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Abstract: This article proposes two new Ranked Set Sampling (RSS) designs
for estimating the population parameters: Simple Z Ranked Set Sampling
(SZRSS) and Generalized Z Ranked Set Sampling (GZRSS). These designs
provide unbiased estimators for the mean of symmetric distributions. It is
shown that for non-uniform symmetric distributions, the estimators of the
mean under the suggested designs are more ef�cient than those obtained by
RSS, Simple Random Sampling (SRS), extreme RSS and truncation based
RSS designs. Also, the proposed RSS schemes outperform other RSS schemes
and provide more ef�cient estimates than their competitors under imperfect
rankings. The suggested mean estimators under perfect and imperfect rank-
ings are more ef�cient than the linear regression estimator under SRS. Our
proposed RSS designs are also extended to cover the estimation of the popu-
lation median. Real data is used to examine wthe usefulness and ef�ciency of
our estimators.

Keywords: Ranked set sampling; unbiased estimator; simple random
sampling; mean squared error; ef�ciency; imperfect ranking

1 Introduction

The Ranked Set Sampling (RSS) is originally derived by McIntyre [1] as a new design to
increase the ef�ciency of pasture and forage yields estimates for �xed sample units. The RSS is
considered when the study variable can simply be ranked than quanti�ed. Takahasi et al. [2],
independently, introduced the background of the RSS design, mathematically. It is shown that
mean estimator by the RSS is unbiased, and provides more ef�cient estimates than the simple
random sampling mean estimator. Even when the measured observations are ranked with errors,
the RSS still provides an unbiased estimator, but the imperfect ranking is generally better than
ordering based on random [3]. Stokes [4] considered the case of measuring the variable of
interest and concluded that the study variable can be ranked by some concomitant variables.
The competence of the estimator then depends on the relation between the study variables and
the ancillary variables. With perfect ranking, the estimation based on RSS is more adequate as
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compared to the regression estimation based on SRS, especially, when the study variables and the
ancillary variables are highly correlated (say |ρ|> 0.85) [5].

In the last few decades, many applications and modi�cations of the RSS design have been
proposed. Halls et al. [6] for considering an application of forage yields using RSS. Samawi
et al. [7] introduced the Extreme RSS (ERSS) design. Al-Omari et al. [8] introduced ratio esti-
mators of the population mean with missing values using RSS. Al-Omari [9] considered the
median estimation based on double robust extreme RSS. Al-Saleh et al. [10] extended the work
further and provided Multistage RSS (MSRSS) design. They proved that as the number of
stages increases, the ef�ciency of the mean estimator under MSRSS increases and vice versa.
A Robust L RSS procedure based on the idea of L estimators is suggested by Al-Naseer [11].
Muttlak [12] introduced Median RSS (MRSS); he showed that it provides an unbiased estimator
of the mean of symmetric distributions, and is more ef�cient than the SRS and RSS mean
estimators. Jemain et al. [13] suggested multistage median RSS for estimating the population
median and Jemain et al. [14] proposed some variations of RSS. Al-Omari [15] proposed ratio
estimators of the population mean by considering ancillary information in SRS and median
RSS and Al-Omari [16] considered the entropy estimation in RSS methods. Hossain et al. [17]
suggested paired RSS for estimating the population mean. Shadid et al. [18] considered the BLUEs
and BLIEs of the scale and location parameters together with the population mean using RSS.
Al-Omari et al. [19] investigated the ratio estimation using a multi-stage median RSS approach.
Al-Omari [20] proposed robust extreme RSS mean for mean estimation. Haq [21] proposed
Shewhart control chart for monitoring process mean based on partially ordered judgment subset
sampling. Haq et al. [22] suggested unbiased estimators for the basic linear regression model based
on double RSS. Yu et al. [23] for investigating regression estimator in RSS. Al-Naseer et al. [24]
proposed robust extreme RSS. Haq et al. [25] suggested some ratio estimators for the population
mean in ERSS using two ancillary variables. Ozturk [26] studied sampling based on partially rank-
ordered sets. Haq et al. [22] proposed the hybrid RSS method. Zamanzade et al. [27] introduced
a new RSS estimation method for the population mean and variance. Haq [28] considered cluster
sampling with hybrid RSS. Haq [29] studied the distribution function estimation under hybrid
RSS. Al-Omari et al. [30,31] dealt with tests based on Laplace and logistic distributions. Al-Nasser
et al. [32] studied information-theoretic weighted mean based on truncated RSS. Zamanzade
et al. [33] used population proportion estimation in pair RSS. Haq [34] studied ordered partially
subset sampling and consider the applications of this method to parametric inference. Al-Omari
et al. [35] suggested a new RSS procedure called Truncation Based RSS (TBRSS), and showed
that their estimator is unbaised of the population mean of symmetric distributions. Al-Nasser
et al. [36] suggested minimax RSS method. Haq et al. [37] proposed the Hybrid ranked set
sampling scheme. Wang et al. [38] investigated general ranked set sampling with cost consideration.
Muttlak [39] introduced median ranked set sampling with concomitant variables and a comparison
with ranked set sampling and regression estimators. For applications and new techniques based
on RSS, we refer the readers to the references [40–44].

In this paper, we extended the work in this area and proposed two new improved RSS
designs called the Simple Z Ranked Set Sampling (SZRSS) and the Generalized Z Ranked Set
Sampling (GZRSS) methods. For some cases, SZRSS becomes a particular case of GZRSS design.
The proposed sampling procedure estimator is unbiased of the population mean for symmetric
distributions. It is shown, theoretically and numerically, that under perfect and imperfect rankings
for symmetric non-uniform distributions, the proposed mean estimators under the GZRSS design
are more ef�cient than those obtained by RSS and TBRSS. For asymmetric distributions, the
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proposed estimators based on GZRSS are more precise as compared to the estimators based on
RSS and TBRSS. Also, we extended our sampling designs for estimating the population median.
The ef�ciency of the suggested median estimators under GZRSS is better than that based on
the RSS and TBRSS estimators, for symmetric non-uniform and asymmetric distributions. The
GZRSS estimator of the population mean is investigated based on perfect and imperfect rankings,
and is also compared to the SRS linear regression mean estimator. It is noteworthy that for small
to moderate correlation between the auxiliary and study variables, the proposed estimators are
more ef�cient than the SRS linear regression estimator of the population mean.

This paper is organized as follows. Some sampling methods are presented in Section 2. The
proposed ZRSS designs are described in detail in Section 3. The problem of errors in ranking and
a comparison with the SRS linear regression estimator is discussed in Section 4. The problem of
estimating the population median is considered in Section 5. A detailed application to real data
is given in Section 6, and �nally, the paper is concluded in Section 7.

2 Sampling Methods

In this section, we explain some existing sampling schemes considered in this study.

2.1 Ranked Set Sampling
We describe the RSS design as follows:

Step 1: Given the value of sample size, say m, identify m2 units from the correspond-
ing population.

Step 2: These units are randomly allocated to m sets such that the size of each set is m.

Step 3: Now, rank the units within each set, this ranking can be done visually or by an
inexpensive method with respect to the study variable. Then select the smallest ranked unit from
the �rst set of m units. Similarly, select the second smallest ranked unit from the second set of
m units. The procedure continues until the largest ranked unit is selected from the last set. This
completes a cycle of a ranked set sample of size m.

Step 4: For a large sample size, say n, the above steps are repeated r times until size of the
sample becomes n=mr, for r≥ 1.

