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Abstract: The latest advancements in highway research domain and increase
in the number of vehicles everyday led towider exposure and attention towards
the development of efficient Intelligent Transportation System (ITS). One of
the popular research areas i.e., Vehicle License PlateRecognition (VLPR) aims
at determining the characters that exist in the license plate of the vehicles.
The VLPR process is a difficult one due to the differences in viewpoint,
shapes, colors, patterns, and non-uniform illuminationat the time of capturing
images. The current study develops a robustDeep Learning (DL)-basedVLPR
model using Squirrel Search Algorithm (SSA)-based Convolutional Neural
Network (CNN), called the SSA-CNN model. The presented technique has
a total of four major processes namely preprocessing, License Plate (LP)
localization and detection, character segmentation, and recognition. Hough
Transform (HT) is applied as a feature extractor and SSA-CNN algorithm
is applied for character recognition in LP. The SSA-CNN method effectively
recognizes the characters that exist in the segmented image by optimal tuning
of CNN parameters. The HT-SSA-CNNmodel was experimentally validated
using the Stanford Car, FZU Car, and HumAIn 2019 Challenge datasets.
The experimentation outcome verified that the presented method was better
under several aspects. The projected HT-SSA-CNN model implied the best
performance with optimal overall accuracy of 0.983%.

Keywords: Deep learning; license plate recognition; intelligent
transportation; segmentation

1 Introduction

Vehicle License Plate Recognition (VLPR) has been a major computer vision issue in recent
decades. In this scenario, the prevalent systems of cameras are placed at road junctions to find
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the vehicles’ routing using urban platform [1]. The feasibility of leveraging the existing networks
with transparent light cameras for VLPR is highly attractive due to its cost-efficiency, as ad-hoc
architectures such as infrared illuminators and cameras are deployed. However, VLPR contains
natural visible light which makes it a tedious operation, because it is deployed with a non-optimal
camera that offers extensive difference in terms of plate and scale. Likewise, the surrounding
illumination also makes VLPR a challenging task, because of the massive differences in bright-
ness levels, perspectives, and minimum dimensions. Further, it is essential to monitor large scale
vehicles with the help of videos clips captured during vehicle observation, then provide it to the
administrator who applies essential bandwidth and fixes the data center. This results in increasing
the capability of managing peak-time requests while the VLPR tasks can be operated locally on
the cameras.

Deep learning and CNNs are considered to be the cornerstones of models which can resolve
computer vision problems in an efficient manner [2]. Some of the issues faced are object predic-
tion, character analysis and ImageNET Challenge with higher margins in comparison to classical
image processing models. Moreover, CNN is a feed-forward and multi-layer NN, divided into
feature extraction phase and inference stage. In the beginning, the feature extraction phase is
comprised of numerous convolutional layers where it encompasses several learnable filters. These
filters are enabled by the prediction of certain features present in the input data. The outcome
of the feature extraction stage is determined with the help of Fully-Connected (FC) layers; the
number of layers and the accessible parameters present in every layer rely upon some particular
layers. Consequently, the final layer of the network yields the required results to which a class of
object belongs (classification issues) or the location of the object in an image (regression issues).

In spite of the fact that CNNs have resulted in a remarkable performance in image processing
operations, there are few complications associated with it when designing a practical VLPR
system. Initially, it is vital to train the CNNs by testing an adequate number of images, along
with a distribution of variables that include intra-class variance, i.e., the implication of real-
world constraints. The sourcing and annotation of a massive training dataset with limited variable
distribution, are considered overwhelming tasks even under the application of data augmentation
methods. Thereafter, the current CNN structures would have attained a state-of-the-art function
which would depend upon deep topologies with enormous amounts of readable parameters. The
demand for moving VLPR computing, through smart cameras, calls for complex network structure
that is applicable for smart cameras with minimum storage and processing resources.

