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Abstract: The main objective of this paper is to discuss a general family
of distributions generated from the symmetrical arcsine distribution. The
considered family includes various asymmetrical and symmetrical probability
distributions as special cases. A particular case of a symmetrical probability
distribution from this family is the Arcsine–Gaussian distribution. Key sta-
tistical properties of this distribution including quantile, mean residual life,
order statistics and moments are derived. The Arcsine–Gaussian parameters
are estimated using two classical estimation methods called moments and
maximum likelihood methods. A simulation study which provides asymptotic
distribution of all considered point estimators, 90% and 95% asymptotic
confidence intervals are performed to examine the estimation efficiency of
the considered methods numerically. The simulation results show that both
biases and variances of the estimators tend to zero as the sample size increases,
i.e., the estimators are asymptotically consistent. Also, when the sample size
increases the coverage probabilities of the confidence intervals increase to the
nominal levels, while the corresponding length decrease and approach zero.
Two real data sets from the medicine filed are used to illustrate the flexibility
of the Arcsine–Gaussian distribution as compared with the normal, logistic,
and Cauchy models. The proposed distribution is very versatile to fit real
applications and can be used as a good alternative to the traditional gaussian
distribution.

Keywords: Liver cancer data; leukemia data; normal distribution; moments
estimation; maximum likelihood estimation

1 Introduction

In the last two decades, several methods are proposed to generate continuous distributions.
Many of these methods are discussed in [1]. The methodologies of these methods depend on
generating new distributions by adding parameters to an existing distribution or combining exist-
ing distributions, see for more details [2,3]. The beta distribution is an important model for
the analysis of proportions which are common in many fields of science such as toxicology [4].
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A particular case of the beta distribution is the symmetric arcsine distribution which is a beta
distribution with both shape parameters equal to half. In the field of stochastic process, the arcsine
distribution is associated with the arcsine laws of random walks and Brownian motion [5]. For
more comperhansive details about the beta distribution, see [4,6].

A continuous random variable X is said to follows the standard arcsine distribution if its
cumulative density function (CDF) is given by:

F(x)= 1
2
+ arcsin(2x− 1)

π
. (1)

Now, notice that the x term in the right hand side of (1) is actually the CDF of a standard
uniform distribution. Hence, by simply replacing this term with another CDF of any continuous
probability distribution; say, G(·), then one can obtain an extended arcsine distribution with the
following CDF:

F(x)= 1
2
+ arcsin(2G(x)− 1)

π
. (2)

Clearly, this extension of the arcsine distribution can generate lifetime distributions and
elliptically contoured distributions (i.e., symmetrical distributions in R (by simply replacing G(·)
with the corresponding CDF of the considered probability distribution. For more details about
different kinds of univariate continuous distributions, see [7]. In statistical literature, researchers
have proposed generalizations and extensions for many continuous probability distributions. Obvi-
ously, when modeling real data, obtaining a generalization or an extension for a model of interest
provides a more flexible version of the model which may fit the data more appropriately. For
instance, the exponential distribution is extensively considered in reliability data with a constant
failure rate. In practice, however, several reliability data may have monotonic failure (hazard)
rates. Thus, a well-known generalization for the exponential distribution; namely, the Weibull
distribution, is alternatively considered. Although constant and monotonic failure rates might
be encountered in reality, many real-life data have non-monotonic failure rates. Consequently,
researchers have considered various generalization for the Weibull distribution, see the concise
article by [8] in this connection.

Recently, several generalizations of the normal distribution have been developed. For exam-
ple, the beta-normal distribution [9], generalized normal distribution [10], skew-normal distribu-
tion [11], and truncated normal distribution [12].

This study considers the extension of the arcsine distribution based on a gaussian kernel
which is henceforth called the arcsine-gaussian (AG) distribution. The motivations to propose the
AG distribution are: (1) To develop various shapes for the density and hazard rate function of
the distribution. (2) To increase the flexibility of the classical gaussian distribution in modelling
different real life applications. (3) To increase the flexibility of the traditional gaussian distribution
properties like mean, variance, skewness and kurtosis. (4) The analysis of two real data sets proved
that the AG distribution provides a better fit than the traditional gaussian distribution and some
of its competitive models. Although the idea of this paper is not new since the AG distribution
is a special case of the beta-normal distribution [9], the novelty of this study lies in the fact
that, to the best of the author’s knowledge, no previous research has been conducted on this
probability distribution although the importance and popularity of the gaussian distribution in
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modeling many real-life applications. The remaining sections of this article are organized as fol-
lows. Sections 2 and 3 discuss the distributional and statistical properties of the AG distribution,
respectively. In Section 4, estimators are derived for the model parameters and their finite-sample
efficiencies are numerically examined using Monte Carlo simulations in Section 5. Two real life
data sets are analyzed in Section 5 to illustrate that the AG distribution is a suitable fit for
the two data under analysis, comparing with some well-known distributions. Finally, the paper is
concluded in Section 7.