Let Z be the variable of interest with a distribution function (cdf) F(z) and a probability
density function (pdf) f (z). Suppose that Z has a mean µ and a variance σ 2. Let Z1,Z2, . . . ,Zm
be a SRS of size m drawn from the pdf f (y), i.e., Zi∼f (z), for i = 1, 2, . . . ,m. Then, the mean
of SRS is denoted by µ̂SRS =

1
m

∑m
i=1Zi. Here, E

(
µ̂SRS

)
= µ (an unbiased estimator of µ),

and variance is Var
(
µ̂SRS

)
=

σ 2

m . Suppose that Zi j, i, j = 1, 2, 3, . . . ,m be m independent SRS
each of size m. Let Zi(1:m),Zi(2:m), . . . ,Zi(m:m) denotes the order statistics of the ith sample
Zi1,Zi2, . . . ,Zim. Now, implement the RSS method to m selected samples. This gives a balanced
RSS of size m, Z1(1:m),Z2(2:m), . . . ,Zm(m:m). The RSS mean estimator is denoted by µ̂RSS =
1
m

∑m
i=1Zi(i:m). Assuming that g(i:m) (z) be the pdf of the ith order statistic Z(i:m), and noting

that for each i, Zi(i:m)
d
=Z(i:m), where d stands for equality in distribution. The pdf of the Z(i:m)

is given by g(i:m) (z) = m
(
m− 1
i− 1

)
F i−1 (z) {1−F (z)}m−i f (z), −∞ < z < ∞, with mean µ(i:m) =∫

∞

−∞
zg(i:m) (z)dz and variance σ 2

(i:m) =
∫
∞

−∞

(
z−µ(i:m)

)2 g(i:m) (z)dz. It is of interest to note that
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µ̂RSS is unbiased estimator of µ and the corresponding variance is Var
(
µ̂RSS

)
=

1
m2

∑m
i=1 σ

2
(i:m) =

σ 2

m −
1
m2

∑m
i=1
(
µ(i:m)−µ

)2. Takahasi et al. [2] introduced the foundation of the RSS design and

proved that f (z)= 1
m

∑m
i=1 g(i:m) (z) and µ= 1

m

∑m
i=1µ(i:m). The ef�ciency (Eff) of µ̂SRS and µ̂RSS

is 1≤Eff
(
µ̂RSS, µ̂SRS

)
=

Var(µ̂SRS)
Var(µ̂RSS)

≤
m+1

2 . For further details See Takahasi et al. [2].

2.2 Truncation Based RSS
As we mentioned in the introduction that Al-Omari et al. [35] derived the TBRSS design; its

describtion is as follows:

Step 1: Choose m by SRS of size m each from the parent population.

Step 2: Within each choden sample, rank the units visually based on the variable of interest
or by any inexpensive method.

Step 3: De�ne a coef�cient δ = [αm], for 0 ≤ α < 0.5. Note that [t] denotes the integer
part of t.

Step 4: Choose the minumum ranked unit from the �rst δ samples and the maximum ranked
unit from the last δ samples. From the remaining m−2δ, choose the ith ranked unit from the ith
sample for i= δ+ 1, . . . ,m− δ.

Step 5: This �nalizes a cycle of a TBRSS. Steps 1–4 are repeated r times if needed to
determine a sample of size n=mr.

The corresponding estimator of population mean based on TBRSS is µ̂TBRSS =

1
m

(∑δ
i=1 zi(1:m)+

∑m−δ
i=δ+1 zi(i:m)+

∑m
i=m−δ+1 zi(m:m)

)
. The estimator µ̂TBRSS becomes unbiased if

the population is symmetric. For symmetric populations, the variance of µ̂TBRSS is Var
(
µ̂TBRSS

)
=

δ

m2

(
σ 2
(1:m)+ σ

2
(m:m)

)
+

1
m2

∑m−δ
i=δ+1 σ

2
(i:m). Note that for δ = 0, 1, Var

(
µ̂TBRSS

)
= Var

(
µ̂RSS

)
. For

samples of odd sizes, when δ = (m− 1) /2, The TBRSS and ERSS become equivalent. For further
details and application of this method, see Al-Omari et al. [35].

3 New Sampling Designs

This section introduces two new RSS methods; namely, simple Z ranked set sampling (SZRSS)
and generalized Z ranked set sampling (GZRSS) designs.

3.1 Simple ZRSS Design
The SZRSS procedure for both even and odd samples is described as follows. To get an

SZRSS of m size, select m random samples each of size m. Without yet knowing the values in the
samples, rank the units within each sample based on any inexpensive or cost free method.

i) For even m, choose the (i+ 1) th smallest ranked unit from the �rst m/2 samples, for i=
1, . . . ,m/2. Similarly, choose (i− 1)th the smallest ranked unit from the last m/2 samples,
for i= (m/2)+ 1, . . . ,m.

ii) For odd sample size m, choose the (i+ 1) th smallest ranked unit from the �rst (m− 1) /2
samples, for i = 1, . . . , (m− 1) /2. Then select the median of the ((m+ 1) /2) th sam-
ple. From the last (m− 1) /2 samples, select the (i− 1) th smallest ranked unit, for
i= (m+ 3) /2, (m+ 5) /2, . . . ,m.
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This process provides a cycle of an SZRSS of size m The cycle are repeated r times to
determine the size n=mr. The SZRSS estimator of µ for an even m is

µ̂E
SZRSS =

1
m

m/2∑
i=1

Zi(i+1:m)+

m∑
i=m/2+1

Zi(i−1:m)

 . (1)

The variance of µ̂E
SZRSS is Var

(
µ̂E

SZRSS

)
=

1
m2

(∑m/2
i=1 σ

2
(i+1:m)+

∑m/2
i=1 σ

2
(i−1:m)

)
. For odd sample

size m, the estimator based on SZRSS is µ̂O
SZRSS =

1
m

(∑(m−1)/2
i=1 Zi(i+1:m) +

Z{(m+1)/2}((m+1)/2:m)+
∑m

i=(m+3)/2Zi(i−1:m)

)
. The variance of µ̂O

SZRSS is given by Var
(
µ̂O

SZRSS

)
=

1
m2

(∑(m−1)/2
i=1 σ 2

(i+1:m)+ σ
2
((m+1)/2:m)+

∑m
i=(m+3)/2 σ

2
(i−1:m)

)
.

Lemma 1: (i) For symmetric distributions, the estimator µ̂J
SZRSS (J= E or O) of the popula-

tion mean µ is unbiased. (ii) Var(µ̂J
SZRSS) <Var(µ̂RSS) for symmetric (non-uniform) distributions.

Proof:

(i) For the estimator, given in Eq. (1), we have

E
(
µ̂E

SZRSS

)
=

1
m

(∑m/2
i=1 E

(
Zi(i+1:m)

)
+
∑m

i=m/2+1E
(
Zi(i−1:m)

))
=

1
m

(∑m/2
i=1 µ(i+1:m)+∑m

i=m/2+1µ(i−1:m)

)
. For any symmetric distribution, µ(i:m) − µ = µ − µ(m−i+1:m), for i =

1, 2, . . . ,m. After some simplications, we can write E
(
µ̂E

SZRSS

)
=

1
m {2µ(m/2)} = µ. Follow

the same process to prove that E
(
µ̂O

SZRSS

)
=µ.

(ii) The variance of Eq. (1) is de�ned as

Var
(
µ̂E

SZRSS

)
=

1
m2

m/2∑
i=1

Var
(
Zi(i+1:m)

)
+

m∑
i=m/2+1

Var
(
Zi(i−1:m)

)
=

1
m2

m/2∑
i=1

σ 2
(i+1:m)+

m∑
i=m/2+1

σ 2
(i−1:m)

 .

For any symmetric distribution, σ 2
(i:m) = σ

2
(m−i+1:m), i = 1, 2, . . . ,m. With some algebraic oper-

ations, we can write Var
(
µ̂E

SZRSS

)
=

1
m2

∑m
i=1 σ

2
(i:m)−

2
m2

(
σ 2
(1:m)− σ

2
(m/2:m)

)
. Note that the variance

decreases as i increases for symmetric (non-uniform) distributions, with minimum value occuring
at i = [(m+ 1) /2], i.e., σ 2

(i:m) ≤ σ
2
(j:m) for i, j = 1, 2, . . . , [(m+ 1) /2] with i ≥ j. Here, [t] represents

the greatest integer value of t. Therefore, σ 2
(1:m) > σ

2
(m/2:m) and hence, Var

(
µ̂E

SZRSS

)
< Var

(
µ̂RSS

)
,

which completes the proof. Follow the same process to prove that Var
(
µ̂O

SZRSS

)
<Var

(
µ̂RSS

)
.
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3.2 Generalized ZRSS Design
Now, we propose a generalized ZRSS (GZRSS) design. The steps of selecting a GZRSS are

given below in which the Steps 1–3 are similar to the TBRSS method.