In the last few decades, various methods were established to overcome the issues involved
in VLPR, according to the type of structures [3–6]. Yu et al. [3] concentrated on the issue of
predicting car plates under widely-varying brightness, background, and perspective conditions.
This issue can be resolved when using a model that depends upon Wavelet Transform (WT) as
well as empirical mode degradation, which exhibit optimal accuracy at plate deployment though
does not provide a VLPR pipeline.

Zhou et al. [4] reported the issues in plate as well as character segmentation concerning
conventional image processing models with a parameter-based method. Hence, these methodolo-
gies are infeasible to solve the problem of character analysis, a significant operation in VLPR
system. Giannoukos et al. [5] presented a rapid technology to reduce the time of plate detection
in high-resolution images. The technique presented was a context scanning model which can be
applied to compute a Quarter Video Graphics Array (QVGA) image in a CPU. Regardless of the
above, intelligent GPU-based CNNs are capable of processing massive images simultaneously.
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Ghaili et al. [6] proposed an effective framework for LP under the identification of vertical
edges by applying contrast, removal of unknown lines, and deployment of the plate in a binarized
image. Though these methods exhibit minimum difficulty at plate identification, they could not
offer a better solution in the case of a VLPR system. Hsu et al. [7] presented a complete
3-stage VLPR structure that was developed over edge clustering for plate prediction, and it is
highly reliable for character segmentation. VLPR is known to have different applications like
management, road patrol, among others. It showcases that an ad-hoc solution is responsible for
the applied range of variables which performs better than the alternate solutions, irrespective of
the specific application parameters. The major limitation in this method is that the best solution
is required for all domains.

Li et al. [8] integrated various networks for handling VLPR problems from different perspec-
tives. Firstly, a CNN was applied on already-trained datasets to predict the characters involved in
the input image. The members of the images were categorized into plate and non-plate through a
CNN trained using an Application Oriented License Plate (AOLP) dataset over Cross-Validation
(CV) in order to eliminate false positives. As a result, a Long Short-Term Memory (LSTM) that
was trained on identical character set, was applied to label the characters as a textual sequence
instead of applying the character segmentation. In spite of applying three different networks, this
model depicted similar results on the dataset applied.

Yuan et al. [9] proposed a plate prediction structure. In the first stage, a line density filter
placed the candidate LP sites. Then, the LP classification method removed the false positive
regions based on the color salience. The presented technique accomplished the best recall and
precision results with limited resilience. Jiao et al. [10] reported the problem of placing plates with
diverse appearances using a tunable algorithmic method. However, the synthetically-trained LPR
system is applicable for processing several plate factors by template modification that produces
training images.

Gou et al. [11] employed LPR technology based on Extremal Regions as well as Restricted
Boltzmann Machines (RBM). Initially, a common examination of LP was carried out under the
applications of edge detection as well as image filtering. Characters sites were filtered with the help
of Extremal Regions which were then applied in the refining plate region. At last, the characters
were analyzed by applying a hybrid discriminative RBM which was trained on character samples
obtained from rotation and noise-augmented actual images.

Bulan et al. [12] presented a model to exploit weak and sparse classification methods and
a strong CNN to isolate the readable LP. In the character analysis, the model eliminated the
segmentation phase with the application of a sweeping SVM classifier and a hidden Markov
approach to infer the positions. The character classifier was trained using a real sample that has
been labelled by existing classifier. However, during the performance validation, a performance
loss was observed when the network underwent training on synthetic data. Meyer et al. [13]
identified the problem of making the best synthetic training data for DL in disparity as well as
in optical flow determination. Finally, the simulation outcome was supported with the help of
the attained results in the specific case of LPR. In Pustokhina et al. [14], a DL-centric VLPR
approach by optimal k-means (OKM) clustering relied segmentation, as well as a CNN relied
technique were introduced.

