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Abstract: With the advent and advancements in the wireless technologies,
Wi-Fi �ngerprinting-based Indoor Positioning System (IPS) has become one
of the most promising solutions for localization in indoor environments.
Unlike the outdoor environment, the lack of line-of-sight propagation in an
indoor environment keeps the interest of the researchers to develop ef�cient
and precise positioning systems that can later be incorporated in numerous
applications involving Internet of Things (IoTs) and green computing. In this
paper, we have proposed a technique that combines the capabilities of multiple
algorithms to overcome the complexities experienced indoors. Initially, in the
database development phase, Motley Kennan propagation model is used with
Hough transformation to classify, detect, and assign different attenuation
factors related to the types of walls. Furthermore, important parameters for
system accuracy, such as, placement and geometry of Access Points (APs)
in the coverage area are also considered. New algorithm for deployment
of an additional AP to an already existing infrastructure is proposed by
using Genetic Algorithm (GA) coupled with Enhanced Dilution of Precision
(EDOP). Moreover, classi�cation algorithm based on k-Nearest Neighbors
(k-NN) is used to �nd the position of a stationary or mobile user inside the
given coverage area. For k-NN to provide low localization error and reduced
space dimensionality, three APs are required to be selected optimally. In this
paper, we have suggested an idea to select APs based on Position Vectors
(PV) as an input to the localization algorithm. Deducing from our compre-
hensive investigations, it is revealed that the accuracy of indoor positioning
system using the proposed technique unblemished the existing solutions with
signi�cant improvements.
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1 Introduction

Indoor Positioning Systems (IPS) determine the position of a person or an object in an
indoor environment [1] as depicted in Fig. 1, and such systems have been implemented for various
applications [2–4]. IPS uses numerous positioning approaches, which vary in terms of accuracy,
cost, technology, scalability, robustness and security [2]. Unlike the outdoor positioning systems,
indoor positioning systems can be analyzed on metrics such as, system accuracy [3], coverage area,
building’s infrastructure and error due to signal interference and re�ection [5,6]. Being an active
research area among the scholars, various techniques for indoor environment have been reported
in literature with the practice of, inertial measurement unit [7], acoustic/sound, ultrasonic [8],
Radio Frequency (RF) ID tags [9,10], magnetic �eld [11], Wi-Fi [12], etc. In general, there are two
categories for IPS: Infrastructure based and non-infrastructure based. The infrastructure-based
system is restricted, due to limitation of visibility and transmission distance [13]. On the other
hand, cost is the major drawback for the non-infrastructure-based stream [14] and it uses RSSI
values for positioning.

Figure 1: General indoor positioning system

Over the years, Global Positioning System (GPS) has provided satisfactory results for outdoor
environments [15], however, it lacks accuracy indoors being dependent on Line-of-Sight (LOS)
propagation. For indoor environment, Wi-Fi based localization has emerged as the most suitable
alternative to GPS [16], however, Wi-Fi signals tend to get attenuated by multi-path propagation
effects resulting in an increase of complexity in the IPS. Methods based on Received Signal
Strength Indicator (RSSI) �ngerprinting effectively reduce multi-path propagation effect and LOS
complexities [15]. Optimal placement of Access Points (APs) in a service area play a vital role
in enhancing the positioning accuracy of IPS and can minimizes the cost of using extra APs.
Number of studies has been carried out to analyze the in�uence of APs deployment in regards
with number of APs and their positions in an indoor environment [17]. A Genetic Algorithm
(GA) based scheme for rapid optimal APs placement that maximizes the Euclidean Distance (ED)
of Received Signal Strength (RSS) vector among all the Signal Test Point (STPs) is presented
in [18]. Alsmady et al. [19] has also developed a GA based approach, that can �nd the global
optimal solution. However this approach does not differ between the types of the wall which
can actually deploy the new AP at a same place in two same size buildings even they have
different types of wall. Another GA based framework, Geno placement [20], is reported to solve
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APs placement problem with solving some of the scalability concerns of the past researchers.
In 2016, the authors in [21] presented an APs placement optimization model based on Particle
Swarm Optimization (PSO). Moreover, a mathematical representation and solution of the problem
of APs placement is presented in [22] which has suggested deploying an additional AP and it
achieved increased system accuracy, however, the proposed system was not tested for real-time
applications. Further, Aomumpai et al. [23], highlighted that the positioning error can decrease
up to 35% with the optimal deployment of APs. However, after an optimal deployment of APs,
excessive APs can also cause issues in localization system by increasing the processing time and
space complexity [24]. In [25], AP selection method based on the combination of information gain
and mutual information entropy was proposed to reduce the computational cost and the system
complexity. In [26], the authors utilized the strongest RSS value to locate the user in IPS and
reduced the computational complexity of positioning algorithm. However, multipath fading was a
major concern in their �ndings which can actually vary the RSS values. Further, another indoor
localization technique based on �ngerprinting and weighted centroid localization was presented
in [27], which reduces the number of required �ngerprint reference points by more than 40%
compared to traditional �ngerprinting localization method with a similar localization estimation
error. However, the authors were unable to address the concerns that can rise once there is a
disaster and beacons would cease to work. Visible Light Communication (VLC) based indoor
positioning using the received optical power levels from emitting LEDs is investigated in [28].

