, 2020.

1996 CMC, 2021, vol.67, no.2

[42] M. A. Akbar, S. Mahmood, H. AlSalman, A. Razzaq, A. Gumaei et al., “Identification and prioriti-
zation of cloud based global software development best practices,” IEEE Access, vol. 8, pp. 191242–
191262, 2020.

[43] I. Gonzalez-Herrera, J. Bourcier, E. Daubert, W. Rudametkin, O. Barais et al., “ScapeGoat: Spotting
abnormal resource usage in component-based reconfigurable software systems,” Journal of Systems and
Software, vol. 122, no. 12, pp. 398–415, 2016.

[44] I. Hajri, A. Goknil, F. Pastore and L. C. Briand, “Automating system test case classification and
prioritization for use case-driven testing in product lines,” Empirical Software Engineering, vol. 25, no. 5,
pp. 3711–3769, 2020.

[45] C. Yang, J. Liu, Y. Zeng and G. Xie, “Real-time condition monitoring and fault detection of
components based on machine-learning reconstruction model,” Renewable Energy, vol. 133, no. 4,
pp. 433–441, 2019.

[46] X. Li, W. E. Wong, R. Gao, L. Hu and S. Hosono, “Genetic algorithm-based test generation for soft-
ware product line with the integration of fault localization techniques,” Empirical Software Engineering,
vol. 23, no. 1, pp. 1–51, 2018.

[47] G. Borrego, A. L. Morán, R. R. Palacio, A. Vizcaíno and F. O. García, “Towards a reduction
in architectural knowledge vaporization during agile global software development,” Information and
Software Technology, vol. 112, no. 8, pp. 68–82, 2019.

[48] F. Dadeau, J. P. Gros and O. Kouchnarenko, “Testing adaptation policies for software components,”
Software Quality Journal, vol. 28, no. 3, pp. 1347–1378, 2020.

[49] M. Oriol, S. Martínez-Fernández, W. Behutiye, C. Farré, R. Kozik et al., “Data–driven and tool-
supported elicitation of quality requirements in agile companies,” Software Quality Journal, vol. 28,
no. 3, pp. 931–963, 2020.

[50] A. Ibias, R. M. Hierons and M. Núñez, “Using squeeziness to test component-based systems defined
as finite state machines,” Information and Software Technology, vol. 112, no. 8, pp. 132–147, 2019.

[51] T. Lu, C. Liu, H. Duan and Q. Zeng, “Mining component-based software behavioral models using
dynamic analysis,” IEEE Access, vol. 8, pp. 68883–68894, 2020.

[52] S. Ali, Y. Hafeez, S. Hussain and S. Yang, “Enhanced regression testing technique for agile software
development and continuous integration strategies,” Software Quality Journal, vol. 28, no. 2, pp. 397–
423, 2020.

[53] E. Bjarnason, H. Sharp and B. Regnell, “Improving requirements-test alignment by prescribing prac-
tices that mitigate communication gaps,” Empirical Software Engineering, vol. 24, no. 4, pp. 2364–
2409, 2019.

