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Abstract: In this paper, a novel precoding scheme based on the Gauss-Seidel
(GS)method is proposed for downlinkmassivemultiple-inputmultiple-output
(MIMO) systems. The GS method iteratively approximates the matrix inver-
sion and reduces the overall complexity of the precoding process. In addition,
the GSmethod shows a fast convergence rate to the Zero-forcing (ZF)method
that requires an exact invertible matrix. However, to satisfy demanded error
performance and converge to the error performance of the ZF method in
the practical condition such as spatially correlated channels, more iterations
are necessary for the GS method and increase the overall complexity. For
efficient approximation with fewer iterations, this paper proposes a weighted
GS (WGS)method to improve the approximation accuracy of the GSmethod.
The optimalweights that accelerate the convergence rate by improved accuracy
are computed by the least square (LS) method. After the computation of
weights, the different weights are applied for each iteration of the GS method.
In addition, an efficient method of weight computation is proposed to reduce
the complexity of the LS method. The simulation results show that bit error
rate (BER) performance for the proposed schemewith fewer iterations is better
than the GS method in spatially correlated channels.
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1 Introduction

Massive multiple-input multiple-output (MIMO) for a very large scale of multi-user (MU)
MIMO is a significant technology that enables advancement to the fifth-generation (5G) cellular
networks. Since hundreds of antennas at the base station (BS) induce significant multiplexing
and diversity gain, massive MIMO systems provide high energy efficiency, spectral efficiency, and
transmit reliability compared with small scale MU-MIMO systems. Also, simple linear processing
such as the ZF method provides optimal performance by the channel hardening property that
makes fading channels behave as deterministic channels in massive MIMO systems. It has been
proved that the ZF method with accurate channel state information (CSI) can perfectly eliminate
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intra-cell interference (ICI) in a single-cell system [1–6]. Indeed, there are various non-linear pro-
cessing methods and those provide higher error performance than linear processing methods [7].
However, the complexity of non-linear processing as an existing problem has become higher in
large scale MIMO systems. Therefore, the ZF method as the simple linear processing with optimal
performance has been attracted attention for massive MIMO systems [5]. However, the ZF method
requires the operation of direct matrix inversion whose computational complexity for multiplica-
tion is O

{
Nu

3} where Nu is the number of users. The complexity of direct matrix inversion is
unaffordable for the practical implementation of massive MIMO systems which serve tens of users
as the number of BS antennas increases [6]. Several precoding and detection schemes with low
complexity were surveyed in [8–11]. To balance between the complexity and performance, many
studies that approximate the matrix inversion to reduce the complexity were conducted [12–24],
and approximate methods can be classified into two categories: Neumann series expansion (NSE)
and iterative method.

The NSE method approximates the matrix inversion as expansion terms of a matrix polyno-
mial. The invertible matrix for an initial matrix is required to use the NSE method. The diagonal
matrix was used as the initial matrix of the NSE method to achieve the error performance
equivalent to the ZF method and low complexity in [12,13]. However, the NSE method has
two limited conditions related to its practical application to massive MIMO systems. Firstly, the
expansion of the NSE method does not exceed 2 terms since the expansion of 3 terms requires
the same complexity of O

{
Nu

3} as direct matrix inversion. Secondly, the NSE method can only
achieve high convergence probability in the large ratio ρ > 5.83, where the ratio ρ is defined as
ρ = Nb/Nu and Nb is the number of BS antennas [13]. Thus, the NSE method is difficult to
achieve both low complexity and high approximation accuracy in small ρ.

To obtain better approximation accuracy than the NSE method for the same complexity,
the iterative method approximates a vector multiplied by an invertible matrix. Since the iterative
method only requires matrix-vector multiplication operation, any iterations maintain the com-
plexity of O

{
Nu

2}. The error performance of iterative methods is determined depending on the
initial solution and iteration matrix. The GS method requires fewer iterations for demanded error
performance compared with other iterative methods such as Jacobi et al. [9].