At present, different machine learning techniques are also used for resolving localization
problem in the Wi-Fi indoor positioning method. In [29], the authors have proposed predictive
modeling method using online machine learning to improve the performance of localization of
reference RFID tags in a non-static environment. The wireless signals from time-critical items can
be captured constantly. The online positioning model is built and updated by using the sensor
data stream. In [30], a method for �ngerprint feature extraction and a hybrid localization model
was proposed. A feature extraction method Fisher Score-Stacked Sparse Auto Encoder (Fisher-
SSAE) was suggested to obtain robust �ngerprint features, which improved localization accuracy.
Authors also established a hierarchical model that employed the clustering approach, constructed
sub models for sub regional localization, and tested the effects of hierarchical localization caused
by sub regional positioning errors. Authors in [31] presented a comprehensive review of deep
learning methods in indoor positioning. The advantages and disadvantages of various �ngerprint
types for indoor positioning are discussed. The solutions proposed in the literature are then
analyzed, categorized, and compared against various performances evaluation metrics.

An indoor positioning system based on the automatic generation of radio maps of the indoor
environment uses Wi-Fi compatible IoT sensors was proposed in [32]. Propagation loss parameters
are automatically estimated from the online feedback of deployed sensors and the radio maps
are updated periodically without any physical intervention. The proposed system leverages the
raster maps of an environment with the wall information only, against computationally extensive
techniques based on vector maps that require precise information on the length and angles of
each wall. Experimental results show that the proposed system has achieved an average accuracy
of 2 m, which is comparable to the survey-based Wi-Fi �ngerprinting technique.

An indoor localization system is presented to enhance the user experience in a museum [33].
In particular, the proposed system relies on Bluetooth Low Energy (BLE) beacons proximity and
localization capabilities to automatically provide the users with cultural contents related to the
observed artworks. At the same time, a received signal strength-based technique is used to estimate
the location of the visitor in the museum. An Android application is developed to estimate
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the distance from the exhibits and collect useful analytics regarding each visit and provide a
recommendation to the users. Moreover, the application implements a simple Kalman �lter in
the smart phone, without the need of the cloud, to improve localization, precision and accuracy.
Effectiveness of proposed solution through experimental results in terms of distance estimation,
location, and detection accuracy depict that BLE beacon is a promising solution for an interactive
smart museum.

The main contributions of this paper are as follow.

• We have proposed a technique that combines different algorithms which, thus, increases
ef�ciency and accuracy at the same time.
• This research contains multiple stages: In the deployment stage, we deployed an additional

AP using GA with Enhanced Dilution of Precision (EDOP), and then with these APs
created a database by using a Motley Kennan propagation model [34].
• Further, for auto-detection of walls and their position from the blueprint image, differ-

ent image processing techniques were used. Here, distinct walls were assigned different
attenuation factors.
• Heat maps were also used to verify these databases in the proposed methodology.
• An advance and extensive strategy was also proposed which can limit the large-scale errors

for Wi-Fi �ngerprinting and ameliorating the precision of results by Position Vectors (PV)
based APs selection with k-NN localization algorithm. The proposed approach identi�es
the APs and ranks them according to their PV distances. As per the available literature, no
other technique deploys this mechanism to counter large scale errors.
• In the second phase, k-NN algorithm [35] investigates all APs and trials them one by one

iteratively to �nd the most suitable value from the list of APs to localize the user.
• Moreover, to validate the superior performance of the proposed methodology, a compara-

tive analysis of the proposed solution along with the RSSI based selected APs and existing
APs based localization techniques was carried out. The comparison remains the evidence
of better results achieved.