2 Distributional Properties of the AG Distribution

In this section, the distributional properties of the AG distribution are discussed.

2.1 The CDF and the Survival Function
By replacing G(·) in expression (2) by CDF of the gaussian distribution, denoted by Φ(·),

one can say that a random variable X follows the AG distribution with location parameter μ ∈R
and a non-negative scale parameter σ >0 (i.e., X∼AG(μ,σ)) if the CDF and the survival function
(SF) have the following forms, respectively:

F(x;μ,σ)= 1
2
+ arcsin

(
2Φ

(x−μ
σ

)− 1
)

π
, (3)

and

S(x;μ,σ)= 1
2
− arcsin

(
2Φ

(x−μ
σ

)− 1
)

π
. (4)

Clearly, the AG distribution is a location-scale model; i.e., if Z∼AG(0, 1), then X = μ +
σZ∼AG(μ,σ).

2.2 Quantile Function
It is well-known that the quantile function finds the value X such that

Pr (X ≤ x)= u

for a probability 0< u< 1. Fortunately, the AG distribution has an advantage that the correspond-
ing CDF has an explicit form and is a strictly increasing function. Consequently, the qunatile
function is straightforwardly defined as follows:

Q(u;μ,σ)=μ+ σΦ−1

⎛⎝1+ sin
([
u− 1

2

]
π
)

2

⎞⎠ , (5)

where Φ−1(·) is the the quantile function of the standard gaussian distribution. Note that one can
verify that the median of the AG distribution is equal to μ by setting u= 0.5 in expression (5).
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2.3 The Probability Density Function
By differentiating both part of (3) with respect to x, one can show that the probability

density function (PDF) of the AG function with location parameter μ and a scale parameter σ
is given by:

f (x;μ,σ)= φ
(x−μ
σ

)
π

√
Φ
(x−μ
σ

)
Φ
(x−μ
σ

) , (6)

where φ(z),Φ(z) and Φ(z) = 1 − Φ(z) are the PDF, CDF, and SF of the standard gaussian
(normal) distribution, respectively. Clearly, the distribution is symmetric and this fact is proven in
the following lemma.

Lemma 1 AG(μ,σ) is symmetric about its location parameter μ.

Proof . A continuous probability distribution is said to be symmetric about its location
parameter μ if and only f (μ−x)= f (μ+x) for all x ∈R. Clearly,

f (μ−x;μ,σ)= φ
(−x
σ

)
π

√
Φ
(−x
σ

)
Φ
(−x
σ

) = φ
( x
σ

)
π

√
Φ
( x
σ

)
Φ
( x
σ

) = f (μ+x;μ,σ) ,

since φ(z)= φ(−z),Φ(−z)=Φ(z) and Φ(−z)=Φ(z).

Note that additional statistical proprieties are to be addressed in the following section. Fig. 1
shows some possible shapes of the AG density for various values of μ and σ .

Figure 1: The PDFs of the AG distribution for different values of μ and σ
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2.4 The Hazard Rate Function
The AG distributional not only is symmetric like the Gaussian distribution, but also inherits

the behavior of its hazard function (HF). That is, the HF is increasing, see Fig. 2. The HF of
the AG function with location parameter μ and a scale parameter σ is given by:

h(x;μ,σ)= φ
(x−μ
σ

)
[
π
2 − arcsin

(
2Φ

(x−μ
σ

)− 1
)]√

Φ
(x−μ
σ

)
Φ
(x−μ
σ

) . (7)

A probability distribution with an increasing HF is suitable to model lifetime data observed
due to wear-out of lifeless objects or aging of living entities. Mathematically speaking, this can
be proven as follows.

Theorem 1 AG(μ,σ) has an increasing hazard rate.

Proof . Without loss of generality, consider the standard AG distribution. Notice that expres-
sion (7) can be rewritten as:

h (x; 0, 1)= h (z)=
ϕ (z)

√
1

Φ(z) − 1

1
2 − arcsin(2Φ(z)−1)

π

,

where ϕ(z) = φ(z)/Φ(z) is the HF of the standard gaussian distribution. Taking the natural
logarithm on both side yields:

logh (x)= logϕ (x)+ 0.5 log
[

1
Φ (z)

− 1
]
− log

[
0.5+ arcsin (2Φ (z)− 1)

π

]
.

The term ϕ(z) is proven to be increasing by [13], while the third is the cumulative HF of the
AG distribution which is increasing be definition. Notice that:

d
dz

log
[

1
Φ (z)

− 1
]
=−ϕ (x)

Φ (z)
.