To improve the error performance of the GS method, the initial solutions were variously
defined in [15–19]. The stair matrix was proposed as the initial solution in [15]. The one expansion
term of the NSE method that uses the diagonal matrix as the initial matrix was proposed as the
initial solution in [16]. Also, the two expansion terms of the NSE method were proposed as the
initial solution in [17–19]. In addition to variant initial solutions, the successive over relaxation
(SOR) methods that converge faster with the aid of a relaxation parameter compared with the
GS method were proposed in [20–22]. The GS and SOR methods can converge to the error
performance of the ZF method with fewer iterations under the ideal conditions such as the
large ρ. However, the convergence rate and approximation accuracy are reduced under practical
conditions such as the small ρ and spatially correlated channels. To solve these problems, the
GS methods based on the soft-output detector for uplink systems were proposed in [16–18],
and the SOR method applying adaptive relaxation parameters for each iteration was proposed
in [22]. Another way to solve these problems applies different weights for each expansion term
or iteration to improve the error performance. The NSE methods applying different weights
were proposed in [23,24], and the approximate methods with properly computed weights can
achieve better error performance. However, References [12–22] did not consider the performance
improvement by weighting, and the weights for each iteration were only set to default value
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as 1. In addition to weighting the approximate method, the consideration of practical channel
environment is significant in terms of performance verification [6]. This paper especially verifies
the error performance of iterative methods for spatially correlated channels.

In this paper, a WGS method to perform the ZF precoder is proposed and provides better
error performance in spatially correlated channels. The weights that minimize the error between
exact and approximate matrix inversion are computed by the LS method. For a feasible LS
method, the process of the GS method should be transformed into the form of NSE. The optimal
weights are only computed by the channel response of each channel coherence interval. However,
the proposed scheme uses one weight vector in the optimal weights since it is more efficient
in terms of computational complexity. Also, this paper proposes an efficient method to reduce
the complexity for the computation of the weights. The simulation results show that the WGS
precoder provides better error performance than the GS precoder.

This paper is organized as follows. Section 2 presents models for the downlink massive MIMO
system and spatially correlated channels. Section 3 explains iterative methods, the GS precoder,
and the improvement of the GS method. In Section 4, the WGS precoder and the efficient weight
computation method are proposed. Also, Section 4 provides the computational complexity for
iterative methods. Section 5 presents the simulation results for BER performance comparison of
iterative methods. Finally, Section 6 gives brief conclusions.

2 System Model

This section presents a downlink massive MIMO system model and channel model assumed
in this paper.

2.1 Downlink Massive MIMO System Model
Fig. 1 shows the system configuration for the downlink massive MIMO where the BS with

Nb transmit antennas simultaneously communicates Nu users with a single antenna, and Nb �
Nu is assumed. The channel matrix H between all transmit antennas and total users is H =[
h1 h2 · · · hNu

]T whose the m-th row vector is hm = [
hm1 hm2 · · · hmNb

]
. The received symbol ym at

the m-th user is as follows:

ym =
√
Phm

gm
‖G‖F

sm+
Nu∑

n=1,n �=m

√
Phm

gn
‖G‖F

sn+ zm, (1)

Figure 1: The downlink massive MIMO system configuration
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where P is the downlink transmit power, G is an Nb×Nu precoding matrix, gm is the m-th column
of G, sm is the m-th complex transmit symbol with zero mean and unit variance, zm is the m-th
additive white Gaussian noise (AWGN) with zero mean and unit variance, and ‖·‖F is Frobenius
norm operator.

2.2 Channel Model
For spatially correlated channels, this paper considers the exponential correlation matrix

model which is expressed as [25]

ri,j =
{
a|i−j| if i≥ j

(a∗)|i−j| , otherwise
(2)

where ri,j is the element in the i-th row and j-th column of the spatial correlation matrix R,
(·)∗ is the complex conjugate, a= ζejθ is the correlation coefficient, ζ is the correlation coefficient
magnitude with 0< ζ ≤ 1, and θ is randomly determined in interval

[
0, π

2

]
. The channel matrix H

is expressed as follows:

H=Rr
1
2HwRt

1
2 , (3)

where Hw is an Nu × Nb Rayleigh fading channel matrix which elements are independent and
identically distributed (i.i.d.) circular symmetric complex Gaussian random variables with zero
mean and unit variance, Rr is an Nu×Nu complex spatial correlation matrix for receive antennas,
and Rt is an Nb × Nb complex spatial correlation matrix for transmit antennas. The distance
between adjacent antennas is related to the correlation coefficient magnitude and the larger
distance than half a wavelength can omit the spatial correlation [22]. This paper considers single
antenna users and assumes that the distance of users is larger than half a wavelength. Therefore,
it is assumed that the magnitude of correlation coefficient of the user has zeros in this paper.

3 Approximate Methods

In this section, iterative methods and the relationship between iterative method and NSE are
briefly explained, and the GS precoders are presented.

3.1 Iterative Methods
The iterative method approximates a signal vector x to solve the linear equation of Wx= s.

The iterative method can be expressed as follows:

Mxk =Nxk−1 + s, (4)

where W=M−N, M is a nonsingular matrix, subscript k is the iteration number, and x0 is an
initial solution that generally assumes zero vector. The expression of Eq. (4) with respect to the
xk is expressed as follows:

xk =M−1 (
Nxk−1+ s

) =Bxk−1 +M−1s, (5)
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where B=M−1N is an iteration matrix. For the convergence of lim
k→∞

xk =W−1s, the condition of

ρ (B) < 1 should be satisfied, and ρ (·) is the spectral radius of a matrix. In comparison to the
iterative method, the NSE method is expressed as follows:

W−1
k =

k−1∑
n=0

(
IN −M−1W

)n
M−1, (6)

where IN is the N ×N identity matrix, and the iterative method can be transformed as the form
of NSE as follows:

xk =M−1Nxk−1 +M−1s=
k−1∑
n=0

(
IN −M−1W

)n
M−1s, (7)

where the initial solution x0 is zero vector, and the M is called as preconditioner that determines
the error performance of approximate methods.

3.2 GS Precoder
For the expression of the GS precoder, the gram matrix W is defined as follows:

W=HHH . (8)

The preconditioner of the GS method is expressed as follows:

MGS =D+L, (9)

where W is decomposed as W=D+L+U, D is the diagonal part, L is the strictly lower part,
and U is the strictly upper part. The k-th GS solution xk is calculated as follows:

xk = (D+L)−1 (
s−Uxk−1

)
, (10)

where s = [
s1 s2 · · · sNu

]T is a Nu × 1 modulated symbol vector. The downlink transmit symbol
vector t is calculated with matched filter as follows:

t= 1√
γ
HHxk, (11)

where γ is scaling factor to normalize the total transmit power.

3.3 Improvement of GS Method
The initial solution x0 is variously defined according to the system requirement, which can

improve the convergence rate and approximation accuracy of iterative methods. Among various
initial solutions, the recent initial solution for improvement of the GS method is expressed as [18]

x0 =
1∑

n=0

D−1
(
−ED−1

)n
s, (12)
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where the matrix E is defined as E=L+U. Another way to improve the GS method is the usage
of a relaxation parameter. The relaxation parameter α to the GS method to work well at any ρ

is applied as [19]

xk =
(
L+ 1

α
D

)−1 [
s+

((
1
α
− 1

)
D−U

)
xk−1

]
. (13)

Eq. (13) is called as the SOR method, and the GS method is special case of the SOR method
whose the value of α is equal to 1. The GS precoder with the initial solution of Eq. (12) and the
SOR precoder with the appropriately selected α provides better error performance than the GS
precoder with the initial solution of zero vector.

4 Proposed Downlink Precoding Scheme

In Section 2, the spatially correlated channel is considered. The problem is that the spatial
correlation degrades the error performance of approximate methods. Although direct elimination
of the spatial correlation is difficult, the improvement of error performance can alleviate this prob-
lem to some extent. In this section, a WGS method is designed to improve the error performance
of the GS precoder for downlink massive MIMO systems. The WGS method is inspired by the
weighted Neumann series in [23,24]. Also, an efficient method to reduce the complexity of weight
computation is proposed.