Machine learning and related applications that are IoT based [36–40] have become part
of our lives as the devices are predominantly getting smarter and smaller, and are available
in everyone’s range. These handheld devices can further be used in a hybrid manner with our
proposed technique to allow secure and optimal localization processes.

The remainder of the paper is structured as follows: Section 2 explains the proposed method-
ology for the deployment of AP, Wi-Fi �ngerprinting database and veri�cation, and selection of
APs. Results of the proposed technique are discussed in Section 3 followed by the performance
analysis and conclusion in Sections 4 and 5, respectively.

2 Proposed Methodology

The proposed work comprises of three stages which are:

I. Deployment of an additional AP,
II. Creation of database using Motley Kennan propogation model and its veri�cation

through the heat map,
III. Selection of APs for the k-NN algorithm to localize the user.

A �owchart, as shown in Fig. 2, categorizes the three phases of our research. The three
processes run in succession with user localization being the metric for error calculation in all
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Cumulative Distribution Function (CDF). Starting with GA which optimizes Geometric Dilution
of Precision (GDOP) to a minimum and maximizes the Euclidean Distance (ED) with each
iteration, candidate locations for APs are found, followed by deployment of APs at the same time.
Further, the user localization is performed after the AP selection. The selection is based on:

I. RSSI
II. PV

The three stages of proposed methodology are explained in detail in the following subsections.

2.1 Deployment of Additional Access Point
In an ef�cient indoor positioning system, the angular position of APs should be such that the

receiver is surrounded by a certain number of APs covering the whole area [41]. GDOP becomes
the presiding feature, if position and range of APS in the target area are not optimally schemed.
It is reported in [13] that degradation of the system performance occurs with an increased
interference among the APs and GDOP. Therefore, GDOP should be minimum for the optimal
placement of an AP. In the �rst phase of this research work, GA along with EDOP is used for
deployment of an additional AP. The proposed deployment algorithm selects the position of the
4th AP, in addition to the already deployed APs, based on maximum point of EDOP, which is
the quotient between the maximum ED between two closest APs and minimum GDOP, resulting
in reduction of the positioning error.

The ED and EDOP are computed as [13]

ri,j =
∥∥(xr,i− yr,j

)
+ (xa,i− ya,j)

∥∥ (1)

where (xr,i, xa,i) and (yr,j, ya,j) are the x and y-coordinates of ith RP and jth AP respectively.

DOP coef�cient matrix is computed by

B=

∥∥∥∥b1,x b1,y
b2,x b2,y

∥∥∥∥ (2)

where bi,x =
yr−xr

r2
i,j

and bi,y =
ya−xa

r2
i,j

GDOP is calculated by taking square root of the trace of the DOP coef�cient matrix, i.e.,

GDOPavg =

√
Tr(BT B)−1 (3)

Further, the quotient of ED and GDOP form an enhanced DOP which can be written as

EDOPx =
EDx

GDOPx
(4)

where EDOPx is for the xth RP and for all RPs average of EDOP is taken. Value of EDOP is
averaged over 300 GA iterations for each deployable AP location. The �nal maximum value of
EDOP is the candidate location for the new AP. This is de�ned as

max : EDOPavg =
1
n

n∑
x=1

EDx

GDOPx
(5)
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Figure 2: Flow chart of system with proposed methodology
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The block diagram of the proposed AP deployment algorithm is shown as Stage-2 in Fig. 2.
For the position of newly deployed AP, the GA algorithm calculates the coordinates of AP for
computing EDOP coef�cient. Initially, total of 256 specimens are generated as population. The
elite solutions are gray coded to make up a set of chromosomes, where each chromosome contains
two genes, i.e., the x- and y-coordinates of the new APs to be deployed. The coordinates are
stored to be used in later stage, before being subjected to crossover to form a new specimen
with the crossover occurring at random bit locations. One bit at random is altered from crossover
solution to avoid repetition of resultant solutions, the process is called mutation. The crossover
and mutation probabilities determine the number of solutions remains unchanged in the next
generation and the number of new specimens is modi�ed by one bit. Further, the �nal set of
specimens is examined and the specimen that deviates from the �tness function is discarded.