As previously mentioned, ϕ(z) is increasing and so does − [Φ(z)]−1 since Φ(z) is increasing,
[Φ(z)]−1 is decreasing, and − [Φ(z)]−1 is increasing. Because the second term is increasing for all
values of z, then logh(z) is increasing due to the fact that all of its components are increasing by
the definition of increasing functions.

According to Theorem 1, the HF of the AG model is increasing function in its parameters
as displayed graphically in Fig. 2, for various values of μ and σ .

2.5 The Mean Residual Life
In reliability analysis, the mean residual life (MRL) is an important characteristic of a lifetime

model. Let m(t;μ,σ) denotes the MRL of the AG distribution; then:

m(t;μ,σ)=E(X − t|X > t)= 1
S(t;μ,σ)

∫ ∞

t
(x− t)f (x;μ,σ)dx, (8)
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Figure 2: The HRFs of the AG distribution for different values of μ and σ

where S(·) and f (·) are the SF and the PDF of the probability distribution of interest. Notice
that expression (8) can be rewritten in terms of the HF as follows:

m(t;μ,σ)=E(X − t|X > t)=
∫

R
exp

(
−
∫ t+x

t
h(τ ;μ,σ)dτ

)
dx, (9)

where h(τ ;μ,σ) is the HF of the considered distribution; see [14,15] in this connection. Hence,
form expression (9), one can easily infer that the MRL in the case of the AG distribution has an
opposite behavior to that of the HF, i.e., it is decreasing ∀x. This observation is asserted in Fig. 3.

Figure 3: The MRL of the AG, normal and Chancy distributions with μ= 0 and σ = 1
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2.6 Order Statistics
In this section, the PDF of the r-th order statistics is derived. Let X(1), . . . ,X(1) be the order

statistics for a random sample X1, . . . ,Xn of size n from the AG distribution. It is known that the
PDF of the r-th takes the form

fXr (x)=
f (x)

B(r,n− r+ 1)

n−r∑
i=1

(−1)i
(
n− r
i

)
[F (x)]r+i−1,

where F (x)and f (x) are the CDF and PDF of the AG distribution. From (3) and (6), the PDF
of the r-th order statistics of the AG distribution is given by

fXr (x)=
1

B(r,n−r+1)

n−r∑
i=1

r+i−1∑
j=1

(−1)i(0.5)r+i−j−1

π j+1

(
n−r
i

)(
r+ i−1

j

)
φ
( x
σ

)[
arcsin

(
2Φ
(x−μ
σ

)−1
)]j√

Φ
( x
σ

)
Φ
( x
σ

) .

Particularly, PDF of the first and last order statistics can be derived directly from the last
equation as follow

fX1 (x)=
1
n

n−1∑
i=1

i∑
j=1

(−1)i (0.5)i−j

π j+1

(
n− 1
i

)(
i
j

)
φ
( x
σ

) [
arcsin

(
2Φ

(x−μ
σ

)− 1
)]j√

Φ
( x
σ

)
Φ
( x
σ

)
and

fXn (x)=
1
n

n−1∑
j=1

(0.5)n−j−1

π j+1

(
n− 1
j

)
φ
( x
σ

) [
arcsin

(
2Φ

(x−μ
σ

)− 1
)]j√

Φ
( x
σ

)
Φ
( x
σ

) .

3 Statistical Properties of the AG Distribution

This section presents several statistical properties of the AG distribution which are obtained
from the following lemma and theorem.

Lemma 2

1. The quantile function of the standard normal distribution; namely, Φ−1(u), is increasing
for all u ∈ (0, 1).

2. If U∼Beta(0.5, 0.5), then −∞<E
([

Φ−1(U)
]k)

<∞ for all u ∈ (0, 1) and k ∈N.

Proof .

1. If q=Φ−1(u), then u=Φ(q). Differentiating both sides of the latter equation with respect
to q yields:

du
dq

= φ (q)⇒ dq
du

= 1
φ (q)

⇒ d
du

Φ−1 (u)= 1

φ
(
Φ−1 (u)

) > 0.

Hence, Φ−1(u) is an increasing function for all u ∈ (0, 1).
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2. Recall that Φ−1(u) is increasing and let δ > 0; thus, δ < U < 1 − δ ⇒ [
Φ−1(δ)

]k
<[

Φ−1(U)
]k
<
[
Φ−1(1− δ)]k since k ∈ N. Hence, the proof is completed by taking the

expected value on all sides of the inequality and making use of the properties of the
expectation operator (see [16] in this connection), and by taking the limit δ→ 0.

Theorem 2 If Z∼AG(0, 1), then the kth moment exists for k= 1, 2 . . . and it is given by:

E
(
Zk
)
=
{
0, if k is odd
ξk, if k is even

such that

ξk =
1
π

∫ 1

0

[
Φ−1 (u)

]k
u−0.5 (1− u)−0.5 du.

