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Abstract:TheEquilibriumOptimizer (EO),GreyWolf Optimizer (GWO), and
Whale Optimizer (WO) algorithms are being recently developed for engineer-
ing optimization problems. In this paper, the EO, GWO, and WO algorithms
are applied individually for a brushless direct current (BLDC) design opti-
mization problem. The EO algorithm is inspired by the models utilized to
find the system’s dynamic state and equilibrium state. The GWO and WO
algorithms are inspired by the hunting behavior of the wolf and the whale,
respectively. The primary purpose of any optimization technique is to find the
optimal configuration by maximizing motor efficiency and/or minimizing the
total mass. Therefore, two objective functions are being used to achieve these
objectives. The first refers to a design with high power output and efficiency.
The second is a constraint imposed by the reality that the motor is built into
the wheel of the vehicle and, therefore, a lightweight is needed. The EO, GWO,
and WOA algorithms are then utilized to optimize the BLDC motor’s design
variables to minimize the motor’s total mass or maximize the motor efficiency
by simultaneously satisfying the six inequality constraints. The simulation is
carried out using MATLAB simulation software, and the simulation results
prove the dominance of the proposed algorithms. This paper also suggests an
efficient method from the proposed three methods for the BLDCmotor design
optimization problem.

Keywords: BLDC motor; constrained; equilibrium optimizer; single-
objective optimization

1 Introduction

A DC motor is an electrical machine that transforms direct current electrical energy into
mechanical energy. The popular forms depend on the magnetic field forces that produce.
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The BLDC motors have been implemented for practical applications due to their features, such as
more efficient, less noisy operation, and more output power. An integrated inverter or switching
power supply is used to power the BLDC motors with a DC electric source, which generates AC
power to power the motor. In real-time applications, such as computers, automotive applications,
and electronics, they have been used successfully [1,2]. They are more powerful and lighter than
conventional motors with equal power output, and they also need low maintenance because the
carbon brushes are not required. Furthermore, due to their capacity in the torque and speed
field [3,4], they are more flexible. A wheel motor that propels a solar vehicle during a race is the
motor presented in this paper. The cost during production and the materials is unnecessary, while
the main points are motor mass and efficiency [5]. In this paper, a BLDC motor analytical model
is utilized as a benchmark consisting mainly of 78 non-linear equations, and it has been applied
with six limitations of inequality and five design variables [5]. In other words, five parameters are
calculated by the design process to minimize the total mass or to maximize efficiency and meet
six inequality constraints simultaneously. Therefore, a more sophisticated optimization algorithm
is necessary to accomplish these artifacts.

The Lagrange multipliers and the Lagrangian function could be used in an improved manner
to optimization problems that have equality constraints. It allows you to find the maximum
or minimum of a multi-objective function whenever the input parameters are constrained. The
reality that Lagrange multiplier approaches are not always complex enables numerical optimization
difficult. This can be dealt with by measuring the gradient magnitude since the magnitude zeros
must be local minima. The downside of this method is however that it falsely expands the prob-
lem’s dimension [6]. To handle this difficulty, constrained optimization problems are also solved
without Lagrange multipliers. The authors of [7] presented few asymptotic techniques for the
discrete solutions of nonlinear fractional differential equations and nonlinear differential-difference
equations. The approaches, such as ancient Chinese mathematics, Yang–Fourier transform, Yang–
Laplace transform, parameter-expansion method, and the Hamiltonian are considered to solve the
constrained optimization problems. However, to deal with the real-world constraint multi-objective
optimization problems, a sophisticated optimization technique is required.