4.1 Weighted GS Precoder
The proposed scheme that applies different weights to each iteration of the GS method is

expressed as follows:

xk = (D+L)−1 (
uk−1s−Uxk−1

)
, (14)

where {un}k−1
n=0 are complex weights to decrease approximation error, and the initial solution x0 is

zero vector. For the computation of the optimal weights, the WGS method is expressed similarly
with Eq. (6) as follows:

xk = (D+L)−1 (
uk−1s−Uxk−1

) = k−1∑
n=0

uk−n−1

(
IK − (D+L)−1W

)n
(D+L)−1 s, (15)

where the weights are applied in reverse order to each term of matrix polynomial, and the
weighted W−1

k of the GS method is expressed as follows:

W−1
k =

k−1∑
n=0

an
(
IK − (D+L)−1W

)n
(D+L)−1 , (16)

where an is the weight of reverse order to simplify the subscript. The weights can be computed
by the LS method that determines the solution of the linear model in which the given data is
the channel response [26]. Firstly, the optimal weights should minimize the value of the problem
as follows:

Popt=
∥∥∥WW−1

k − INu

∥∥∥
F
. (17)
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For the computation of the optimal weights, the j-th term of the matrix polynomial of the
WW−1

k except the weight parameter is defined as follows:

C(j) =W
((

IK −P−1W
)(j−1)

)
P−1 =

[
c(j)1 c(j)2 · · · c(j)Nu

]
, (18)

where c(j)� is the �-th column vector of C(j) and the �-th column vector of INu is defined as e�.
Secondly, the optimization problem in Eq. (17) can be modified with the different form that
computes the weights as the solution of linear equation. The modified optimization problem is
defined as follows:

aopt= argminPopt= argmin
a∈C

‖Za− b‖F , (19)

where a= [a0 a1 · · · ak−1]
T is a k× 1 weight vector b= [

e1T e2T · · · eNu
T

]T
is the Nu

2 × 1 vector,

and Z is a Nu
2× k combined matrix whose the (i, j)-th element is c(j)i as follows:

Z=

⎡
⎢⎢⎢⎢⎢⎢⎣

c(1)1 c(2)1 · · · c(k)1

c(1)2 c(2)2 · · · c(k)2

...
...

. . .
...

c(1)Nu
c(2)Nu

· · · c(k)Nu

⎤
⎥⎥⎥⎥⎥⎥⎦
. (20)

Finally, the weight vector computed by the LS method is expressed as follows:

aopt=
(
ZHZ

)−1
ZHb. (21)

In this way, the computation of the optimal weights should be performed at every channel
coherence interval, and the computational complexity is higher than direct matrix inversion.
To reduce the complexity, the WGS precoder uses the only one optimal weight vector computed
early in the system. The computation of the weights is executed only once and not included
in approximation complexity. Since the optimal weights are determined only within a certain
distribution, any weights in the distribution can sufficiently improve the error performance of
the GS precoder. Fig. 2 shows the distribution of the optimal weights for 5 expansion terms of
matrix polynomial in complex plane. To illustrate the effect of the spatial correlation and the ratio
ρ =Nb/Nu on weights, three different cases are presented. In Fig. 2, n is the order of the weights,
the Nb is fixed at 200. The case (a) is that Nu is 20 and ζ is 0, the case (b) is that Nu is 40 and ζ

is 0, and the case (c) is that Nu is 40 and ζ is 0.3. The number of optimal weights representing the
distribution is 200 for each term of the matrix polynomial. The distribution of the case (c) is the
largest in Fig. 2, but is enough small since the width of the distribution for real and imaginary
values is close to 1. The optimal weights change according to the ρ and ζ since the correlation
degree of the channels is different. The weights of the first and second order overlap since those
values are close to 1. In contrast, the absolute value of the weights for the latter order increases
as the correlation degree of the channels increases and is clearly observed.
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(a)
(b)

(b) (a)

(c)

(c)

Figure 2: The distribution of optimal weights in three different cases

4.2 Efficient Weight Computation Method
As seen above process, the LS method can efficiently compute the weights. However, the

computation method of the optimal weights requires very high computational complexity O (
Nu