Proof . For any value of k, it is clear that:

E
(
Zk
)
= 1
π

∫ ∞

−∞
zk

φ (z)

π

√
Φ (z)Φ (z)

dz=
∫ 1

0

[
Φ−1 (u)

]k
u−0.5 (1− u)−0.5 du=E

([
Φ−1 (U)

]k)= ξk.

Hence, E(Xk) is finite according to Lemma 2. However, if k is a positive odd integer (i.e.,
k= 1, 3, . . .), then the term

zk
φ (z)

π

√
Φ (z)Φ (z)

is clearly an odd function since the AG distribution is symmetric according to Lemma 1. Hence,
E(Zk)= 0 for k= 1, 3, . . ..

By making use of Theorem 2 and the the fact that the AG distribution is a location-scale
and a symmetric family of distributions, its properties are straightforwardly obtained as follows.

Corollary 1 If X∼AG(μ,σ), then the measures of center tendency; namely, the mean, median, and
the mode are equal to μ.

Corollary 2 If X∼AG(μ,σ), then the second, third, and forth moments of X are given by:

E(X2)=μ2+ ξ2σ 2, E(X3)=μ3+ 3ξ2μσ 2 and E(X4)= σ 4(ξ4− ξ22 )+ 4ξ2μ2σ 2,

respectively.

Corollary 3 If X∼AG(μ,σ), then the variance is given by:
Var(X)= ξ2σ 2 ≈ 1.525255σ 2 (10)

Corollary 4 Let γ1 (γ2) denote the coefficient of skewness (kurtosis), if X∼AG(μ,σ), then γ1 = 0,
while γ2 = 2.86158.

It is to be noted that the above corollaries agree with the result of [9].

4 Model Parameters Estimation

In this section, two methods are considered to estimate the parameters of the AG distribution;
namely, the method of moments and the maximum likelihood method.
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4.1 Moments Estimators
Suppose that X1,X2, . . . ,Xn represent a random sample from the AG distribution with

location parameter μ and a scale parameter σ . By employing the method of moments, the
corresponding moments estimator (ME) for μ; say, μ̃, is the sample mean (i.e., μ̃=X ), while the
ME for σ ; say, σ̃ , is given by:

σ̃ =
√
n−1

∑n
i=1X

2
i −X

2

ξ2
. (11)

Notice that one can obtain a Monte Carlo moments estimator (MCME) for σ based on
expression (11) using Monte Carlo integration (MCI). To improve the approximation, the variance
is reduced using antithetic variates. For more information about the latter method and MCI,
see [17]. The MCME estimator of σ ; say, σ̃ ∗, is calculated by approximating the term ξ2 in (11)
as follows:

1. Generate a random sample U1, . . . ,UM from Beta(0.5, 0.5).

2. ξ∗2 = 1
2M

∑M
i=1

{[
Φ−1(Ui)

]2+ [Φ−1(1−Ui)
]2}

.

Theorem 3 If θ̃ = [μ̃σ̃ ]T , then the asymptotic joint sampling distribution θ̃ is a bivariate normal (BN)
distribution with mean vector θ = [μσ ]T and variance–covariance matrix �̃, i.e.,1
√
n(θ̃ − θ)∼BN(0, �̃), (12)

such that 0 is the zero vector and

�̃ = σ 2

⎡⎢⎢⎣
ξ2 0

0
1
4

(
ξ4

ξ22

− 1

)
⎤⎥⎥⎦ .

Proof . Recall that X1, . . . ,Xn represent a random sample (i.e., independent and identically
distributed random variables) from the AG(μ,σ). Suppose that:

M2 = 1
n

n∑
i=1

X2
i and M1 = 1

n

n∑
i=1

Xi.

By the strong law of large numbers, M1 and M2 converge almost surely to E(X) and E(X2),
respectively. Furthermore, by the central limit theorem, both M1 and M2 are asymptotically nor-
mally distributed. Also, any linear combination of M1 and M2; say, c1M1+c2M2, is asymptotically
normally distributed for all c1 and c2. Accordingly,
√
n
[
M1−E (X) M2−E

(
X2)]T ∼BN (0,�) ,

where

σ =
[
σ 2
1 σ12
σ21 σ 2

2

]
,

1 The superscript T denotes the matrix transpose operator.
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such that

σ 2
1 =Var(X)= ξ2σ 2,σ12 = σ21 =E(X3)−E(X)E(X2)= 2ξ2μσ

2,

and

σ 2
2 =Var

(
X2
)
=E

(
X4
)
−
[
E
(
X2
)]2 = σ 4

(
ξ4− ξ22

)
+ 4ξ2μ2σ 2,

by making use of the corollaries in the previous section. Now, the aim is to find the asymptotic
joint sampling distribution of[
μ̃ σ̃

]T = [ψ1 (M1,M2) ψ2 (M1,M2)
]T ,

such that ψ1(u, v)= u and ψ2(u, v)=
√

v−u2
ξ2

.