Recently, evolutionary optimization techniques have been used extensively in real-world engi-
neering optimization problems, including mechanical engineering, electrical engineering, thermal
engineering, etc. [8–11]. The reason for this popularity is because of two essential features of these
evolutionary algorithms. The evolutionary algorithms start with the random initial results, and the
initial solution is enhanced to obtain the optimal solutions. For instance, differential evolution-
ary (DE) [12], particle swarm optimization (PSO) [13], genetic algorithm [14], teaching-learning
algorithm [15], etc., are the important evolutionary techniques that are widely used in the electro-
magnetic fields. The operators of these algorithms and few modifications in the basic version are
presented to improve the solution accuracy, and these modified versions are claiming superior per-
formance than their basic versions. For instance, modified PSO [16], adaptive DE [17], Krill herd
algorithm [18], imperialist competitive algorithm, etc., are some of the modified versions. To solve
multi-target optimization problems, it can also be expanded [19–22]. The optimal solutions for
multi-target optimization problems are a group of non-dominated solutions by best convergence
between two or three objective functions situated in a curve known as the Pareto front. In recent
years, bio-inspired or nature-inspired algorithms, such as Grey Wolf Optimizer (GWO), Whale
Optimizer (WO), Equilibrium Optimizer (EO), salp swarm optimization, flower pollination, Ant
Colony Optimization (ACO), artificial bee colony optimization algorithm, Bat Algorithm (BA),
etc. are reported in various literature to solve real-world engineering problems [23]. However,
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GWO, WO, EO algorithms are not utilized to solve the BLDC motor design optimization problem
due to its freshness. Five design variables should be adjusted for the BLDC motor optimization
problem to achieve an acceptable trade-off between efficiency and total motor mass.

In this paper, the optimized values of the motor’s design variables, which satisfies the design
settings, can be achieved by a recent single-objective algorithm and applied to the empirical
model of BLDC motors. There are two main objectives for the design optimization problem
of the BLDC motor: minimization of total mass and maximization of efficiency. To deal with
these multi-objective problems, multi-objective algorithms are required; however, a single-objective
algorithm is used due to its computation complexity and implementation complexity. But the
objective functions are handled separately to discover the optimal variables of the BLDC motor.

The remainder of the paper is organized as follows. Section 2 presents the problem formu-
lation of the BLDC motor design optimization problem. Section 3 discusses the basic versions
of EO, GWO, and WO and their application in the BLDC motor optimization problem. The
simulation results are discussed in Section 4, and finally, Section 5 concludes the paper.

2 Problem Formulation

The BLDC motors are beneficial to conventional DC motors because they are highly powerful
and need low maintenance because they do not have any brushes to carry the current. They are
also more flexible, primarily due to their torque and speed capabilities. Built on the compact kit
of BLDC motors, they are used in various computer and automotive applications [24]. The BLDC
motors are the typical and commonly tested application and have many findings to compare
in this context. Few researchers discuss the shape optimization through the surface response
method [25] or the multi-target increase in torque and reduction in cogging torque as aims through
a genetic algorithm [26] or Equivalent Circuit Network Method [27].

The MATLAB model is required that can be selected from [28] for analysis when 78 non-
linear equations with five design variables subjected to six inequality constraints are introduced
for optimization in single-objective, or with 5 constraints in multiple objectives. The mathematical
model of this problem can be seen in [5]. From [5], a benchmark for the BLDC wheel motor was
accessible, and the MATLAB source code is also publicly accessible for computing the objective
function, as discussed. The BLDC wheel motor’s design problems have an objective, such as min-
imizing total mass and maximizing efficiency with five decision/design variables: airgap magnetic
induction, Be, stator bore diameter, Ds, both teeth magnetic induction, Bd , and stator back iron
induction, Bcs, and conductor’s current density, δ. And, there are six inequality constraints, such
as external diameter, Dext, internal diameter, Dint, total mass, Mtot, temperature, Ta, the maximum
magnetizing current, Imax, and lastly, Discr is a determinant utilized in slot height calculation,
and this is depending on five design variables. The total mass of the motor should not outdo
15 kg, the external diameter must be less than 340 mm, such that the motor fits into the wheel
rim, the internal diameter should be greater than 76 mm, the magnets must be assisted without
demagnetization by a current of 125 A, and the magnet temperature must be less than 120◦C.
Fig. 1 illustrates the geometry of the BLDC wheel motor. Tab. 1 displays the design variables,
definitions, and ranges. The six inequality constraints and their description, linked to operational,
technical, and motor considerations, are presented in Tab. 2.
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Figure 1: Structure of the BLDC wheel motor [5]