Step 1: Choose m simple random samples, each with size m selected from the correspond-
ing population.

Step 2: Within each sample, rank the units visually with respect to the variable of interest or
by inexpensive or cost free method.

Step 3: De�ne a coef�cient δ = [αm], for 0≤ α < 0.5 and [t] symbolizes the integer value of t.

Step 4: From the �rst δ samples, draw the (i+ 1) th smallest ranked unit. From the last δ
samples, draw the (i− 1) th smallest ranked unit. But from the remaining m− 2δ samples, draw
the ith ranked unit from the ith sample for i= δ+ 1, . . . ,m− δ.

Step 5: Previous steps �nalize a cycle of a GZRSS of size m. Steps 1–4 are done r times if
needed to determine a sample of size n=mr.

Let Z11,Z12, . . . ,Z1m,Z21,Z22, . . . ,Z2m, . . . ,Zi1,Zi2, . . . ,Zim, . . . ,Zm1,Zm2, . . . ,Zmm be m inde-
pendent simple random samples each of size m. The GZRSS estimator of population mean µ

based on this sample is

µ̂GZRSS =
1
m

 δ∑
i=1

Zi(i+1:m)+

m−δ∑
i=δ+1

Zi(i:m)+
m∑

i=m−δ+1

Zi(i−1:m)

 , (2)

and the corresponding variance is Var
(
µ̂GZRSS

)
=

1
m2

(∑δ
i=1 σ

2
(i+1:m)+

∑m−δ
i=δ+1 σ

2
(i:m)+∑m

i=m−δ+1 σ
2
(i−1:m)

)
. Note that for δ = 0, we have Var

(
µ̂GZRSS

)
=Var

(
µ̂RSS

)
.

Lemma 2: For symmetric distributions about its population mean µ we have

(i) µ̂GZRSS is an unbiased estimator of µ.
(ii) Var

(
µ̂GZRSS

)
≤Var

(
µ̂RSS

)
and Var

(
µ̂GZRSS

)
≤Var

(
µ̂TBRSS

)
.

Proof:

(i) Take the expectation of µ̂GZRSS, given in Eq. (2), we have E
(
µ̂GZRSS

)
=

1
m{∑δ

i=1E
(
Zi(i+1:m)

)
+
∑m−δ

i=δ+1E
(
Zi(i:m)

)
+
∑m

i=m−δ+1E
(
Zi(i−1:m)

)}
=

1
m

{∑δ
i=1µ(i+1:m)+∑m−δ

i=δ+1µ(i:m)+
∑m

i=m−δ+1µ(i−1:m)

}
. As µ(i:m) − µ = µ − µ(m−i+1:m), for i = 1, 2, . . . ,m.

Therefore, we can write E
(
µ̂GZRSS

)
=

1
m {2δµ+mµ− 2δµ} =µ, which completes the proof.

(ii) Consider the estimator, given in Eq. (2), we have

Var
(
µ̂GZRSS

)
=

1
m2


δ∑
i=1

Var
(
Zi(i+1:m)

)
+

m−δ∑
i=δ+1

Var
(
Zi(i:m)

)
+

m∑
i=m−δ+1

Var
(
Zi(i−1:m)

)
=

1
m2


δ∑
i=1

σ 2
(i+1:m)+

m−δ∑
i=δ+1

σ 2
(i:m)+

m∑
i=m−δ+1

σ 2
(i−1:m)

 .
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For any symmetric distribution, σ 2
(i:m) = σ

2
(m−i+1:m), i= 1, 2, . . . ,m. After some simplication,

we can write Var
(
µ̂GZRSS

)
=

1
m2

∑m
i=1 σ

2
(i:m) −

2
m2

(
σ 2
(1:m)− σ

2
(k+1:m)

)
. As explain above, for

symmetric (non-uniform) distributions, σ 2
(i:m) ≤ σ

2
(j:m) for i, j= 1, 2, . . . , [(m+ 1) /2] with i≥ j.

Therefore, σ 2
(1:m) > σ

2
(k+1:m) and hence, Var

(
µ̂E

SZRSS

)
<Var

(
µ̂RSS

)
. The equality is attained

when k= 0, which completes the proof.
(iii) Var

(
µ̂GZRSS

)
≤ Var

(
µ̂TBRSS

)
if and only if Var

(
µ̂TBRSS

)
− Var

(
µ̂GZRSS

)
≥ 0. This

implies that 1
m2

{
δ
(
σ 2
(1:m)+ σ

2
(m:m)

)
+
∑m−δ

i=δ+1 σ
2
(i:m)

}
−

1
m2

{∑δ
i=1 σ

2
(i+1:m)+

∑m−δ
i=δ+1 σ

2
(i:m) +∑m

i=m−δ+1 σ
2
(i−1:m)

}
≥ 0 and also we have δ

(
σ 2
(1:m)+ σ

2
(m:m)

)
−

∑δ
i=1 σ

2
(i+1:m)−∑m

i=m−δ+1 σ
2
(i−1:m) ≥ 0. It can be written as

(
σ 2
(1:m)− σ

2
(2:m)

)
+

(
σ 2
(1:m)− σ

2
(3:m)

)
+

. . . +
(
σ 2
(1:m)− σ

2
(k+1:m)

)
+

(
σ 2
(m:m)− σ

2
(m−k:m)

)
+

(
σ 2
(m:m)− σ

2
(m−k+1:m)

)
+ . . .+(

σ 2
(m:m)− σ

2
(m−1:m)

)
≥ 0.

As mentioned above, for symmetric (non-uniform) distributions, σ 2
(i:m) ≤ σ 2

(j:m) for i, j =

1, 2, . . . , [(m+ 1) /2] with i ≥ j. Therefore, all of the above differences are positive and hence
Var

(
µ̂GZRSS

)
< Var

(
µ̂TBRSS

)
. The equality is attained when δ = 0, which completes the proof.

In the case of symmetric of the parent distribution, the Eff of µ̂GZRSS with respect to µ̂SRS

is de�ned by Eff
(
µ̂GZRSS, µ̂SRS

)
=

Var(µ̂SRS)
Var(µ̂GZRSS)

=
mσ 2∑m

i=1 σ
2
(i:m)−2

(
σ 2
(1:m)−σ

2
(k+1:m)

) . For asymmetric popu-

lations, the Eff will be Eff
(
µ̂GZRSS, µ̂SRS

)
=

Var(µ̂SRS)
MSE(µ̂GZRSS)

=
mσ 2∑δ

i=1 σ
2
(i+1:m)+

∑m−δ
i=δ+1 σ

2
(i:m)+

∑m
i=m−δ+1 σ

2
(i−1:m)

.

Now, to illustrate the method, some choices of the sample size m and the coef�cient δ are
considered for normal and Weibull distributions.