4).
This paper proposes an efficient method to compute the weights with less complexity. The com-
plexity can be reduced by modifying the Z and b in Eq. (21). The modified Z is defined as the
Nu× k combined matrix X as follows:

X=
[
diag

(
C(1)

)
diag

(
C(2)

)
· · · diag

(
C(k)

)]
. (22)

where diag (·) forms the diagonal elements of a matrix to a column vector, and the modified
b is defined as the k × 1 vector d whose all elements have the value of 1. The efficient weight
computation method is expressed similarly with Eq. (21) as follows:

adiag=
(
XHX

)−1
XHd. (23)

Additionally, only the real part of the weights is used to exclude the influence on imaginary
values when the weights are determined close to the distribution boundary on the imaginary
axis. In terms of the number of users, the weight computation method using only the diagonal
elements for each term of the matrix polynomial reduces the complexity to O (

Nu
2). The weights

computed by Eq. (23) are close enough to the optimal weights and significantly improve the
error performance of the GS method. Tab. 1 expresses the meaning of parameters in the WGS
algorithm that the summary of the WGS precoder using the real part of one adiag is expressed as
an algorithm as follows:

Step 1: Input parameter s,H,K

Step 2: Initialization

W=HHH =D+L+U

x0 = 0
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Step 3: Weight computation

X= [ ]

d= ones (Nu)

B= (D+L)−1

for k= 1: 1 : K

X=
[
X diag

(
W

(
INu −BW

)(k−1)B
)]

end for

a=
(
XHX

)−1
XHd

Step 4: GS iteration

for k= 1: 1 : K

xk = (D+L)−1 (
real

(
aK−k+1

)
s−Uxk−1

)
end for

Step 5: GS precoder

γ = trace
(
xksH

)

t= 1√
γ
HHxK

Step 6: Output parameter t

Table 1: The meaning of parameters in the WGS algorithm

Parameters Meaning

K The number of iterations
[ ] The empty matrix
ones (Nu) The Nu× 1 vector whose all elements are one
real( ) The real part of the complex value
trace( ) The sum of diagonal elements

4.3 Complexity Analysis
Tab. 2 expresses the complexity of iterative precoders compared in simulation results.

The number of complex multiplications for only calculating xk is considered, and the complexity
of the weight computation is excluded since the weight vector is not iteratively computed during
the precoding process. The difference between the WGS and the GS method is the application of
the weights as a coefficient of symbol vector in Eq. (14). The xk of the WGS method is expressed
in terms of elements as follows:

x(k)
i = 1

wi,i

⎛
⎝uk−1si−

i−1∑
j=1

wi,jx
(k)
j −

Nu∑
j=i+1

wi,jx
(k−1)
j

⎞
⎠ , (24)
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where x(k)
i , x(k−1)

i , and si are the i-th element of xk, xk−1, and s respectively, and wi, j is the
element in the i-th row and j-th column of W. The multiplication required for one element of xk
can be divided as 4 parts. The number of multiplications outside parenthesis is 1. In parenthesis,
The number of multiplications for the first term is 1, the number of multiplications for the second
term is i− 1, and the number of multiplication for the third term is Nu− i. Since the size of xk
is Nu× 1, the total number of multiplications for one iteration is Nu

2+Nu.

Table 2: The complexity of iterative precoders

Scheme The number of complex multiplications

WGS CWGS = k
(
Nu

2+Nu
)+NbNu

xk : k
(
Nu

2+Nu
)

HHxk : NbNu

GS with the initial
solution of zero vector

CGS_1 = kNu
2+NbNu

xk : kNu
2

HHxk : NbNu

GS with the initial
solution of Eq. (12)

CGS_2 = (k+ 3)Nu
2− 2Nu+NbNu

xk : (k+ 3)Nu
2 − 2Nu [18]

HHxk : NbNu

SOR CSOR= k
(
Nu

2 + 2Nu
)+NbNu

xk : k
(
Nu

2+ 2Nu
)
[20]