The stepwise AP deployment algorithm is given as in Algorithm 1.

Algorithm 1: AP deployment algorithm

1. Step 1: Generate population
2. specimens [x, y]=Gray code [size]∗Total population
3. Step 2: Identify best specimens
4. Fitness function=A �xed (max) AP-to-AP distance
5. G1= �nd GDOP for each specimen (x, y)

6. EDOPmax =
EDmax

GDOPmin
7. E1= �nd EDOP for each specimen (x, y)
8. Best specimens= specimens [x, y] (maximum (E1));
9. Separate (best specimens);

10. Step 3: Crossover
11. Make two groups (best specimens);
12. Split (best specimen) at crossover probability;
13. Shuf�e and combine (split specimens);
14. Step 4: Mutation
15. Flip one bit (combined specimens) based on mutation probability
16. Step 5: Elimination
17. Discard (specimens) with AP-to-AP distance> �tness function;
18. Retain the rest (from Step 3 and Step 4);
19. G2= �nd GDOP (retained specimens)
20. GDOP=min(G2);
21. E2 =EDOPmax
22. AP location (x, y)= specimen (x, y) for which EDOP (max) exists
23. Deploy new AP at AP location (x, y);

2.2 Wi-Fi Fingerprinting Database and Veri�cation
After the deployment of an additional AP in the existing infrastructure, Wi-Fi �ngerprinting

off-line database is created using the Motley Kennan propagation model [14]. Initially, the algo-
rithm divides the surface area into a speci�c number of nodes which are separated one meter
from each other. Moreover, the algorithm detects the number of walls from a blueprint image
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using Hough transformation. After obtaining information about the orientation of walls, different
attenuation factors for different kinds of walls are assigned. Moreover, the distance between each
reference point and APs is separately calculated along with the propagation loss using following
equation;

L=L0+ 20log10(d)+
∑

0k(θi) (6)

where, L is total loss in dB at a speci�c point, L0 is loss in dB at d0 and 0k represent transmission
coef�cient which is a function of the incident angle. RSS value at every point is later veri�ed
using the heat map.

2.3 Access Point Selection
For a �xed set of APs, the probability of a user to be closer to any three out of the four APs

is greater than that of being at equal distances from each of the APs. At every user location, the
updated list of three APs based on maximum RSSI and minimum PV distances are utilized in
the k-NN search to get the least localization error. Maximization of the RSSI objective function
is computed as

EDi =

∑
jεNi

∥∥RSSIi−RSSIj
∥∥

2

Ni
(7)

whereas min ED is de�ned as

min : EDavg =
1
n

n∑
i=1

EDi (8)

where EDi is the Euclidean distance among the ith RP and surrounding RPs and Ni de�nes the
aggregate of surrounding RPs with cardinal number N. Another metric is the minimization of the
PV distances, returned by the position vectors from the users to the APs, which is represented as

Pi =

√
(xi− xa)2+ (yi− ya)2 (9)

where (xi − xa) and (yi − ya) represents the x and y-coordinates of the ith AP and ath user,
respectively. The process of AP selection algorithm based on PV and RSSI is as follows:

Algorithm 2: AP selection algorithm
1. Step 1 Sorting
2. Sort descending [RSSI]
3. Calculate PV distances by using Eq. (9)
4. Sort ascending [PV]
5. Step 2 Selection
6. Select APs [greatest RSSI, smallest PV]
7. Step 3 Return selected APs index
8. Step 4 Select AP coordinate for index value returned in Step 3
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Table 1: Parameter set for simulation based on genetic algorithm

Parameters Symbol Values

Evolution time T 300 s
Crossover probability PC 0.8
Mutation probability Pm 0.05
Population size PT 256
Chromosomes length M 98
Bit length L 8 bit

Figure 3: GDOP vs. Evaluation time

Figure 4: EDOP vs. evaluation time
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3 Results and Discussion

The simulations were carried out in MATLAB. As outcome of the proposed work, signi�cant
improvement in localization error are achieved with the deployment of an additional AP in the
already existing infrastructure of APs. Further, PV and RSSI based APs selection algorithm selects
APs for localization of the user with k-NN algorithm. Moreover, comparative analysis of the
proposed technique with already existing techniques is carried out to validate its superiority.