Notice that:

∂ψ1

∂u
= 1,

∂ψ1

∂v
= 0,

∂ψ2

∂u
=− u√

ξ2(v− u2)
and

∂ψ2

∂v
= 1

2
√
ξ2(v− u2)

.

Hence, by making use of Taylor series expansion, one can easily verify that
√
n
[
μ̃−μ σ̃ − σ ]T ∼BN

(
0, �̃

)
,

where

�̃ =
⎡⎣1 0

∂ψ2

∂u
∂ψ2

∂v

⎤⎦ [ξ2σ 2 2ξ2μσ 2

2ξ2μσ 2 σ 4 (ξ4− ξ22 )+ 4ξ2μ2σ 2

]⎡⎢⎣1 ∂ψ2

∂u

0
∂ψ2

∂v

⎤⎥⎦
∣∣∣∣∣∣∣
u=E(X),v=E(X2)

= σ 2

⎡⎢⎣ξ2 0

0
1
4

(
ξ4

ξ22

− 1

)⎤⎥⎦ .

4.2 Maximum Likelihood Estimators
Recall the PDF of the AG distribution which was given by expression (6). Also, suppose that

x= [x1:n · · ·xn:n]T are the observed order statistics. The likelihood function based on x is then

L (μ,σ |x)∝
n∏
i=1

φ (zi:n)√
Φ (zi:n)Φ (zi:n)

,

such that zi:n− σ−1(xi:n−μ). Accordingly, the log-likelihood function is as follows:

�(μ,σ |x)= logn!−3
2
n logπ − 1

2
n log2− n logσ − 1

2

n∑
i=1

z2i:n−
1
2

n∑
i=1

log�(zi:n)− 1
2

n∑
i=1

log�(zi:n), (13)
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where n!= n× (n− 1)× · · · × 1. From (13), the likelihood (normal) equations for μ and σ are,
respectively:

∂l
∂μ

= 1
σ

n∑
i=1

zi:n+ 1
2σ

n∑
i=1

ϕ(zi:n)− 1
2σ

n∑
i=1

ϕ(zi:n), (14)

and

∂l
∂σ

=− n
σ
+ 1
σ

n∑
i=1

z2i:n+
1
2σ

n∑
i=1

ziϕ(zi:n)− 1
2σ

n∑
i=1

ziϕ(zi:n), (15)

such that ϕ(z) and ϕ(z)= φ(z)/Φ(z) are the HF and the reversed HF of the standard gaussian
distribution, respectivly. The latter function is decreasing for all real numbers and this can be
proven using a methodology simiar to that of [13].

Clearly, the values of the maximum likelihood estimators (MLEs) need to determined numer-
ically. Nevertheless, by following a similar approach as in [13], one can derive the following
approximated MLEs for both μ and σ based on the observed order statistics x1:n, . . . ,xn:n:

σ ∗ =
A1+

√
A2
1+ 4nA2

2n
and μ̂∗ =K +Lσ̂ ∗,

such that

A1 = 1
2

n∑
i=1

αi:n (xi:n−K) and A2 =
n∑
i=1

(
1+ βi:n

2

)
(xi:n−K)2 ,

while

K = n+ 1
2

∑n
i=1 βi:nxi:n

n+ 1
2

∑n
i=1 βi:n

and L=
1
2

∑n
i=1 αi:n

n+ 1
2

∑n
i=1 βi:n

,

where

αi:n = ϕ (yi:n)−ϕ (yi:n)−βi:nyi:n, βi:n= ϕ′ (yi:n)−ϕ′ (yi:n) ,
ϕ′ (z)=−ϕ (z) [ϕ (z)+ z] , ϕ′ (z)= ϕ (z) [ϕ (z)− z]

and

yi:n=Φ−1
(
1
2

{
1+ sin

[
π

(
i

n+ 1
− 1

2

)]})
.

Unfortunately, it is not easy to derive the exact distributions for both the MLEs and their
approximated counterparts. However, one may can derive asymptotic confidence intervals for the
model parameters under some regularity condition. For more information about the asymptotic
properties of the MLEs, see [16]. Now, according to the latter reference, as n→∞, then:

θ̂∼BN
(
θ , �̂

)
and θ̂∗∼BN

(
θ , �̂∗

)
,
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such that �̂ = �|μ=μ∗,σ=σ ∗ ,