HHxk : NbNu

ZF CZF =Nu
3+ 2Nu

3+NbNu

W−1 : Nu
3+Nu

2 (Gauss–Jordan) [14]

HH
(
W−1s

)
: Nu

2 +NbNu

5 Performance Evaluation and Discussion

In this section, the BER performances of iterative precoders according to signal to noise
ratio (SNR) are presented. The BER performance of the exact ZF precoder is provided as a
benchmark. To confirm the difference in weight usage for BER performance, the GS precoder
with the initial solution of zero vector is compared with the WGS precoder. Also, the BER
performances of the GS precoder with the initial solution of Eq. (12) and the SOR precoder are
provided to compare with the WGS precoder. In all simulations, the number of antennas at BS is
fixed at 200 while the number of users is 20, 30 and 40 respectively, and 64-quadrature amplitude
modulation (QAM) is used. The downlink channels are modelled as the Rayleigh fading channel
with or without spatial correlation. In simulation results, K indicates the iteration number.

Fig. 3 shows the comparison of the use of different weight vectors for the WGS method.
The number of users is 30, the correlation magnitude is 0.5, and the number of iterations is 5.
In Fig. 3, using all elements means the use of one aopt, using diagonal elements means the use
of the real part of one adiag, and optimal weights mean the use of optimal weight vector that
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changes at each coherence interval. Fig. 3a presents the distance between weight values computed
once by other methods and optimal weight values in complex plane according to the weight order.
In Fig. 3a, the distance is averaged by 1000 optimal weight vectors. The graph shape can be
different depending on the weight vector which is computed once. However, the difference in the
graph shape does not change significantly since the one weight vector is determined close to the
certain distribution as shown Fig. 2. The distance value calculated by comparison with the one
aopt is smaller than using adiag, and the distance value of adiag on all weight order is smaller
than 1. Furthermore, the BER performances are nearly same for all weight vectors in Fig. 3b.
Thus, the use of adiag for the WGS precoder is reasonable in terms of the complexity and the BER
performance, and the weight vector of the WGS precoder presented in all of following simulation
results is based on the real part of the adiag.

(a) (b)

Figure 3: The comparison of using different weights in spatially correlated channel

Fig. 4 shows the average magnitude for the diagonal dominance of W according to the
different number of users and correlation magnitude. The average magnitude for the diagonal
dominance of W is calculated as follows:

v= 1
Nu

Nu∑
i=1

∣∣wi,i∣∣
Nu∑

j=1,j �=i

∣∣wi,j∣∣
, (25)

where wi,j is the element in the i-th row and j-th column of W. Since the low ratio ρ and
high correlation magnitude weaken the channel hardening property, the average magnitude for the
diagonal dominance of W is decreased.

Fig. 5 shows the BER performances of the GS precoder with the initial solution of zero
vector and the WGS precoder in ideal Rayleigh fading channel with no spatial correlation.
In order to compare the WGS precoder with the GS precoder only with respect to the number
of users, the number of users is chosen as 20, 30 and 40. For all number of users, the BER
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performance of the WGS precoder is close to the exact ZF precoder in 3 iterations. However,
the WGS and GS precoders provide nearly the same BER performance as the exact ZF precoder
in Fig. 5a since the ratio ρ is large. In Figs. 5b and 5c, the difference of 2 dB is shown in the
range of 18–20 dB. The difference in the BER performances is increasingly clear as the number of
users increases.

(a) (b)

Figure 4: The average magnitude for diagonal dominance of W according to the different number
of users and correlation magnitude

Fig. 6 shows the BER performances of the GS precoder with the initial solution of zero
vector and the WGS precoder in spatially correlated channel. The number of users is 20, and
the correlation magnitude is 0.5. For K= 4, the BER performance of the WGS precoder is close
to the exact ZF precoder. The WGS precoder provides better BER performance than the GS
precoder in the same iterations since the weights accelerate the convergence rate. The difference
in the BER performances is more obvious compared with Fig. 5 since the spatial correlation
significantly degrades the BER performance of the GS precoder.