3.3 Examples
3.3.1 Normal Distribution

Let Z∼N (0, 1), where f (z) = 1
√

2π
exp

(
−
z2

2

)
, −∞ < z < ∞. The cdf and pdf

of the ith ranked unit from an RSS of size m = 5, respectively, are G(i:5) (z) =

BetaRegularized
[

1
2Erfc

(
−z/
√

2
)

, i, 5− i
]

and g(i:5) (z)= i
8
√

2π

(
4
i

)
exp

(
−z2/2

){
Erfc

(
−z/
√

2
)}i−1

{
Erfc

(
z/
√

2
)}4−i

, where Erfc (z) = 1 − Erf (z) = 1 − 2
√
π

∫ z
0 exp

(
−w2

)
dw is the comple-

mentary error function, BetaRegularized [z,a,b] = 1
Beta(a,b)

∫ z
0 t

a−1 (1− t)b−1 dt is the regular-

ized incomplete beta function and Beta (a,b) is the beta function or Euler integral of the
�rst kind. Consider the estimator given in Eq. (2), and let m = 5, we have µ̂GZRSS =

1
5

(∑δ
i=1Zi(i+1:5)+

∑5−δ
i=δ+1Zi(i:5)+

∑5
i=5−δ+1Zi(i−1:5)

)
. Based on the order statistics, the means

and variances of the ith, for i = 1, 2, . . . , 5, are µ(1:5) = −1.1629, µ(2:5) = −0.4950, µ(3:5) = 0,



1510 CMC, 2021, vol.67, no.2

µ(4:5) = 0.4950, µ(5:5) = 1.1629, σ 2
(1:5) = 0.4475, σ 2

(2:5) = 0.3115, σ 2
(3:5) = 0.2868, σ 2

(4:5) = 0.3115, and

σ 2
(5:5) = 0.4475. Also, the cases below for δ can be treated as follows:

Case I: δ = 0: The computed results for expectation and the variance of the estimator, given in
Eq. (2), are, respectively, E

(
µ̂GZRSS

)
= 0, Var

(
µ̂GZRSS

)
= 0.0721. The Eff of µ̂GZRSS with respect

to µ̂SRS is given by Eff
(
µ̂GZRSS, µ̂SRS

)
=

Var(µ̂SRS)
Var(µ̂GZRSS)

= 2.7701.

Case II: δ = 1: The expectation of µ̂GZRSS is E
(
µ̂GZRSS

)
= 0 and variance Var

(
µ̂GZRSS

)
=

0.0613. The Eff of µ̂GZRSS with respect to µ̂SRS is Eff
(
µ̂GZRSS, µ̂SRS

)
=

Var(µ̂SRS)
Var(µ̂GZRSS)

= 3.2617.

Case III: δ = 2: The expectation of the estimator given in Eq. (2) is E
(
µ̂GZRSS

)
= 0, with

variance Var
(
µ̂GZRSS

)
= 0.0593. The Eff of µ̂GZRSS with respect to µ̂SRS is Eff

(
µ̂GZRSS, µ̂SRS

)
=

3.3703.

3.3.2 Weibull Distribution

Let Z∼Weibull (2, 1), having pdf f (z) = 2z exp
(
−z2

)
, z > 0. The cdf and pdf of

the ith ranked unit from a ranked set sample for m = 5, respectively, are G(i:5) (z) =

BetaRegularized
[
1− exp

(
−z2

)
, i, 6− i

]
and g(i:5) (z)= 2i

(
5
i

)
z exp

[
−z2 (6− i)

] [
1− exp

(
−z2

)]i−1
.

For m = 5, we have µ̂GZRSS =
1
5

(∑δ
i=1Zi(i+1:5)+

∑5−δ
i=δ+1Zi(i:5)+

∑5
i=5−δ+1Zi(i−1:5)

)
. Based

on the order statistics, the means and variances are µ(1:5) = 0.3963, µ(2:5) = 0.6302, µ(3:5) = 0.8479,

µ(4:5) = 1.0946, µ(5:5) = 1.4619, and σ 2
(1:5) = 0.0429, σ 2

(2:5) = 0.0528, σ 2
(3:5) = 0.0643 σ 2

(4:5) = 0.0850,

σ 2
(5:5) = 0.1459, respectively. Also, the cases below for δ can be treated as follows:

Case I: Consider δ = 0:

The expectation of µ̂GZRSS is E
(
µ̂GZRSS

)
= 0.8862, which is an unbiased estimate with

variance of µ̂GZRSS is Var
(
µ̂GZRSS

)
= 0.0156. The Eff of µ̂GZRSS with respect to µ̂SRS is

Eff
(
µ̂GZRSS, µ̂SRS

)
= 2.7436.

Case II: Consider δ = 1: Similarly, the mean (expectation) and variance of µ̂GZRSS are
E
(
µ̂GZRSS

)
= 0.8595 and Var

(
µ̂GZRSS

)
= 0.0135, respectively. As the estimator is not unbiased,

therefore, the MSE of µ̂GZRSS is given by MSE
(
µ̂GZRSS

)
=
(
Bias

(
µ̂GZRSS

))2
+ Var

(
µ̂GZRSS

)
.

The bias of µ̂GZRSS is Bias
(
µ̂GZRSS

)
=−0.0266. Therefore, MSE

(
µ̂GZRSS

)
= 0.0143. The Eff of

µ̂GZRSS with respect to µ̂SRS is Eff
(
µ̂GZRSS, µ̂SRS

)
=

Var(µ̂SRS)
MSE(µ̂GZRSS)

= 2.9989.

Case III: Considerδ = 2: The mean and variance of µ̂GZRSS are E
(
µ̂GZRSS

)
= 0.8537

and Var
(
µ̂GZRSS

)
= 0.0132. Again the estimator is biased with Bias

(
µ̂GZRSS

)
= −0.0324 and

MSE
(
µ̂GZRSS

)
= 0.0142. The Eff of µ̂GZRSS with respect to µ̂SRS is Eff

(
µ̂GZRSS, µ̂SRS

)
=

Var(µ̂SRS)
MSE(µ̂GZRSS)

= 3.0034.
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Table 1: Exact Eff of mean estimators under symmetric distributions

m= 4 m= 7

δ = 0 δ = 1 δ = 0 δ = 1 δ = 2 δ = 2 kδ = 3 δ = 3
RSS GZRSS RSS GZRSS GZRSS TBRSS GZRSS TBRSS

Distributions TBRSS SZRSS TBRSS SZRSS

N (0, 1) 2.3469 2.7743 3.5949 4.1746 4.3674 3.1566 4.4185 2.7323
Laplace (0, 1) 2.0383 3.8408 2.8676 4.8365 5.4700 2.0380 6.0144 1.5033
Logit (0, 1) 2.2164 3.1637 3.2667 4.5109 4.9153 2.5605 5.0195 2.0275
U (0, 1) 2.5000 2.0833 4.0000 3.5745 3.3600 4.5405 3.2941 5.7931
Beta (6, 6) 2.4026 2.6052 3.7412 4.0207 4.1242 3.4980 4.1526 3.2185
T (7) 2.1853 3.2286 3.1857 4.6091 5.0184 2.4339 5.1206 1.9029

m= 6 m= 5

δ = 0 δ = 1 δ = 2 δ = 2 δ = 0 δ = 1 δ = 2 δ = 2
RSS GZRSS GZRSS TBRSS RSS GZRSS GZRSS TBRSS

Distributions TBRSS SZRSS TBRSS SZRSS

N (0, 1) 3.1857 3.7250 3.8860 2.7828 2.7702 3.2618 3.3703 2.4074
Laplace (0, 1) 2.6028 4.5481 5.3831 1.8230 2.3274 4.2355 4.8580 1.6046
Logit (0, 1) 2.9276 4.0931 4.4382 2.2787 2.5783 3.6514 3.8914 1.9927
U (0, 1) 3.5000 3.0625 2.8824 4.0833 3.0000 2.5610 2.4419 3.6207
Beta (6, 6) 3.2993 3.5594 3.6446 3.0747 2.8535 3.0895 3.1456 2.6509
T (7) 2.8646 4.1812 4.5287 2.1786 2.5321 3.7283 3.9694 1.9171

Now, we consider the mean estimation for some symmetric distributions, and also for some
asymmetric distributions. The exact relative ef�ciencies of our proposed estimators are presented
in Tabs. 1 and 2.

Tabs. 1 and 2 show that, for symmetric distributions, the ef�ciency of the GZRSS increases
as the δ value increases except in the case of the uniform distribution. In the case of asymmetric
distributions, generally, the ef�ciencies increase when δ increases for 0 to 1, and they decrease
function when δ > 1. For both asymmetric and symmetric distributions, the relative ef�ciency of
mean estimators under GZRSS is an increasing function of the sample size. For all considered
cases, GZRSS is more ef�cient than RSS and TBRSS except that TBRSS is more adequate than
GZRSS when the considered distribution is standard uniform.