Some other DL models are available in the literatures [15–23]. In the literature [15], an
improved VGG model was presented to recognize and classify the traffic signs. In the study [16],
a new model called WI-Multi was proposed to identify the human activities using WiFi devices.
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An event-driven plan recognition model using intuitionistic fuzzy theory was devised in the
literature [17]. The authors [18] developed a CN-ELM model to recognize the Electrocardiograms.
Besides, a deep local search method using internal spanning tree was devised for parameterized
and approximation algorithms [19]. Another lightweight DL model to classify the traffic signs
was developed in the literature [20]. A new grammatical model was also presented in the study
conducted earlier [21]. An improved model for inspecting deep packets with the help of regular
expression was proposed in research conducted earlier [22]. Another improved model to inspect
deep packets in data stream detection was introduced in the study [23].

Though various LPR models are available in the literature, there still exists a need to develop
a proficient VLPR model for the detection and analysis of the characters in an LP effectively. It
is also required to consider the real time constraints in designing a VLPR model. From this view,
this paper introduces a robust DL-based VLPR model using an SSA-based CNN, termed as an
SSA-CNN model. The proposed model has a total of four major processes namely, preprocessing,
LP localization and detection, HT-based character segmentation and SSA-CNN-based recognition.
The SSA algorithm was applied in a CNN model to choose the hyper parameters properly and to
effectually recognize the characters that exist in the segmented image. The HT-SSA-CNN model
was experimentally validated using a benchmark dataset, and the simulation outcome confirmed
that the presented model yielded better results.

The remaining portions of the study are formulated as follows. Section 2 details the proposed
HT-SSA-CNN model with adequate explanations. Section 3 performs the experimental validation
and Section 4 draws the conclusion for the study.

2 The Proposed HT-SSA-CNN Model

The entire working process, involved in the proposed HT-SSA-CNN model, is depicted in
Fig. 1. As depicted in the figure, the input image is preprocessed to make it compatible for further
processing. Then, the preprocessed image is fed into an LP localization process in order to detect
and crop the LP effectively. Thereafter, HT is applied to segment the characters that exist in the
LP. At last, an SSA-CNN model is applied to examine the characters in the classified image.

2.1 Preprocessing
During pre-processing, the RGB car image undergoes downscaling to 50% of its actual scale

in order to confine the processing duration. Also, a reduction and a reforming of images is applied
to minimize the candidate sites. The input image is composed of RGB channels, where each
channel is restricted to within (0–255), while the gray scale image contains a single channel; thus
an RGB image is converted into a gray scale template. Additionally, the contrast of the images
is enhanced to compute the LP detection process. In line with this, previous models are used
with English LP. So, there is no requirement for image cropping since the images are taken from
nearby-placed vehicles.

2.2 License Plate Localization
In the presented model, the LP is filtered using a set of tasks, like (i) using Median Filter

(MF) with (3×3) for image development and noise elimination. (ii) Exploiting sobel edge detector
to detect proper edges. (iii) Employment of morphological tasks to isolate the plate from back-
ground. Here, dilation is utilized to enhance the boundary dimension so as to get rid of line
issues. The dilation process creates bigger objects since every background pixel is transmitted to
an object pixel. Erosion is applied to allocate the candidate plate regions under the application
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of Squared Structuring component. Finally, the appropriate LP is placed. In this domain, it is
applied with two fundamental checkers to ensure the plate region accurately, remove the unwanted
sites. Few more steps are listed in the following section [24].

Figure 1: Block diagram of the HT-SSA-CNN model

2.2.1 Rectangle Shape Checker
The rectangle shape checker is executed to check the presence of rectangular-sized objects in

the image. It verifies the sum of white pixels as +5% or −5% that is fixed as a threshold for the
correct region of such areas.

2.2.2 Dimension of Plate Checker
Verify if (a < height/width of the succeed region < b). Here the values of (a, b) parameters

are based on the dimensions of LP. It is pointed out that when the predicted regions are not
assumed as a plate, then the detection step is initialized. This green channel offers sufficient image
contrast, blurs the image for LP edge smoothening and discard the artifacts.
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2.3 Character Segmentation Using Hough Transform
Hough Transform (HT) is mainly employed to examine the lines in the images. The pixels in

image space (x0, y0) can be represented by applying the transformation,

r= x. cosθ+ y · sinθ (1)

A curve r = x0. cosθ + y0 · sinθ is touted to have attained the parameter space (θ, r). Once it is
converted into parameter space, it gets ‘n’ curves from parameter space. While these curves exceed
(θ0, r0), then the ‘n’ points of the image space exist on a line that can be identified in image
space, by exploring the cross points from parameter space.