Fig. 7 shows the difference of approximation accuracy and convergence rate for the iterative
methods according to the iteration number. In Fig. 7a, the approximation error between WW−1

k
and INu for the iterative methods is shown. The approximation error is calculated as follows:

e=
∥∥∥WW−1

k − INu

∥∥∥
F
. (26)

In Fig. 7b, the comparison of BER performances is shown for the SNR of 20 dB. The
number of uses is 40, the correlation magnitude is 0.5, and the range of iterations is from 2
to 8 to clearly confirm that the error is gradually decreased and the WGS method completely
convergences to the ZF method. The nearly optimal relaxation parameter of SOR method is
empirically chosen for each configuration and correlation magnitude in Fig. 7 and following
simulation results. It is confirmed that the graph shape in Fig. 7a is similar with that in Fig. 7b.
Therefore, the decrease of the approximation error is directly related to the increase in BER
performance. The WGS method shows the fastest convergence rate among the compared methods
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since the weights decrease the approximation error. Also, the approximation error and BER
performance for WGS method with K= 5 are smaller than other methods with K= 6.

(a) (b)

(c)

Figure 5: The BER performance comparison of the WGS, GS and exact ZF precoders in ideal
Rayleigh fading channel with the different number of users. (a) Nb = 200, Nu = 20, ζ = 0.
(b) Nb = 200, Nu = 30, ζ = 0. (c) Nb = 200, Nu = 40, ζ = 0

Fig. 8 shows the BER performance for the WGS precoder, the GS precoder with the initial
solution of zero vector, the GS precoder with the initial solution of Eq. (12), and the SOR
precoder. In order to clarify the difference in BER performance among iterative precoders, the
range of SNR is increased by 2 dB and 4 dB respectively. The correlation magnitude is fixed
at 0.5, and the number of users is 30 and 40. In this situation, the WGS precoder requires
more iteration to approach the BER performance of the exact ZF precoder since the convergence
rate is sufficiently decreased. However, the WGS precoder outperforms the GS precoder with the
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initial solution of zero vector. In Fig. 8a, the WGS precoder is close to the exact ZF precoder
in 5 iterations, and the WGS precoder provides better BER performance than the other iterative
precoders in the same iterations. In Fig. 8b, the WGS precoder is close to the exact ZF precoder
in 6 iterations, and even the WGS precoder with 5 iterations provides better BER performance
than the other iterative precoders with 6 iterations.

Figure 6: The BER performance comparison of the WGS, GS and exact ZF precoders in spatially
correlated channel

(a) (b)

Figure 7: The approximation error and BER performances for the iterative methods according to
the number of iterations



CMC, 2021, vol.67, no.2 1743

(a) (b)

Figure 8: The BER performance comparison of the iterative precoders and the exact ZF precoders
in spatially correlated channel with the different number of users. (a) Nb = 200, Nu = 30, ζ = 0.5.
(b) Nb = 200, Nu = 40, ζ = 0.5

The improvement of the BER performance for the WGS precoder is noticeable in the large
ratio ρ and spatially correlated channels. The WGS precoder maintains a faster convergence rate
than the other iterative precoders, but large number of iterations can be required to converge to
the BER performance of the exact ZF precoder shown in Fig. 8. However, the overall complexity
is decreased by reducing the iteration number to satisfy demanded BER performance. In addition,
the WGS precoder still maintains lower complexity than the exact ZF precoder according to the
complexity analysis in Tab. 2.

6 Conclusion

The approximate methods based on iterative algorithm significantly reduce the computational
complexity of direct matrix inversion and are efficient for the practical implementation of massive
MIMO systems. In this paper, a weighted approximate method based on iterative algorithm is
proposed to improve the approximation accuracy of the GS method. The WGS method uses
different weights for each iteration of the GS method. To avoid the process that computes the
optimal weights on every channel coherence interval, the weights are computed only once. The
certain part of elements that is necessary for the computation of the weights is used to reduce
the computational complexity. The WGS method maintains a fast convergence rate in spatially
correlated channels. The simulation results show that the WGS method outperforms the GS
method and provides better BER performance compared with other iterative methods.
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