4 Errors in Ranking and Comparison with SRS Regression Estimator

We investigate the ful�llment of the suggested estimators for the mean under both GZRSS
design and imperfect rankings. The suggested estimators under both rankings’ schemes are also
compared with the SRS for the population mean based on the linear regression estimator.

4.1 Errors in Ranking
Accurate ranking increases the ef�ciency of the RSS. However, Dell et al. [3] show that even

if the ranking has some errors, the estimator under RSS still remains unbiased and performs
at least as well as the SRS estimator. Here, we study the performance of the estimators under
the proposed RSS designs, when ranking has some errors. The mostly used RSS model to study
the effect of errors in ranking is based on the ranking with respect to a concomitant variable
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that is correlated with the study variable. The ef�ciency of the estimator now depends on the
correlation value between the study variable Z and the concomitant or ancillary variable W .
Stokes [4] suggested a model for imperfect ranking assuming that an ancillary variable W is
available, can be simply measured and is correlated with the interest variable Z. For further details
see Stokes [4], Patil et al. [5] and Muttlak [39]. Stokes [4] imposed the following assumptions
considered in developing the following model:

(i) The relationship between Z and the regressor W is linear,

(ii) Z−µZ
σZ

and W−µW
σW

variables follow the same distribution.

Table 2: Exact Eff comparison of mean estimators under asymmetric distributions

m= 4 m= 7

δ = 0 δ = 1 δ = 0 δ = 1 δ = 2 δ = 2 kδ = 3 δ = 3
RSS GZRSS RSS GZRSS GZRSS TBRSS GZRSS TBRSS

Distributions TBRSS SZRSS TBRSS SZRSS

Exp (1) 1.9200 2.4407 2.6997 3.0237 2.5973 1.6434 2.4628 0.8125
Gamma (2, 1) 2.0958 2.5639 3.0515 3.4334 3.1541 2.1030 3.0533 1.1880
Gamma (3, 2) 2.1695 2.6230 3.2055 3.6317 3.4503 2.3504 3.3763 1.4440
Beta (9, 2) 2.2667 2.4835 3.4398 3.5941 3.4134 2.7576 3.3441 1.7990
Weibull (2, 1) 2.3251 2.5676 3.5609 3.8263 3.7826 3.0318 3.7585 2.2718
Half-Nor. (1) 2.2393 2.3701 3.3857 3.4191 3.1403 2.6310 3.0456 1.5988

m= 6 m= 5

δ = 0 δ = 1 δ = 2 δ = 2 δ = 0 δ = 1 δ = 2 δ = 2
RSS GZRSS GZRSS TBRSS RSS GZRSS GZRSS TBRSS

Distributions TBRSS SZRSS TBRSS SZRSS

Exp (1) 2.449 2.8169 2.4948 1.4815 2.1898 2.6201 2.4423 1.3216
Gamma (2, 1) 2.7423 3.1464 2.9529 1.8836 2.4244 2.8576 2.7680 1.6650
Gamma (3, 2) 2.8691 3.3037 3.1890 2.0976 2.5245 2.9696 2.9282 1.8449
Beta (9, 2) 3.0551 3.2287 3.1088 2.4411 2.6645 2.8598 2.8075 2.1275
Weibull (2, 1) 3.1551 3.4167 3.3992 2.6824 2.7436 2.9990 3.0034 2.3327
Half-Nor. (1) 3.0100 3.0702 2.8712 2.3379 2.6284 2.7206 2.6172 2.0482

If (Z,W) follows the bivariate normal distribution, then both conditions are easily sat-
is�ed. Following Stokes [4] and (i), we can write Z[i:m] = µZ + ρ σZ

σW

(
W(i:m)−µW

)
+ ξi,

i = 1, 2, . . . ,m, where where ρ is the coef�cient of correlation, σZ and σW are the population
standard deviations, µZ and µW are the corresponding means. Note that the ranking of the
auxiliary variable W is perfect whereas the ranking of Z is imperfect, i.e., the ranking of Z has
some errors. Here, W(i:m) and Z[i:m] denote the ith order statistic and the ith judgment order
statistic of a random sample of size m. ξi denotes the error term with zero mean and a constant
variance, i.e., E (ξi) = 0 and Var (ξi) = σ 2

ξ = σ
2
Z

(
1− ρ2

)
. As SZRSS becomes a special case of

GZRSS, therefore, we consider the estimator based on GZRSS. Now, the mean of the study
variable Z with ranking based on the auxiliary variable W under GZRSS can be written as

µ̂ZGZRSS =
1
m

(∑δ
i=1Zi[i+1:m]+

∑m−δ
i=δ+1Zi[i:m]+

∑m
i=m−δ+1Zi[i−1:m]

)
, where µ̂YGZRSS is unbiased
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estimaor of µY , and it variance is Var
(
µ̂ZGZRSS

)
=

1
m2

{
m
(
1− ρ2

)
σ 2
Z+ ρ

2 σ
2
Z
σ 2
W

(∑δ
i=1 σ

2
W(i+1:m)+∑m−δ

i=δ+1 σ
2
W(i:m)+

∑m
i=m−δ+1 σ

2
W(i−1:m)

)}
. Note that if we consider δ = 0 in µ̂ZGZRSS, then it

becomes the simple RSS estimator of population mean. The ef�ciency of µ̂YGZRSS with respect
to µ̂SRS is

Eff
(
µ̂ZGZRSS, µ̂SRS

)
=

Var
(
µ̂SRS

)
Var

(
µ̂ZGZRSS

)
=

1

1− ρ2+
ρ2

mσ 2
W

(∑δ
i=1 σ

2
W(i+1:m)+

∑m−δ
i=δ+1 σ

2
W(i:m)+

∑m
i=m−δ+1 σ

2
W(i−1:m)

) .

The ef�ciency of the µ̂ZGZRSS with respect to µ̂RSS is

Eff
(
µ̂ZGZRSS, µ̂RSS

)
=

Var
(
µ̂RSS

)
Var

(
µ̂ZGZRSS

)
=

∑m
i=1 σ

2
W(i:m)∑δ

i=1 σ
2
W(i+1:m)+

∑m−δ
i=δ+1 σ

2
W(i:m)+

∑m
i=m−δ+1 σ

2
W(i−1:m)

,

which shows that µ̂YGZRSS is always better over µ̂YSRS and µ̂RSS, even when there
are errors in ranking. Similarly, we can de�ne the estimator of population mean µZ

based on TBRSS by µ̂ZTBRSS =
1
m

(∑δ
i=1Zi[1:m]+

∑m−δ
i=k+1Zi[i:m]+

∑m
i=m−δ+1Zi[m:m]

)
, where

µ̂ZTBRSS is unbiased estimaor of µZ, and it variance is given by Var
(
µ̂ZTBRSS

)
=

1
m2

[
m
(
1− ρ2

)
σ 2
Z+ ρ

2 σ
2
Z
σ 2
W

(∑δ
i=1 σ

2
W(1:m)+

∑m−δ
i=δ+1 σ

2
W(i:m)+

∑m
i=m−δ+1 σ

2
W(m:m)

)]
.

The ef�ciency of µ̂ZGZRSS with respect to µ̂ZTBRSS (based on imperfect ranking) is given by

Eff
(
µ̂ZGZRSS,µ̂ZTBRSS

)
=

Var
(
µ̂ZTBRSS

)
Var

(
µ̂ZGZRSS

)
=

1+ ρ2

m(1−ρ2)σ 2
W

(∑δ
i=1σ

2
W(1:m)+

∑m−δ
i=δ+1σ

2
W(i:m)+

∑m
i=m−δ+1σ

2
W(m:m)

)
1+ ρ2

m(1−ρ2)σ 2
W

(∑δ
i=1σ

2
W(i+1:m)+

∑m−δ
i=δ+1σ

2
W(i:m)+

∑m
i=m−δ+1σ

2
W(i−1:m)

) .