3.1 Analysis of Access Point Deployment
Initial system parameters used for simulating GA are tabulated in Tab. 1. The position of APs

is calculated through GA with the evaluation time. Fig. 3 con�rms that GDOP decreases with
each iteration of the GA. After each iteration of the GA, the GDOP optimizes to its lowest value
with maximum ED as a �tness function. Furthermore, EDOP is calculated which gets maximized
with each iteration as shown in Fig. 4, with updated coordinates of the candidate AP location.
Fig. 5 shows the location of the new AP calculated through maximum EDOP.

Figure 5: Deployment of an additional AP

Table 2: System parameters

Parameters Values

Deployment area 40× 40 m2

Already deployed APs 3
Additional AP 1
Floor mesh spacing 1 m
Minimum wall length 15 m
Reference points 1600
Power of APs 18 dBm
Reading at each AP 60
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Figure 6: Wall detection via Hough space
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3.2 Analysis of Fingerprinting Database and Veri�cation
A Wi-Fi �ngerprinting database is created using Motley Kennan propagation model [34]. The

system parameters are mentioned in Tab. 2. The steps used in creating a validated database are
as follows:

1. Wall detection
2. Distance map
3. Veri�cation of database

3.2.1 Wall Detection
Hough transformation algorithm is used for detection of walls [22]. It detects the number

of walls from the blueprint image in the Hough space. Further, algorithm assigns different
attenuation factors to different type of walls according to their intensity levels. Fig. 6 shows the
detection of all the nine walls from the blueprint image.

Figure 7: Heat map of AP1

Figure 8: Random users and APs in interested area
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3.2.2 Distance Map
After the deployment of initial set up APs, distance is calculated from each RP to all the

APs using Eq. (10).

d(x, y)=
√
(xj − xi)2+ (yj − yi)2 (10)

where, xi and yi are the coordinates of RPs and xj and yj are the coordinates for APs.

Figure 9: Formation of PV

Figure 10: CDF comparison of the investigated algorithms (Case 1)

3.2.3 Database Veri�cation
After calculating the RSSI values in dBs, a database is generated. Veri�cation and validation

of database for further steps of the proposed technique is carried out through the heat maps.
Fig. 7 shows the heat map for AP1. The red region depicts the strongest RSSI value of AP1
which decreases as the user moves away from it (color changes from yellow to blue).
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3.3 Analysis of Selection of Access Point
This section illustrates the MATLAB simulation results for an indoor Wi-Fi test bed of 1600

RPs and 1000 users. The number of users can vary in the coverage area depending on time.
For busy hours, there can be more users in the coverage area whereas less number of users at
leisure hours. Nevertheless, an estimate has been made on a random �xed number of users in
the given area. Fig. 8 shows 15 random users in the coverage area. In the simulation, the PVs
formed from each of the users to the APs are shown in Fig. 9. Minimization of the distance
determined through PV is the framework for the second phase of the AP selection; the �rst
being the maximization of RSSI at the users. Fig. 10 shows the CDF plots for localization error
with a total of 3 localizing APs. Evidently, the PV based selection has produced the least error
of 1.149 m at the 90th percentile; the RSSI-based selection yielded an error of 1.62 m whereas
the initial set up of APs gave an error of 2.1 m. It is due to the noise present in the RSSI
based selected APs by the re�ection from walls and obstacles. It is intimating to calculate the
direct paths between the APs and RPs. The RSSI based algorithm performs the AP selection
which is nearer to the users as RSSI values decrease due to these obstacles and results in high
localization error.

Table 3: Different values of crossover mutation probabilities for further investigations

Cases\Probability Crossover probability Mutation probability

Case 1 0.8 0.05
Case 2 0.92 0.06
Case 3 0.65 0.02

Figure 11: AP deployment after changing probabilities Case 2

PV based selection of APs solves this problem as it calculates a direct path between APs. PV
has the ability to change its direction and magnitude with the user and select those AP which
are nearer to the user, hence yields low localization error. Comparison with already existing APs
is carried to show that by the deployment of the 4th AP in the system, localization accuracy is
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improved for both the selection algorithm, which ultimately favors the importance of deployment
of 4th AP.