A plate image with greater rotation cannot be used to accomplish horizontal segment lines.
Thus, in case of a single character, the rotation shows a minimum impact on horizontal projection.
Therefore, the horizontal segmentation model is provided below:

• Identify the valleys of vertical projection and classify the plate image as massive blocks in
a vertical fashion. This classification would be unfit due to the frame and rivet.

• Identify horizontal segmentation lines for all blocks under the investigation of the horizon-
tal projection of a block. This line is applied for a block of subsection line.

• Apply HT on all subsection lines which tends to eliminate unwanted lines and integrate the
supreme subsection lines into a full line.

This model provides massive benefits. Initially, HT applies a voting strategy in which there
are minimum numbers of incorrect subsection lines present and these lines can be discarded. In
contrast, the linear fitting approach is highly sensitive for ineffective subsection lines. Later, it
is assumed to be a local projection model that reduces the efficiency of background, brightness
variation, and plate rotation. Obviously, the rotation correction process leads to image degradation
and pose ‘character analysis’, a complex operation. Vertical segmentation method depends upon
the projection investigation that is constrained by advanced knowledge. The size of LP is 440×
140 (mm), where every character is 45× 90 (mm), and the range among these characters is 12
(mm) while the big interval is (34 mm) from first 2 characters and last 5 characters. This kind
of information is named as ‘prior knowledge’. When prior knowledge is applied, segmentation
becomes highly effective. There are four steps followed in vertical segmentation approach:

• Explore the candidates for vertical segmentation lines. A candidate is identified for all
valleys of vertical implication.

• Evaluate the size of the plate and character using horizontal segmentation lines as well as
the candidates.

• Determine both left and right borders by applying prior knowledge. The variance of gray
level of the pixel with segmentation line is small. This has to be deployed in plate interval
and pixels since it exceeds the background pixels with the same gray level. Thus, the vertical
segmentation lines for big intervals can be reached by exploring the desired positions and
finding better segmentation lines and lower variance from candidates.

• Alternate vertical segmentation lines could be placed similarly.

2.4 SSA-CNN Based Character Recognition in LP
CNN is a well-known DL approach applied for character analysis since it finds the segmented

LPs. Fig. 2 demonstrates the CNN with conv, pooling and FC layers. These three layers are
applied in CNN development along with various counts of blocks as well as presence or absence
of blocks [25–28].
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Figure 2: The working structure of CNN

Conv layer

It is different for each NN and not all the pixels are connected to weights and biases. Hence,
the image is divided as minimum parts, whereas the weights and biases are used. These are named
as filters or kernel that undergoes convolution with a smaller input image and it provides the
feature map. The filters are assumed as elegant ‘features’ that are explored from the input image
and the conv layer. The parameter has to execute the convolution process, which is a daunting
operation as same filters are traversed. The local region size, filter value, padding, and stride are
some of the hyper parameters in conv layer.

Pooling layer

In order to reduce the spatial size of an image, parameter value and computational cost, the
pooling layer is employed. It is divided into average pooling, stochastic pooling and max pooling.
The first type of pooling is mainly applied for nxn window that is slided by input with stride s.
Moreover, the maximum value in nxn region is used and the size of input data is reduced. Finally,
it offers conventional invariance, so that a small variation is also examined.

FC layer

The input of FC layer is assumed to be the result of last pooling layer. It is treated as a
CNN where all the neurons of primary layer are connected to present layer. Hence, the parameter
value in a layer is maximum, when compared to conv. layer. It is connected with the output layer
named as classification method.