The exact ef�ciencies of our proposed estimators under GZRSS with respect to RSS and
TBRSS are given in Tab. 3.

It is clear from the results given in Tab. 3 that, as the ef�ciencies under each design are a
function of the correlation coef�cient ρ, i.e., as the value of ρ increases, the relative ef�ciencies
increase and vice versa. As expected, the increase in the sample size also increases the ef�ciency
of the estimator under each of the RSS design. The proposed estimators are better than the
existing counterparts.
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Table 3: Exact Eff comparison of mean estimators under standard bivariate normal distribution

ρ

Design m δ 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 1

RSS 4 0 1.0057 1.0235 1.0544 1.1011 1.1675 1.3912 1.5805 1.8687 2.3469
GZRSS 4 1 1.0064 1.0262 1.0610 1.1139 1.1903 1.4564 1.6929 2.0748 2.7742
RSS 5 0 1.0064 1.0262 1.0610 1.1138 1.1901 1.4558 1.6919 2.0729 2.7701
GZRSS 5 1 1.0069 1.0285 1.0665 1.1247 1.2097 1.5146 1.7978 2.2813 3.2617
GZRSS 5 2 1.0070 1.0289 1.0675 1.1267 1.2133 1.5258 1.8185 2.3237 3.3703
TBRSS 5 2 1.0058 1.0239 1.0555 1.1031 1.1711 1.4014 1.5978 1.8994 2.4073
RSS 6 0 1.0069 1.0282 1.0658 1.1233 1.2070 1.5064 1.7828 2.2509 3.1856
GZRSS 6 1 1.0073 1.0301 1.0704 1.1325 1.2238 1.5587 1.8803 2.4542 3.7250
GZRSS 6 2 1.0074 1.0306 1.0716 1.1348 1.2280 1.5721 1.9058 2.5097 3.8860
TBRSS 6 2 1.0064 1.0263 1.0611 1.1142 1.1907 1.4575 1.6949 2.0786 2.7827
RSS 7 0 1.0072 1.0297 1.0694 1.1305 1.2201 1.5472 1.8586 2.4077 3.5949
GZRSS 7 1 1.0076 1.0313 1.0734 1.1385 1.2347 1.5939 1.9481 2.6039 4.1745
GZRSS 7 2 1.0077 1.0318 1.0745 1.1407 1.2387 1.6072 1.9741 2.6633 4.3673
TBRSS 7 2 1.0068 1.0281 1.0655 1.1227 1.2059 1.5032 1.7769 2.2391 3.1566
GZRSS 7 3 1.0078 1.0319 1.0748 1.1412 1.2398 1.6105 1.9808 2.6786 4.4185
TBRSS 7 3 1.0063 1.0260 1.0605 1.1128 1.1883 1.4506 1.6828 2.0556 2.7322

4.2 Comparison with Regression Estimator Based on SRS
Patil et al. [5] compared the estimator of a population mean under RSS with the regression

estimator based on SRS. It is shown that for a small correlation between the study variable and
the ancillary variable, the RSS mean estimator is better than the regression estimator under SRS.
In this section, we compare the performance of the proposed mean estimator under GZRSS with
respect to the SRS regression estimator. It is assumed that the population mean of the ancillary
variable is known. Following Muttlak [39], the linear regression of Z on W is Zi = α+βWi+ ξi,
i= 1, 2, . . . ,m, where α and β are the intercept and slope of the regression line. Here, ξi is error
term with zero mean. The linear regression estimator of the population mean µZ when µW is
known is

µ̂Zlr =Z+ β̂
(
µW −W

)
, (3)

where Z and W are the corresponding sample mean of Z and W , based on an SRS of size
m. Note that, β̂ is the least square estimator of the slope β of the regression line. Sukhatme
and Sukhatme (1970) showed that the regression estimator given in Eq. (3) of the population
mean µZ is an unbiased estimator once the joint distribution of Z and W is a bivariate normal

distribution. The variance of µ̂Ylr is given by Var
(
µ̂Zlr

)
=

σ 2
Z

(
1−ρ2)
m

(
1+ 1

m−3

)
. In case of per-

fect ranking, the Eff of µ̂GZRSS relative to µ̂Zlr is given by Eff
(
µ̂GZRSS, µ̂Zlr

)
=

Var(µ̂Zlr)
Var(µ̂GZRSS)

=

mσ 2
Z

(
1−ρ2)(1+ 1

m−3

)
∑δ

i=1 σ
2
(i+1:m)+

∑m−δ
i=δ+1 σ

2
(i:m)+

∑m
i=m−δ+1 σ

2
(i−1:m)

. Similarly, in case of imperfect ranking, the Eff of µ̂ZGZRSS
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relative to µ̂Ylr is given by

Eff
(
µ̂ZGZRSS, µ̂Zlr

)
=

Var
(
µ̂Zlr

)
Var

(
µ̂ZGZRSS

)
=

1+ 1
m−3

1+ ρ2

mσ 2
W(1−ρ

2)

(∑δ
i=1 σ

2
W(1:m)+

∑m−δ
i=δ+1 σ

2
W(i:m)+

∑m
i=m−δ+1 σ

2
W(m:m)

) .

In Tab. 4, we provide exact relative ef�ciencies of the proposed estimators with respect to
the classical linear regression estimator of mean. Note that the proposed mean estimator with
perfect ranking under GZRSS outperforms other competitor estimators when the value of ρ is
less than 0.9.

Similarly, in Tab. 5, we compared the performance of the suggested estimators under imperfect
ranking with respect to the linear regression estimator. It is worth mentioning that even when
there are errors in ranking, the proposed estimator is still more ef�cient than the linear regression
estimator when the value of ρ is less than 0.8. The ef�ciencies of the newly estimators are high
based on perfect ranking as compared with the case of imperfect ranking. Note that here RE
is a decreasing function of sample size because the performance of linear regression estimator is
increasing with the increasing of the sample size. For all of the cases, GZRSS mean estimator
always performs better than the TBRSS estimator.

Table 4: The Eff of the SRS linear regression estimator with respect to the GZRSS estimator
based on perfect ranking

ρ

Design m δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RSS 4 0 4.6469 4.5061 4.2714 3.9428 3.5204 3.0040 2.3938 1.6898 0.8918
GZRSS 4 1 5.4930 5.3266 5.0491 4.6607 4.1614 3.5510 2.8297 1.9974 1.0542
RSS 5 0 4.1137 3.9890 3.7812 3.4904 3.1164 2.6593 2.1191 1.4958 0.7895
GZRSS 5 1 4.8437 4.6969 4.4523 4.1098 3.6694 3.1313 2.4952 1.7613 0.9296
GZRSS 5 2 5.0049 4.8532 4.6004 4.2466 3.7916 3.2355 2.5782 1.8199 0.9605
TBRSS 5 2 3.5749 3.4665 3.2860 3.0332 2.7082 2.3110 1.8416 1.2999 0.6861
RSS 6 0 4.2050 4.0776 3.8652 3.5679 3.1856 2.7184 2.1662 1.5291 0.8070
GZRSS 6 1 4.9170 4.7680 4.5196 4.1720 3.7250 3.1786 2.5330 1.7880 0.9436
GZRSS 6 2 5.1295 4.9740 4.7150 4.3523 3.8860 3.3160 2.6424 1.8652 0.9844
TBRSS 6 2 3.6732 3.5619 3.3764 3.1166 2.7827 2.3746 1.8922 1.3357 0.7049
RSS 7 0 4.4487 4.3139 4.0892 3.7746 3.3702 2.8759 2.2917 1.6177 0.8537
GZRSS 7 1 5.1660 5.0094 4.7485 4.3832 3.9136 3.3396 2.6612 1.8785 0.9914
GZRSS 7 2 5.4046 5.2408 4.9678 4.5857 4.0944 3.4938 2.7841 1.9653 1.0372
TBRSS 7 2 3.9063 3.7879 3.5906 3.3144 2.9593 2.5253 2.0123 1.4204 0.7497
GZRSS 7 3 5.4678 5.3022 5.0260 4.6394 4.1423 3.5348 2.8167 1.9883 1.0493
TBRSS 7 3 3.3812 3.2787 3.1079 2.8689 2.5615 2.1858 1.7418 1.2295 0.6489
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Table 5: The Eff of the SRS linear regression estimator with respect to the GZRSS estimator
based on imperfect ranking