� =−

⎡⎢⎢⎢⎣
∂2�

∂μ2

∂2�

∂μ∂σ

∂2�

∂μ∂σ

∂2�

∂σ 2

⎤⎥⎥⎥⎦
−1

and �̂∗ =−
[
Î11 Î12
Î21 Î22

]−1

,

where Îij = I11|μ=μ∗,σ=σ ∗ for i, j= 1, 2, such that

∂2�

∂μ2 =− n
σ 2 −

1
2σ 2

n∑
i=1

ϕ′ (zi:n)+ 1
2σ 2

n∑
i=1

ϕ′ (zi:n) ,

∂2�

∂μ2 ≈ I11 =− n
σ 2 −

1
2σ 2

n∑
i=1

βi:n,

∂2�

∂μ∂σ
= ∂2�

∂σ∂μ
=− 2

σ 2

n∑
i=1

zi:n− 1
2σ 2

n∑
i=1

[ϕ (zi:n)−ϕ (zi:n)]− 1
2σ 2

n∑
i=1

zi:n
[
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zi:n− 1
2σ 2
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zi:n [ϕ (zi:n)−ϕ (zi:n)]− 1
2σ 2
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i=1

z2i:n
[
ϕ′ (zi:n)−ϕ ′ (zi:n)

]
and

∂2�

∂σ 2
≈ I22 = n

σ 2
− 3
σ 2

n∑
i=1

z2i:n−
1
σ 2

n∑
i=1

αi:nzi:n− 3
2σ 2

n∑
i=1

βi:nz2i:n.

5 Simulation Outcomes

To compare the estimation methods in terms of efficiency, extensive MC simulations are
carried out. The outcomes of an MC simulation study are reported in this section. Without loss
of any generality, the standard AG distribution is considered, while the sample sizes of interest are
n= 10(10)100. The numerical results of this study were determined from 10,000 MC simulation
runs. This number of simulations gives the accuracy in the order ±(10, 000)−0.5 =±0.01 see, [18];
thus, all numerical outcomes for this study are reported up to three decimal digits.

Tab. 1 presents the outcomes associated with the estimators of μ; namely, the ME (μ̃),
the AMLE (μ̂∗), and the MLE (μ̂). On the other hand, Tab. 2 summarizes the simulation
results of the estimators of σ ; namely, the MCME (̃σ ∗), the ME (̃σ ), the AMLE (σ̂ ∗), and
the MLE (σ̂ ). By making use of the asymptotic distribution of all considered point estimators,
90% and 95% asymptotic confidence interval are obtained and are evaluated according to their
observed coverage probabilities and lengths. Interestingly, all estimators had similar performance
indicators. Furthermore, the simulated variance of the estimators and their counterparts which
were calculated based on the variance-covariance matrix (VCM) of the asymptotic sampling joint
distributions were quite close.
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Table 1: Bias and variance for the estimators of μ alongside the observed coverage probability
(CPr) and length (L) of 90% and 95% confidence intervals (CIs)

n Method Bias Variance 90% CI 95% CI

From simulation From VCM CPr L CPr L

10 μ̃ −0.002 0.230 0.209 0.847 1.464 0.903 1.744
μ̂

∗ −0.002 0.229 0.209 0.848 1.464 0.903 1.744
μ̂ −0.002 0.229 0.204 0.844 1.447 0.900 1.725
μ̃ 0.001 0.117 0.111 0.873 1.083 0.928 1.291

20 μ̂∗ 0.001 0.117 0.111 0.875 1.083 0.928 1.290
μ̂ 0.001 0.117 0.110 0.874 1.077 0.927 1.283
μ̃ −0.003 0.077 0.075 0.884 0.893 0.934 1.065
μ̂∗ −0.003 0.077 0.075 0.883 0.893 0.934 1.064

30 μ̂ −0.003 0.076 0.074 0.883 0.889 0.934 1.060
μ̃ −0.004 0.057 0.057 0.891 0.779 0.939 0.929
μ̂∗ −0.004 0.057 0.057 0.890 0.778 0.939 0.927
μ̂ −0.004 0.057 0.056 0.890 0.776 0.938 0.925

40 μ̃ 0.000 0.047 0.045 0.891 0.698 0.939 0.832
μ̂∗ −0.001 0.047 0.045 0.889 0.697 0.939 0.831
μ̂ −0.001 0.047 0.045 0.888 0.695 0.938 0.829
μ̃ 0.001 0.038 0.038 0.894 0.639 0.945 0.761

50 μ̂∗ 0.001 0.038 0.038 0.895 0.638 0.945 0.760
μ̂ 0.001 0.038 0.038 0.894 0.636 0.944 0.758
μ̃ 0.002 0.033 0.033 0.890 0.594 0.943 0.707
μ̂∗ 0.002 0.033 0.033 0.892 0.593 0.944 0.706

60 μ̂ 0.002 0.033 0.033 0.892 0.592 0.943 0.705
μ̃ −0.001 0.029 0.029 0.893 0.556 0.946 0.662
μ̂∗ −0.001 0.029 0.029 0.895 0.555 0.948 0.661
μ̂ −0.001 0.029 0.029 0.895 0.554 0.948 0.660