Activation function

Different activation functions are used with various structures of CNN. The non-linear acti-
vation functions, named as ReLU, LReLU, PReLU, and Swish, are accessible ones. It helps to
increase the efficiency of the training process. Additionally, ReLUs function is highly efficient
when compared to alternate models. Tuning hyper-parameters for CNN is highly sensitive and
complex since it is slow in training a CNN and it has numerous parameters for configuration as
given below:

• Learning rate
• Epoch count
• Batch size
• Activation function
• Count of hidden layers and units
• Weight initialization
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2.5 Hyper Parameter Tuning Using SSA
SSA algorithm is applied to tune the parameters of CNN as discussed earlier. SSA model is

evolved from the foraging behavior of flying squirrels. These tiny creatures use an effective method
to travel a long distance. In warm weather, a squirrel changes the place by jumping from one
tree to another in the forest and search for foods. It simply determines acorn nuts to meet every
day’s energy requirements. Then, it starts exploring hickory nuts (a better food source) which are
saved for winter. In cold weather, it becomes weaker while it regains the power by consuming
hickory nuts. When the warm weather turns up again, squirrels become active and energetic. The
predefined procedures are duplicated and followed at the time of food searching. Depending upon
the food foraging nature of squirrels [29], the optimized SSA is modeled with subsequent stages
mathematically. Fig. 3 shows the flowchart for SSA model.

2.5.1 Initialization Phase
The important parameters of SSA are highest count of iteration Itermax, population size

NP, decision variable count n, the predator occurrence possibility Pdp, scaling factor sf, gliding
constant Gc, and upper as well as lower bounds for decision variable, i.e., FSU and FSL. The
above mentioned parameters are initialized from the beginning of SSA process.

2.5.2 Location Initialization Phase
The flying squirrels’ positions are arbitrarily loaded in the searching space as following:

FSi,j =FSL+ rand ()∗ (FSU−FSL) , i= 1, 2, , NP, j= 1, 2, , n (2)

where rand() shows uniformly-distributed arbitrary values from [0,1]. A fitness value f = (flf2, fNP)

of a separate flying squirrel’s position is computed by replacing the decision variables’ value into
a fitness function:

fi = fi
(
FSi,1,FSi,2, . . . , FSi,n

)
, i= 1, 2, ,NP (3)

After that, the food sources’ quality is determined with fitness value of flying squirrels’ place
as given below:

[sorted_f, sorte_index]= sort (f) (4)

Next, the arrangement of food sources of all the flying squirrels takes place. There are three
varieties of trees namely, oak tree (acorn nuts), hickory tree (hickory nuts) and normal tree. A
place of the optimal food source (i.e., minimum fitness) is considered as hickory nut tree (FShr),
the places of subsequent food sources are assumed to be acorn nut trees (FSar), and the remaining
are named as normal trees (FSnt):

FSht =FS (sorte-index (1)) (5)

FSat (1:3)=FS (sorte-index (2:4)) (6)

FSnt (1:NP− 4)=FS (sorte-index (5:NP)) (7)

2.5.3 Location Creation Phase
The three situations which can show the dynamic gliding procedure of flying squirrels are

discussed below [30].
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Figure 3: The flowchart of SSA

Scenario 1. The flying squirrels on acorn nut trees move to hickory nut tree. A novel location
is created as following:

FSnewat =
{
FSoIdat +dgGc

(
FSoldht −FSoIdat

)
if R1≥ Pdp

randomlocation otherwise
(8)
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where dg is arbitrary gliding distance, Rl is a function that provides the value of uniform
distribution within [0, 1] , and Gc refers a gliding constant.

Scenario 2. Squirrels on normal trees go to acorn nut tree for collecting the essential food. A
novel location is created as following:

FSnewnt = {FS
oId
nt +dgGc

(
FSoldat −FSoldnt

)
randomlocation, ,

if R2≥ Pdp
otherwise

(9)

where R2 denotes a function that returns a value of uniform distribution from [0,1].