ρ

Design m δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RSS 4 0 1.9914 1.9651 1.9191 1.8498 1.7512 1.6133 1.4190 1.1379 0.7101
GZRSS 4 1 1.9927 1.9704 1.9311 1.8715 1.7854 1.6628 1.4855 1.2189 0.7884
RSS 5 0 1.4945 1.4777 1.4482 1.4035 1.3388 1.2468 1.1137 0.9136 0.5908
GZRSS 5 1 1.4953 1.4810 1.4558 1.4172 1.3609 1.2793 1.1587 0.9708 0.6501
GZRSS 5 2 1.4955 1.4816 1.4572 1.4197 1.3650 1.2854 1.1672 0.9820 0.6622
TBRSS 5 2 1.4937 1.4744 1.4408 1.3900 1.3175 1.2159 1.0721 0.8628 0.5413
RSS 6 0 1.3291 1.3161 1.2931 1.2581 1.2070 1.1332 1.0243 0.8557 0.5702
GZRSS 6 1 1.3297 1.3185 1.2988 1.2684 1.2238 1.1584 1.0599 0.9025 0.6217
GZRSS 6 2 1.3298 1.3191 1.3002 1.2710 1.2280 1.1647 1.0690 0.9148 0.6358
TBRSS 6 2 1.3285 1.3136 1.2875 1.2479 1.1907 1.1091 0.9911 0.8135 0.5266
RSS 7 0 1.2465 1.2356 1.2165 1.1871 1.1439 1.0808 0.9863 0.8363 0.5718
GZRSS 7 1 1.2469 1.2376 1.2210 1.1954 1.1575 1.1015 1.0161 0.8766 0.6184
GZRSS 7 2 1.2471 1.2381 1.2223 1.1977 1.1613 1.1073 1.0246 0.8883 0.6325
TBRSS 7 2 1.2460 1.2337 1.2120 1.1788 1.1306 1.0609 0.9583 0.7996 0.5317
GZRSS 7 3 1.2471 1.2383 1.2226 1.1983 1.1623 1.1088 1.0267 0.8913 0.6361
TBRSS 7 3 1.2454 1.2312 1.2063 1.1685 1.1140 1.0365 0.9248 0.7572 0.4882

5 Estimation of Population Median

Estimation of the population median based on the sampling methods, studied in this
paper, is presented in this section. Let Q be the population median and Z1,Z2, . . . ,Zm be

an SRS of size m. Then, the median estimator is given by Q̂SRS = Z(m+1
2 :m

), for odd m, and

Q̂SRS =
1
2

(
Z(m2 :m)+Z

(
m+2

2 :m
)) , for even m. From RSS units of size m, i.e., Z1(1:m), Z2(2:m), . . .,

Zm(m:m), the population median estimator based on the RSS is Q̂RSS = median
{
Z1(1:m), Z2(2:m) ,

. . . ,Zm(m:m)
}
. The corresponding population median estimator based on the GZRSS is Q̂GZRSS =

median
{
Z1(2:m), . . . ,Zδ(δ+1:m),Zδ+1(δ+1:m), . . . ,Zm−δ(m−δ:m),Zm−δ+1(m−δ:m), . . . ,Zm(m−1:m)

}
. The ef�-

ciencies of Q̂GZRSS and Q̂RSS with respect to Q̂SRS, are given by Eff
(
Q̂h, Q̂SRS

)
=

MSE
(
Q̂SRS

)
MSE

(
Q̂h

) ,

where h=GZRSS, RSS. The estimated MSE of any median estimator is de�ned as MSE
(
Q̂h

)
=

1
106

∑106

i=1

(
Q̂ih− Q̂

)2
, h = GZRSS, RSS, SRS. The median estimation of some symmetric and

asymmetric distributions is considered here based on extensive Monte Carlo simulations. The
obtained results are presented in Tabs. 6–8.
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Table 6: Eff comparison of median estimators under symmetric distributions

m= 4 m= 7

δ = 0 δ = 1 δ = 0 δ = 1 δ = 2 δ = 2 kδ = 3 δ = 3
RSS GZRSS RSS GZRSS GZRSS TBRSS GZRSS TBRSS

Distributions TBRSS SZRSS TBRSS SZRSS

Exp (1) 2.2047 2.7001 2.5002 2.8383 3.3952 2.1690 3.6972 1.3014
Gamma (2, 1) 2.5013 3.5738 3.0637 3.5165 4.3106 2.5335 4.7074 1.4043
Gamma (3, 2) 2.2825 2.8636 2.6048 2.9246 3.5516 2.1990 3.8096 1.3322
Beta (9, 2) 1.9823 2.2368 2.2379 2.5384 2.9668 1.9591 3.2303 1.2409
Weibull (2, 1) 2.1341 2.6238 2.4543 2.7646 3.2906 2.0837 3.6019 1.2979
Half-Nor. (1) 2.2876 2.8669 2.5555 2.9373 3.5187 2.2148 3.8230 1.3252

m= 6 m= 5

δ = 0 δ = 1 δ = 2 δ = 2 δ = 0 δ = 1 δ = 2 δ = 2
RSS GZRSS GZRSS TBRSS RSS GZRSS GZRSS TBRSS

Distributions TBRSS SZRSS TBRSS SZRSS

Exp (1) 2.7410 3.1322 3.5320 2.2490 2.1106 2.7561 3.1107 1.4950
Gamma (2, 1) 3.2110 3.9148 4.5626 2.4605 2.5528 3.4580 4.1257 1.6981
Gamma (3, 2) 2.8315 3.3106 3.7088 2.3122 2.1780 2.8629 3.2754 1.5494
Beta (9, 2) 2.4445 2.7741 3.0185 2.0924 1.8650 2.3594 2.6441 1.3926
Weibull (2, 1) 2.6832 3.0811 3.4603 2.1935 2.0519 2.6942 3.0366 1.4784
Half-Nor. (1) 2.7820 3.3051 3.7001 2.2896 2.1881 2.8440 3.2737 1.5437

Table 7: Eff comparison of median estimators under asymmetric distributions

m= 4 m= 7

δ = 0 δ = 1 δ = 0 δ = 1 δ = 2 δ = 2 δ = 3 δ = 3
RSS GZRSS RSS GZRSS GZRSS TBRSS GZRSS TBRSS

Distributions TBRSS SZRSS TBRSS SZRSS

Exp (1) 2.2343 3.1597 2.6781 3.1437 3.7520 2.3118 4.0702 1.3278
Gamma (2, 1) 2.2526 2.8805 2.5710 2.9520 3.5825 2.2039 3.8493 1.3000
Gamma (3, 2) 2.2182 2.8238 2.5536 2.9132 3.4760 2.1673 3.7753 1.3068
Beta (9, 2) 2.1758 2.7205 2.4799 2.8430 3.3866 2.1622 3.7585 1.3132
Weibull (2, 1) 2.1849 2.6422 2.4935 2.7935 3.3578 2.1300 3.6298 1.2904
Half-Nor. (1) 2.1544 2.6805 2.4791 2.8175 3.3463 2.1317 3.6332 1.3135

m= 6 m= 5

δ = 0 δ = 1 δ = 2 δ = 2 δ = 0 δ = 1 δ = 2 δ = 2
RSS GZRSS GZRSS TBRSS RSS GZRSS GZRSS TBRSS

Distributions TBRSS SZRSS TBRSS SZRSS

Exp(1) 2.9243 3.4698 3.9542 2.3130 2.3296 3.0752 3.5579 1.6061
Gamma (2, 1) 2.7792 3.3336 3.6999 2.2621 2.2133 2.8910 3.3331 1.5371
Gamma (3, 2) 2.7371 3.2919 3.6542 2.2696 2.1561 2.8117 3.2924 1.5337
Beta (9, 2) 2.7039 3.1430 3.5346 2.2543 2.0905 2.7394 3.1401 1.4998
Weibull (2, 1) 2.6740 3.1567 3.4869 2.2274 2.0889 2.7228 3.0921 1.4738
Half-Nor. (1) 2.6672 3.1059 3.4576 2.1861 2.0869 2.6910 3.0727 1.4856
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The results, given in Tabs. 6 and 7, reveal that the attainment in ef�ciency determined by
using the GZRSS method. For instance, when m= 7 and δ = 2, the RE of the GZRSS is 3.5187
for estimating the median of the student’s t distribution. Also, GZRSS is more ef�cient than RSS
and TBRSS based on the same sample size for a �xed value of δ. To study the performance of the
proposed median estimators under GZRSS for imperfect rankings, we have considered standard
bivariate normal distribution. The relative ef�ciencies of the median estimators are obtained
for different values of correlation coef�cient using extensive Monte Carlo simulations and are
displayed in Tab. 8.