Figure 12: CDF of investigated algorithms for Case 2

Figure 13: AP deployment after changing probabilities Case 3

3.4 Performance Analysis
Further investigations are carried out to verify the effect of different parameters on the local-

ization accuracy of the proposed technique. Crossover and mutation probabilities help to select
the best solution among the population in GA. If these probabilities are not carefully chosen, then
an optimized deployment of the AP is not possible, which highly affects the localization accuracy
of the system. Here, the values of k (k-NN) and gray code bit length (L) remain constant. Tab. 3
shows different values of crossover and mutation probabilities presented as Case 1 to Case 3. Case
1 is already discussed in Section 3.3 and PV based result of Case 1 will be further compared in
this section. Figs. 11 and 13 present the effect of deployment of additional APs for the other
two cases. Figs. 12 and 14 show a comparison of the accuracy of the proposed technique with
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the other two traditional methods. In both, Case 2 and Case 3, the PV based proposed technique
outperforms the other two methods as depicted in Fig. 15.

Figure 14: CDF of investigate algorithms for Case 3

Figure 15: Comparison of CDF of three cases for PV based methods

4 Conclusion

This research work focuses on mitigating the non-line of sight propagation complexities, for
locating a user, in an indoor environment while locating a user. We have proposed a technique
combining the capabilities of different algorithms for AP deployment and AP selection processes,
separately. Herein, GA along with EDOP is used for the deployment of an additional AP in the
already existing infrastructure, while the AP selection is implemented using PV based algorithm.
An RSSI database was created using Motley Kennan propagation model as a framework for
EDOP based AP deployment. For classi�cation and detection of the walls of the coverage area
in the simulation, Hough transformation has been applied. Furthermore, attenuation factors were
assigned to the walls to reduce multi-path effects and heat maps were utilized to validate the
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precision of the database. In the subsequent phase, PV based method ranked all the APs within
the coverage area based on minimum PV distance and maximum RSSI value. After ranking
of the APs, localization process is initiated with the three top ranked APs to complete k-NN
algorithm. In our research, the proposed AP selection algorithm effectively has reduced the
localization error. We have evaluated the PV based results with the existing algorithms and our
proposed method outperforms others in all cases. As a future work, we intend to apply adaptive
�lters on our database to minimize the errors in the of�ine phase that will eventually increase
positioning accuracy.

Acknowledgement: The authors extend their appreciation to National University of Sciences and
Technology for funding this work through Researchers Supporting Grant, National University of
Sciences and Technology, Islamabad, Pakistan.

Funding Statement: The authors extend their appreciation to National University of Sciences and
Technology for funding this work through Researchers Supporting Grant, National University of
Sciences and Technology, Islamabad, Pakistan.

Con�icts of Interest: The authors declare that they have no con�icts of interest to report regarding
the present study.

References
[1] C. Laoudias, A. Moreira, S. Kim, S. Lee, L. Wirola et al., “A survey of enabling technologies for

network localization, tracking, and navigation,” IEEE Communications Surveys and Tutorials, vol. 20,
no. 4, pp. 3607–3644, 2018.

[2] Y. Gu, A. Lo and I. Niemegeers, “A survey of indoor positioning systems for wireless personal
networks,” IEEE Communications Surveys and Tutorials, vol. 11, no. 1, pp. 13–32, 2009.

[3] G. Jekabsons, V. Kairish and V. Zuravlyov, “An analysis of Wi-Fi based indoor positioning accuracy,”
Applied Computer Systems, vol. 44, no. 1, pp. 131–137, 2011.

[4] H. Wu, A. Marshall and W. Yu, “Path planning and following algorithms in an indoor navigation
model for visually impaired,” in 2nd IEEE Int. Conf. on Internet Monitoring and Protection (ICIMP), San
Jose, CA, USA, pp. 38, 2007.

[5] K. Al Nuaimi and H. Kamel, “A survey of indoor positioning systems and algorithms,” in IEEE Int.
Conf. on Innovations in Information Technology (IIT), Abu Dhabi, United Arab Emirates, pp. 185–190, 2011.