Scenario 3. Few flying squirrels on normal trees move to hickory nut tree, while it satisfies
the regular objectives. During this condition, a novel place of squirrels is created as following:

FSnewnt =
{
FSoldnt +dgGc

(
FSoldht −FSoldnt

)
if R3≥ Pdp

randomlocation otherwise
(10)

where R3 implies a function which gives the value of uniform distribution from [0,1].In all the
scenarios, gliding distance dg should exist between 9–20 m. But, these values are somewhat huge
and can initiate huge perturbations in (8)–(10) a. To obtain suitable action of the technique, a
scaling factor (sf) is treated as a divisor of dg with the value 18.

2.5.4 Seasonal Monitoring Criteria Validation
The foraging behaviour of flying squirrels is considerably concerned with varying seasons. So,

seasonal monitoring is mainly employed to get rid of the trapping from better local results. The
seasonal constant ðž‘†ðž‘ł and the lowest value are computed initially:

Stc =
√√√√ n∑

k=1

(
FStat,k−FSht,k

)2
, t= 1, 2, 3 (11)

Scmin = 10E− 6
365Iter/(Itermax)/2.5

(12)

For Stc < Scmin, the winter is higher, and the flying squirrels lose the searching potential is random
and transfer the exploring positions of food source:

FSnewnt =FSL+Lévy (n)× (FSU−FSL) (13)

where Lévy distribution is an effective numerical device to improve the global search for optimiza-
tion techniques:

Lévy (x)= 0.01× ra×σ

|rb|1/β
(14)

σ=
(

Γ (1+β)× sin (πβ/2)
Γ ((1+β) /2)×β× 2((β−1)/2)

)1/β

(15)

where Γ (x)= (x - 1)!, ra and rb are two functions that return the values of uniform distribution
from [0,1] and β signifies a constant (β= 1.5).
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2.5.5 Stopping Criterion
This technique is terminated when the large number of iterations are fulfilled. Or else, the

behaviour of creating novel locations as well as ensuring seasonal monitoring situation become
repetitive.

3 Experimental Validation

The presented HT-SSA-CNN method was stimulated using PC configured with i5, 8th
generation and 16GB RAM. Fig. 4 shows some of the test images. The proposed model
was simulated using Python 3.6.5 tool with some packages namely tensorflow (GPU-CUDA
Enabled), keras, numpy, pickle, matplotlib, sklearn, pillow and opencv-python. The perfor-
mance analysis showed that a total of three datasets was applied. The initial Stanford Cars
dataset contains 297 model cars with 43,615 images. Secondly, 196 model cars with 16,185
images were deployed in this study. Finally, the images from HumAIn 2019 Challenge dataset
(https://campuscommune.tcs.com/enin/intro/contests/tcs-humain-2019) were utilized.

(a) (b) (c)

Figure 4: Sample test images. (a) Stanford cars dataset, (b) FZU cars dataset, (c) HumAIn 2019
challenge dataset

Fig. 5 shows the visualization of the results yielded by the proposed model for the given set
of applied input images. The figure infers that the LPs were clearly detected, characters in LP
were properly segmented and the characters were effectively recognized by the proposed model.

Figs. 6–8 offered comprehensive LP detection results of the HT-SSA-CNN model over other
compared methods [14] on the applied datasets. Fig. 6 illustrates the results of the analysis for
HT-SSA-CNN model in terms of different measures for the given FZU Cars dataset. The figure
portrays that the ZF model was the ineffective performer since it attained the minimal precision
value of 0.916 and the recall value of 0.948. It is noted that the VGG16 model achieved slightly
better detection outcome with precision value of 0.925 and recall value of 0.955. Further the
ResNet50 model achieved certain level of effectiveness by exhibiting a precision of 0.938 and recall
of 0.951. Followed by, the ResNet 101 mode was found to be superior to earlier models with the
precision of 0.945 and recall of 0.958. At the same time, the DA-Net136, DA-Net160, DA-Net168
and DA-Net200 frameworks computed an outstanding performance when compared to earlier
models and attained closer precision values of 0.961, 0.965, 0.966 and 0.969; recall values of 0.964,
0.966, 0.968 and 0.971 respectively. Though these methods tried to produce better detection rate,
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the proposed HT-SSA-CNN model showed proficient performance with the maximum precision
of 0.981 and recall of 0.986.