70 μ̃ 0.001 0.026 0.026 0.895 0.525 0.947 0.625
μ̂∗ 0.001 0.026 0.025 0.896 0.524 0.945 0.624
μ̂ 0.001 0.026 0.025 0.896 0.523 0.945 0.623
μ̃ 0.000 0.023 0.023 0.900 0.498 0.946 0.593

80 μ̂∗ 0.000 0.023 0.023 0.900 0.497 0.947 0.592
μ̂ 0.000 0.023 0.023 0.899 0.496 0.946 0.592
μ̃ −0.002 0.230 0.209 0.847 1.464 0.903 1.744
μ̂∗ −0.002 0.229 0.209 0.848 1.464 0.903 1.744

90 μ̂ −0.002 0.229 0.204 0.844 1.447 0.900 1.725
μ̃ 0.001 0.117 0.111 0.873 1.083 0.928 1.291
μ̂∗ 0.001 0.117 0.111 0.875 1.083 0.928 1.290
μ̂ 0.001 0.117 0.110 0.874 1.077 0.927 1.283

100 μ̃ −0.003 0.077 0.075 0.884 0.893 0.934 1.065
μ̂∗ −0.003 0.077 0.075 0.883 0.893 0.934 1.064
μ̂ −0.003 0.076 0.074 0.883 0.889 0.934 1.060
μ̃ −0.004 0.057 0.057 0.891 0.779 0.939 0.929
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Table 2: Bias and variance for the estimators of σ alongside the observed coverage probability
(CPr) and length (L) of 90% and 95% confidence intervals (CIs)

n Method Bias Variance 90% CI 95% CI

From simulation From VCM CPr L CPr L

10 σ̃ ∗ −0.078 0.046 0.042 0.796 0.655 0.846 0.780
σ̃ −0.078 0.046 0.042 0.797 0.655 0.846 0.780
σ̂ ∗ −0.086 0.045 0.042 0.792 0.653 0.839 0.779
σ̂ −0.081 0.045 0.041 0.793 0.650 0.841 0.775

20 σ̃ ∗ −0.034 0.023 0.022 0.850 0.484 0.899 0.577
σ̃ −0.034 0.023 0.022 0.850 0.485 0.900 0.577
σ̂ ∗ −0.038 0.023 0.022 0.848 0.484 0.897 0.577
σ̂ −0.036 0.023 0.022 0.848 0.483 0.898 0.575

30 σ̃ ∗ −0.025 0.015 0.015 0.866 0.400 0.917 0.476
σ̃ −0.025 0.015 0.015 0.866 0.400 0.917 0.476
σ̂ ∗ −0.027 0.015 0.015 0.865 0.399 0.915 0.476
σ̂ −0.026 0.015 0.015 0.865 0.398 0.915 0.475

40 σ̃ ∗ −0.018 0.011 0.011 0.878 0.349 0.924 0.415
σ̃ −0.018 0.011 0.011 0.878 0.349 0.924 0.415
σ̂ ∗ −0.019 0.011 0.011 0.877 0.348 0.921 0.415
σ̂ −0.018 0.011 0.011 0.877 0.348 0.921 0.414

50 σ̃ ∗ −0.016 0.009 0.009 0.881 0.312 0.931 0.372
σ̃ −0.016 0.009 0.009 0.882 0.312 0.931 0.372
σ̂ ∗ −0.017 0.009 0.009 0.882 0.312 0.929 0.372
σ̂ −0.017 0.009 0.009 0.882 0.312 0.930 0.371

60 σ̃ ∗ −0.014 0.008 0.008 0.880 0.286 0.932 0.340
σ̃ −0.014 0.008 0.008 0.881 0.286 0.932 0.340
σ̂ ∗ −0.015 0.008 0.008 0.879 0.285 0.929 0.340
σ̂ −0.015 0.008 0.008 0.878 0.285 0.930 0.340

70 σ̃ ∗ −0.010 0.007 0.007 0.881 0.265 0.930 0.316
σ̃ −0.010 0.007 0.007 0.882 0.266 0.930 0.316
σ̂ ∗ −0.011 0.007 0.007 0.882 0.265 0.931 0.316
σ̂ −0.011 0.007 0.007 0.882 0.265 0.931 0.316

80 σ̃ ∗ −0.009 0.006 0.006 0.888 0.249 0.937 0.296
σ̃ −0.009 0.006 0.006 0.888 0.249 0.937 0.296
σ̂ ∗ −0.010 0.006 0.006 0.887 0.248 0.935 0.296
σ̂ −0.009 0.006 0.006 0.888 0.248 0.936 0.296

90 σ̃ ∗ −0.008 0.005 0.005 0.890 0.235 0.940 0.280
σ̃ −0.008 0.005 0.005 0.890 0.235 0.940 0.280
σ̂ ∗ −0.008 0.005 0.005 0.889 0.234 0.939 0.279
σ̂ −0.008 0.005 0.005 0.889 0.234 0.939 0.279