According to the results given in Tab. 8, the median estimators under proposed designs are
at least as ef�cient as compared with the SRS median estimator. Here, the relative ef�ciencies are
also increasing function of m and ρ. The results under GZRSS are ef�cient as compared to RSS
and TBRSS under perfect and imperfect rankings.

Table 8: Eff comparison of median estimators under bivariate normal distribution

ρ

Design m δ 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 1

RSS 4 0 1.0010 1.0166 1.0430 1.0777 1.1343 1.3106 1.4740 1.7317 2.1975
GZRSS 4 1 1.0051 1.0274 1.0598 1.1131 1.1837 1.4396 1.6699 2.0362 2.7102
RSS 5 0 1.0034 1.0175 1.0413 1.0700 1.1162 1.2765 1.4205 1.6569 2.0987
GZRSS 5 1 1.0049 1.0244 1.0586 1.1113 1.1851 1.4411 1.6693 2.0320 2.7185
GZRSS 5 2 1.0105 1.0294 1.0642 1.1193 1.1944 1.4891 1.7597 2.2077 3.1121
TBRSS 5 2 1.0019 1.0102 1.0159 1.0331 1.0482 1.1180 1.1733 1.2791 1.5079
RSS 6 0 1.0039 1.0220 1.0468 1.0909 1.1493 1.3698 1.5728 1.9323 2.7094
GZRSS 6 1 1.0052 1.0313 1.0663 1.1184 1.1977 1.4819 1.7389 2.1988 3.1845
GZRSS 6 2 1.0099 1.0278 1.0703 1.1266 1.2160 1.5304 1.8227 2.3395 3.5345
TBRSS 6 2 1.0001 1.0137 1.0323 1.0656 1.1081 1.2604 1.4043 1.6591 2.2450
RSS 7 0 1.0039 1.0146 1.0469 1.0827 1.1364 1.3231 1.4958 1.8040 2.4819
GZRSS 7 1 1.0046 1.0244 1.0625 1.1103 1.1865 1.4494 1.6797 2.0671 2.8352
GZRSS 7 2 1.0065 1.0286 1.0651 1.1233 1.2071 1.5091 1.7870 2.2875 3.3949
TBRSS 7 2 1.0000 1.0115 1.0216 1.0488 1.0792 1.2038 1.3166 1.5467 2.1409
GZRSS 7 3 1.0066 1.0323 1.0673 1.1259 1.2118 1.5280 1.8295 2.3861 3.6701
TBRSS 7 3 1.0022 1.0018 1.0059 1.0045 1.0091 1.0190 1.0275 1.0800 1.3046

6 An Application to Real Data

To illustrate the use of the GZRSS method in the �eld, a real data set is considered for both
mean and median estimation. This real data set is considered by Platt et al. [45] and it is related
to the height and diameter of 399 conifers (Pinus Palustris) trees. The data consists of 7 variables
of which we have considered only 2 variables. Let the variable of interest Z represents the height
of the conifer tree measured in feet while the ancillary variable W is the diameter of the tree at
breast height. In Tab. 9, we provide the summary statistics of the data, and the corresponding
plots of the data are displayed in Fig. 1.
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Table 9: Statistics summary of the trees data

Variable µ σ 2 Skewness Kurtosis Q ρ

Diameter (W) in cm 20.84 310.11 0.884 –0.423 14.5 0.908
Height (Z) in feet 52.36 325.14 1.619 1.776 29

Figure 1: List plot (left) and histogram (right) of the 399-tree data

Table 10: The Eff of estimating of the population mean and median of the study variable based
on perfect and imperfect rankings

Population mean

δ = 0 δ = 1 δ = 2 δ = 3

RSS GZRSS GZRSS TBRSS GZRSS TBRSS

W (ranking on W ) m= 4 1.9328 1.9562 – – – –
W (ranking on Z) 1.9146 1.9488 – – – –
W (ranking on W ) m= 5 2.2201 2.0432 1.8576 1.3707 – –
W (ranking on Z) 2.2083 2.0329 1.8514 1.3630 – –
W (ranking on W ) m= 6 2.5159 2.1750 1.8590 1.6181 – –
W (ranking on Z) 2.4931 2.1654 1.8562 1.6102 – –
W (ranking on W ) m= 7 2.7956 2.3424 1.9183 1.8810 1.7934 0.7801
W (ranking on Z) 2.7658 2.3259 1.9182 1.8706 1.7930 0.7886

Population median

W (ranking on X ) m= 4 2.3463 4.0284 – – – –
W (ranking on Z) 2.3222 3.9729 – – – –
W (ranking on X ) m= 5 3.0024 4.4195 5.5350 1.8235 – –
W (ranking on Z) 2.9751 4.4076 5.4368 1.7997 – –
W (ranking on X ) m= 6 3.4954 4.7359 6.2749 2.3903 – –
W (ranking on Z) 3.4450 4.6950 6.1556 2.3598 – –
W (ranking on W ) m= 7 3.9783 4.8876 6.3597 3.1500 7.2088 1.5035
W (ranking on Z) 3.9036 4.8217 6.2867 3.0682 7.0979 1.4719

For the diameter and the height, the coef�cients of skewness are 0.884 and 1.619 respectively,
indicating that these data are non-symmetric. The MSEs for various estimators (under SRS, RSS,
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TBRSS and GZRSS methods) were calculated by one million iterations. The obtained results are
summarized in Tab. 10. The samples were drawn using SRS without replacement. The results
given in Tab. 10 are the mean and median estimation values of the trees’ heights under perfect
and imperfect rankings. These results demonstrate that the GZRSS estimators are more ef�cient
than their competitors. As we concluded in the above sections, the RE increases as sample size
increases and vice versa. The perfect ranking provides ef�cient estimates than imperfect ranking.
Also, the relative ef�ciencies under GZRSS in median estimation are greater than mean estimation
because the data is asymmetrically distributed. The GZRSS is recommended for estimating the
mean and median of the trees data.

7 Conclusions

We propose two new ef�cient RSS sampling methods for estimating the population mean and
median. The proposed estimators based on the new designs are compared with their competitors
using SRS, RSS and TBRSS techniques based on the same number of quanti�ed units. It turns
out that the GZRSS estimators of the population mean for symmetric populations are unbiased.
It is worth mentioning that for non-uniform symmetric distributions, under perfect and imperfect
rankings, the mean estimators under the proposed GZRSS are more ef�cient than those under
SRS, RSS and TBRSS methods. We also compare the performance of the mean estimator under
GZRSS with the SRS linear regression estimators. It is observed that for small and moderate
correlation between the study and ancillary variables, the suggested estimators are more ef�cient
than the SRS linear regression estimator for perfect and imperfect rankings. Therefore, we rec-
ommend the use of the proposed sampling methods over the existing RSS methods, considered
here. The proposed methods, in this paper, can be considered in many real applications, such as
mean estimation in case of missing data [46], quality control charts for monitoring the process
mean [47], and in acceptance sampling plans [48,49].
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