(a)

(b)

(c)

(d)

Figure 5: (a) Original images (b) LP detection images (c) Segmented images (d) Recognized images

Figure 6: Results of the analysis of HT-SSA-CNN model on FZU Cars dataset
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The figure also depicts the results of the analysis of HT-SSA-CNN model with respect to
diverse measures on the considered FZU Cars dataset. The figure implies that ZF approach was
the worst performer since it attained the least F1-score value (0.932) and mAP value (0.908).
It is evident that the VGG16 model accomplished reasonable detection results with F1-score of
0.940 and mAP of 0.912. Further, the ResNet50 model resulted in specific efficiency by yielding
a F1-score value of 0.944 as well as mAP value of 0.916. Then, the ResNet 101 model got
qualified than previous approaches by attaining the F1-score of 0.951 and mAP value of 0.922.
Simultaneously, the DA-Net136, DA-Net160, DA-Net168 and DA-Net200 methods performed well
compared to previous models and achieved closer F1-score values of 0.962, 0.965, 0.967 and 0.970;
mAP values of 0.942, 0.952, 0.955 and 0.958 correspondingly. Even though these approaches
attempted to accomplish the best detection rate, the projected HT-SSA-CNN model showcased
immense performance with a maximum F1-score of 0.980 as well as mAP value of 0.976.

Fig. 7 shows the results of HT-SSA-CNN framework by means of different measures for
the considered Stanford Cars dataset. From the figure, it is clear that the ZF method was the
inefficient performer since it obtained minimal precision of 0.856 and recall of 0.897. Clearly,
VGG16 model accomplished gradual detection outcome with the precision value of 0.911 and
recall score of 0.954. Additionally, the ResNet50 model yielded certain level of efficiency by
yielding a precision of 0.912 and recall of 0.946. Besides, the ResNet 101 mode produced excellent
value than the existing models with precision value of 0.941 and recall value of 0.952. Meanwhile
DA-Net136, DA-Net160, DA-Net168 and DA-Net200 frameworks outperformed the previous
models and reached closer precision values of 0.953, 0.949, 0.962 and 0.955; recall values of 0.962,
0.954, 0.967 and 0.959 respectively. Although these methods tried to exhibit better detection rate,
the proposed HT-SSA-CNN model showcased effective performance with higher precision value
of 0.979 and recall value of 0.989. The figure demonstrated the results of the analysis of HT-SSA-
CNN model with respect to different measures for the given Stanford Cars dataset. The figure
shows that the ZF technology was the ineffective performer since it accomplished a low F1-score
of 0.876 and mAP of 0.872. It is observed that the VGG16 model accomplished considerable
detection results with the F1-score of 0.932 and mAP of 0.907. Moreover, it is obvious that the
ResNet50 model resulted in specific efficiency by showing an F1-score of 0.929 and mAP value of
0.918. Next, the ResNet 101 approach was found to be superior to existing models by achieving
the F1-score of 0.946 and mAP of 0.909. Simultaneously, DA-Net136, DA-Net160, DA-Net168
and DA-Net200 methodologies performed quite well when compared to previous models and
accomplished closer F1-score values of 0.957, 0.951, 0.964 and 0.957; mAP values of 0.932, 0.938,
0.945 and 0.941 correspondingly. In addition to better detection rate, the proposed HT-SSA-CNN
model also implied remarkable performance with high F1-score of 0.969 and mAP value of 0.953.