100 σ̃ ∗ −0.008 0.005 0.005 0.886 0.223 0.939 0.265
σ̃ −0.007 0.005 0.005 0.886 0.223 0.939 0.265
σ̂ ∗ −0.008 0.005 0.005 0.886 0.222 0.939 0.265
σ̂ −0.008 0.005 0.005 0.886 0.222 0.939 0.265
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In terms of estimation efficiency, as n→∞, both the biases and variances of the estimators
tend to zero, i.e., the estimators are asymptotically consistent. Moreover, as the sample size
increases, the coverage probabilities of the confidence intervals increase to the nominal levels, while
the corresponding length decrease and approach zero.

6 Data Analysis

In this section, two real data sets from medicine field were analyzed to illustrate the appli-
cation of the AG distribution in practice. The first data under consideration represent life times
(in days) of 39 patients suffering from liver cancer, and the data were reported by Elminia cancer
center Ministry of Health, Egypt in (1999) [19]. The data are: 10, 14, 14, 14, 14, 14, 15, 17, 18,
20, 20, 20, 20, 20, 23, 23, 24, 26, 30, 30, 31, 40, 49, 51, 52, 60, 61, 67, 71, 74, 75, 87, 96, 105,
107, 107, 107, 116, 150.

The second data under consideration are the life times of 20 leukemia patients who were
treated by a certain drug ([20,21]). The data are: 1.013, 1.034, 1.109, 1.169, 1.226, 1.509, 1.533,
1.563, 1.716, 1.929, 1.965, 2.061, 2.344, 2.546, 2.626, 2.778, 2.951, 3.413, 4.118, 5.136.

Practically, the logarithmic counterparts of these models are the normal distribution and the
logistic distribution, respectively. Hence, the logarithms of the data are analyzed using the latter
distributions alongside the Cauchy distribution and the AG distribution.

To determine which model appropriately fit the log-data, the minus observed log-likelihood
(−�), the Akaike information criterion (AIC = 2k − 2�) [22] and the Bayesian information cri-
terion (BIC = k log(n)− 2�) [23] are calculated for each model as shown in Tabs. 3 and 4. The
AG distribution has provided very close results to all data sets than the normal, logistic, and
Cauchy distributions. We conclude that the AG and normal distributions have outperformed the
remaining ones.

Table 3: Estimators of the location μ and scale σ 2 parameters with associated SEs and the
corresponding information criteria for liver cancer data

Model μ (SE) σ (SE) −� AIC BIC

Logistic 3.565773(0.136694) 0.473420 (0.060411) 47.098131 98.196263 101.523386
Normal 3.591706(0.123139) 0.768863 (0.087095) 45.087767 94.175534 97.502657
Cauchy 3.383783(0.189640) 0.586059 (0.120839) 57.290635 118.581269 121.908393
AG 3.599582(0.118514) 0.496298 (0.053883) 44.542048 93.084097 96.411220

Table 4: Estimators of the location μ and scale σ 2 parameters with associated SEs and the
corresponding information criteria for leukemia data

Model μ (SE) σ (SE) −� AIC BIC

Logistic 0.661426(0.106347) 0.268642 (0.049056) 13.181104 30.362208 32.353673
Normal 0.676282(0.101468) 0.453778 (0.071749) 12.575831 29.151661 31.143126
Cauchy 0.643230(0.118722) 0.309856 (0.085358) 17.453604 38.907209 40.898673
AG 0.680458(0.099938) 0.295822 (0.044964) 12.454299 28.908598 30.900062
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Furthermore, the empirical survival function (ESF) and the theoretical survival functions
(TSF) of the AG, normal, logistic, and Cauchy distributions were compared graphically, for the
two real data sets, in Fig. 4. The fitted functions of the AG model for the two real data sets
including the PDF, CDF, SF and PP plots were displayed in Fig. 5.

Figure 4: ESF vs. TSF of the compared distributions for liver cancer data (left) and leukemia
data (right)

Figure 5: The fitted functions of the AG distribution for liver cancer data (left) and leukemia
data (right)

7 Conclusions

In this paper, the AG distribution is considered. The relation between this distribution and
the beta-normal distribution is the same as the relation between the arcsine distribution and the
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beta distribution. Both distribution and statistical properties of the AG distribution are intuitive
and easy to verify. Point estimators for the corresponding model parameters have been obtained
using the method of moments and maximum likelihood method and their asymptotic sampling
distributions were discussed as well. In terms of performance, a simulation study have been
conducted and its outcomes indicated that both point and interval estimators are quite similar
in terms of efficiency and are asymptotically consistent as the sample size increases. In terms of
data analysis, the AG distribution provided better fit to the considered data sets.
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body of the manuscript.
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