[6] H. Huang and G. Gartner, “A survey of mobile indoor navigation systems,” in Cartography in Central
and Eastern Europe, Heidelberg, Germany: Springer, pp. 305–319, 2009.

[7] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu et al., “Recent advances in indoor localization: A
survey on theoretical approaches and applications,” IEEE Communications Surveys and Tutorials, vol. 19,
no. 2, pp. 1327–1346, 2016.

[8] A. Kumar, S. P. Venkatraman and A. Jain, U.S. Patent Application No. 15/449,425, 2018.
[9] W. H. Ali, A. A. Kareem and M. Jasim, “Survey on wireless indoor positioning systems,” Cihan

University-Erbil Scienti�c Journal, vol. 3, no. 2, pp. 42–47, 2019.
[10] N. Bahaaldin and E. Ercelebi, “BVIRE improved algorithm for indoor localization based on RFID

and a linear regression model,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 26,
no. 6, pp. 2943–2957, 2018.

[11] S. C. Yeh, W. H. Hsu, W. Y. Lin and Y. F. Wu, “Study on an indoor positioning system using
earth’s magnetic �eld,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 3, pp. 865–
872, 2020.

[12] C. Yang and H. R. Shao, “WiFi-based indoor positioning,” IEEE Communications Magazine, vol. 53,
no. 3, pp. 150–157, 2015.



1798 CMC, 2021, vol.67, no.2

[13] H. Tran, A. Mukherji, N. Bulusu, S. Pandey and X. Zhang, “Improving infrastructure-based indoor
positioning systems with device motion detection,” in IEEE Int. Conf. on Pervasive Computing and
Communications, Koyoto, Japan, pp. 176–185, 2019.

[14] C. Yu, N. El-Sheimy, H. Lan and Z. Liu, “Map-based indoor pedestrian navigation using an auxiliary
particle �lter,” Micromachines, vol. 8, no. 7, pp. 225, 2017.

[15] P. Enge and P. Misra, “Scanning the issue/technology: Special issue on global position system,”
Proceeding of the IEEE, vol. 87, no. 1, pp. 3–15, 1999.

[16] Y. Gu, Y. Chen, J. Liu and X. Jiang, “Semi-supervised deep extreme learning machine for Wi-Fi based
localization,” Neurocomputing, vol. 166, pp. 282–293, 2015.

[17] H. Eldeeb, M. Arafa and M. T. F. Saidahmed, “Optimal placement of access points for indoor
positioning using a genetic algorithm,” in 12th IEEE Int. Conf. on Computer Engineering and Systems,
Cairo, Egypt, pp. 306–313, 2017.

[18] F. A. Shabdiz and O. Ignatyev, U.S. Patent No. 9,253,605. Washington, DC: U.S. Patent and Trademark
Of�ce, 2016.

[19] A. Alsmady and F. Awad, “Optimal Wi-Fi access point placement for RSSI-based indoor localization
using genetic algorithm,” in 8th IEEE Int. Conf. on Information and Communication Systems, Irbid,
Jordan, pp. 287–291, 2017.

[20] A. A. Sheikh, E. Felemban, A. Alhindi, A. Naseer, M. Ghaleb et al., “A genetic algorithm based
framework for optimal topology generation for linear networks,” in 13th IEEE Int. Conf. on Intelligent
Computer Communication and Processing, Cluj-Napoca, Romania, pp. 255–262, 2017.

[21] S. Hassanhosseini, M. R. Taban and J. Abouei, “Indoor localization of wireless emitter using direct
position determination and particle swarm optimization,” Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 26, no. 2, pp. 655–665, 2018.

[22] R. V. Voronov, “The problem of optimal placement of access points for the indoor positioning system,”
Bulletin of Saint Petersburg University, vol. 13, no. 1, pp. 61–73, 2017.

[23] S. Aomumpai and C. Prommak, “On the impact of reference node placement in wireless indoor
positioning systems,” International Journal of Electrical and Computer Engineering, vol. 5, no. 12, pp.
1704–1708, 2011.

[24] A. Khalajmehrabadi, N. Gatsis and D. Akopian, “Modern WLAN �ngerprinting indoor positioning
methods and deployment challenges,” IEEE Communications Surveys and Tutorials, vol. 19, no. 3, pp.
1974–2002, 2017.