Fig. 8 shows the results of the analysis of HT-SSA-CNN model in terms of various measures
on the given HumAIn 2019 dataset. From the figure, it is clear that ZF model was the worst
performer with minimum precision of 0.863 and recall of 0.873. It is pointed that the VGG16
model further accomplished moderate prediction outcome with the precision of 0.869 and recall of
0.889. It is also noted that the ResNet50 model resulted in certain level of efficiency by implying
a precision value of 0.871 and recall value of 0.892. Besides, the ResNet 101 mode was found to
be optimal than earlier models by attaining the precision value of 0.913 and recall value of 0.923.
Meanwhile, DA-Net136, DA-Net160, DA-Net168 and DA-Net200 approaches outperformed the
traditional models and reached closer precision values of 0.923, 0.936, 0.932 and 0.945; recall
values of 0.931, 0.942, 0.948 and 0.957 correspondingly. Though these models attempted to yield
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the best prediction rate, the presented HT-SSA-CNN model showcased effective performance with
high precision value of 0.961 and recall value of 0.968.

Figure 7: Results of the analysis of HT-SSA-CNN model on Stanford cars dataset

Figure 8: Results of the analysis of HT-SSA-CNN model on HumAIn 2019 dataset

The figure also shows the results of the analysis of HT-SSA-CNN model by means of
different measures on applied HumAIn 2019 Cars dataset. From the figure, it is clear that the
ZF method was the poor performer since it achieved a low F1-score of 0.864 and mAP value
of 0.869. It is pointed out that the VGG16 scheme accomplished better detection results with
F1-score of 0.874 and mAP of 0.876. Additionally, it is notified that the ResNet50 model yielded
a certain level of efficiency by achieving F1-score of 0.887 and mAP of 0.892. Next, the ResNet
101 mode was found to be supreme than the earlier models by attaining the F1-score of 0.913 and
mAP of 0.925. Concurrently, DA-Net136, DA-Net160, DA-Net168 and DA-Net200 methodologies
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performed quite-well than conventional models and reached closer F1-score values of 0.926, 0.937,
0.941 and 0.949; mAP values of 0.935, 0.938, 0.942 and 0.953 correspondingly. Though these
technologies attempted to accomplish the optimal detection rate, the presented HT-SSA-CNN
model implied effective performance with high F1-score of 0.962 and mAP of 0.964.

Fig. 9 depicts the competing results of the analysis of HT-SSA-CNN method by means of
overall accuracy. The figure indicates that the ZF model was the worst performer as it attained
the least overall accuracy of 0.942%. The ResNet 101 model was found to be superior to previous
models by acquiring the overall accuracy of 0.943%. Simultaneously, the VGG_CNN_M_1024
model outperformed the existing models and achieved overall accuracy value of 0.967%. Further
the VGG16 model achieved manageable detection results with an overall accuracy of 0.971%.
The ResNet50 model led to a certain level of efficiency by showing an overall accuracy of
0.976%. Though these methods attempted to achieve a better detection rate, the projected HT-
SSA-CNN model implied the best performance with optimal overall accuracy of 0.983%. The
experimentation outcome verified that the presented method yielded better results under several
aspects. The projected HT-SSA-CNN model provided the best performance with high precision of
0.981, 0.979 and 0.961 on Stanford Cars, FZU Cars as well as HumAIn 2019 Challenge datasets.
Therefore, it can be employed as an effective tool to recognize the LPs in real-time environment.

Figure 9: The overall accuracy analysis of HT-SSA-CNN model with the existing model

4 Conclusion

The current study introduced a robust DL-based VLPR model using SSA-CNN model. The
proposed model had a total of four major processes namely preprocessing, LP localization and
detection, HT-based character segmentation, and SSA-CNN based recognition. The input image
was preprocessed to make it compatible with further processing. The preprocessed image was
then fed into LP localization process to detect and crop the LP effectively. Followed by, HT was
applied for character segmentation in the LP. At last, SSA-CNN model was applied to examine
the characters in the classified image. The SSA algorithm was applied to CNN model to choose
the hyper parameters properly and effectually recognize the characters that exist in the segmented
image. The proposed HT-SSA-CNN approach achieved higher precision of 0.981, 0.979 and 0.961
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on Stanford Cars, FZU Cars as well as HumAIn 2019 Challenge datasets. In future, the projected
HT-SSA-CNN technique can be extended using DL models other than CNN.
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