[25] G. Zou, L. Ma, Z. Zhang and Y. Mo, “An indoor positioning algorithm using joint information
entropy based on WLAN �ngerprint,” in 5th IEEE Int. Conf. on Computing, Communications and
Networking Technologies, Hefei, China, pp. 1–6, 2014.

[26] S. Sadowski and P. Spachos, “RSSI-based indoor localization with the Internet of Things,” IEEE
Access, vol. 6, pp. 30149–30161, 2018.

[27] S. Subedi and J. Y. Pyun, “Practical �ngerprinting localization for indoor positioning system by using
beacons,” Journal of Sensors, vol. 17, pp. 1–16, 2017.

[28] Y. Li, Z. Ghassemlooy, X. Tang, B. Lin and Y. Zhang, “A VLC smartphone camera based indoor
positioning system,” IEEE Photonics Technology Letters, vol. 30, no. 13, pp. 1171–1174, 2018.

[29] S. Huang, A. Ashfahani and M. Pratama, “Wireless indoor positioning using online machine learning,”
in 18th IEEE Int. Conf. On Machine Learning and Applications, Boca Raton, Florida, USA, pp. 1885–
1890, 2019.

[30] Z. Y. Wang, Z. Wang, L. Fan and Z. Yu, “A hybrid Wi-Fi �ngerprint based localization scheme
achieved by combining �sher score and stacked sparse autoencoder algorithms,” Mobile Information
Systems, vol. 20, pp. 1–14, 2020.

[31] A. Fahad and M. H. Mahoor, “Deep learning methods for �ngerprint-based indoor positioning: A
review,” Journal of Location Based Services, vol. 14, no. 3, pp. 129–200, 2020.

[32] A. M. Usman, S. Hur and Y. Park, “Wi-Fi-based effortless indoor positioning system using IoT
sensors,” Sensors, vol. 19, no. 7, pp. 1496, 2019.



CMC, 2021, vol.67, no.2 1799

[33] S. Petros and K. N. Plataniotis, “BLE beacons for indoor positioning at an interactive IoT-based smart
museum, IEEE,” Systems Journal, vol. 14, no. 3, pp. 3483–3493, 2020.

[34] H. A. Obeidat, H. A. Asif, N. T. Ali, Y. A. Dama, O. A. Obeidat et al., “An indoor path loss prediction
model using wall correction factors for wireless local area network and 5G indoor networks,” Radio
Sciences, vol. 53, no. 4, pp. 544–564, 2018.

[35] Y. E. Dari, S. S. Suyoto and P. P. Pranowo, “A mobile based indoor positioning system using wireless
indoor positioning system,” International Journal of Interactive Mobile Technologies, vol. 12, no. 1,
pp. 61–72, 2018.

[36] P. K. R. Maddikunta, T. R. Gadekallu, R. Kaluri, G. Srivastava, R. M. Parizi et al., “Green commu-
nication in IoT networks using a hybrid optimization algorithm,” Computer Communications, vol. 159,
pp. 97–107, 2020.

[37] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, D. S. Rajput et al., “Analysis of
dimensionality reduction techniques on big data,” IEEE Access, vol. 8, pp. 54776–54788, 2020.

[38] R. Vinayakumar, M. Alazab, S. Srinivasan, Q. V. Pham, S. K. Padannayil et al., “A visualized botnet
detection system based deep learning for the Internet of Things networks of smart cities,” IEEE
Transactions on Industry Applications, vol. 3, no. 56, pp. 56–58, 2020.

[39] P. K. R. Maddikunta, G. Srivastava, T. R. Gadekallu, N. Deepa and P. Boopathy, “Predictive model
for battery life in IoT networks,” IET Intelligent Transport Systems, vol. 14, no. 11, pp. 1388–1395, 2020.

[40] M. Alazab, A. Shalaginov, A. Mesleh and A. Awajan, “Intelligent mobile malware detection using
permission requests and API calls,” Future Generation Computer Systems, vol. 107, pp. 509–552, 2020.

[41] F. Subhan, S. Ahmed, S. Haider, S. Saleem, A. Khan et al., “Hybrid indoor position estimation using
K-NN and MinMax,” KSII Transactions on Internet & Information Systems, vol. 13, no. 9, pp. 4408–4428,
2019.