Table 1: Design variables and their boundaries

Variables Definitions Boundaries

Be Airgap magnetic induction (0.5–0.76) T
Ds Stator bore diameter (0.15–0.33) m
Bcs Stator back iron induction (0.6–1.6) T
Bd Teeth magnetic induction (0.9–1.8) T
δ Conductor’s current density (2–5)e06 A/m2

Table 2: Six inequality constraints

Variables Definitions Boundaries

Dext External diameter ≤0.34 mm
Dint Internal diameter ≤0.076 mm
Mtot Total mass ≤15 kg
Ta Temperature ≤120◦
Imax Maximum magnetizing current ≥125 A
Discr Determinant utilized in slot height calculation Discr(Ds, δ,Bd,Be)≥ 0

Two objective functions for the BLDC motor design problem is given as follows.

Maximize→ f1(1− η)

with 150mm≤Ds ≤ 330 mm, 0.5T≤Be ≤ 0.76T

2A/mm2 ≤ δ≤ 5A/mm2, 0.9T≤Bd ≤ 1.8T

0.6T≤Bcs ≤ 1.6T

Subjected to : Mtot ≤ 15Kg, Dext ≤ 340mm

Dint ≥ 76mm, Imax ≥ 125A
Ta ≤ 120 ◦C, discr (Ds,δ,Bd,Be)≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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Minimize → f2(Mtot)

with 150mm≤Ds ≤ 330mm, 0.5T≤Be ≤ 0.76T

2A/mm2 ≤ δ≤ 5A/mm2, 0.9T≤Bd ≤ 1.8T

0.6T≤Bcs ≤ 1.6T

Subjected to : Mtot ≤ 15Kg, Dext ≤ 340mm

Dint ≥ 76mm, Imax ≥ 125A

Ta ≤ 120 ◦C, discr (Ds,δ,Bd,Be)≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

Therefore, the objective of the function f1 is to optimize the motor’s efficiency, which is the
same as minimizing the power losses, and the objective of the function f2 is to minimize the total
mass of the motor.

3 Recent Meta-Heuristic Methods Based BLDC Wheel Motor Design Problem

A brief description of implemented meta-heuristic algorithms, such as GWO, WOA, and EO,
is discussed in this section of the paper. These algorithms were chosen because they were not
previously applied to the BLDC motor design optimization problem.

3.1 Grey Wolf Optimizer (GWO) Algorithm
The GWO was introduced in 2014 and employs the hunting behavior and leadership skill of

grey wolves [29]. The hierarchy of the grey wolf is alpha (α), beta (β), delta (δ), and omega (ω),
respectively, in which α is the leader, and it has responsibilities of hunting, place to sleep, and
so on. The β and δ are the second and third hierarchy level, and ω is the last level of the
hierarchy. The hunting has three stages: find, chase, and approach the victim, encircle and harass
the target, and attack in the prey direction. During hunting, the wolves encircle the prey, and it
is mathematically represented as follows.

�D=
∣∣∣ �C · �Yp (t)− �Y (t)

∣∣∣ (3)

�Y (t+ 1)= �Yp (t)− �A · �D (4)

where the current iteration is denoted as t, coefficient vectors are represented as �C and �A.
The position of the prey is denoted as �Xp and the wolf position is denoted as �X . The vector
coefficients are represented as follows, in which, �a is reduces from 2 to 0 linearly, and the random
vectors are denoted as r1 and r2.

�A= 2 · �a · �r1 −�a (5)

�C = 2 · �r2 (6)

The hunting activity of grey wolves is simulated mathematically because the alpha, beta,
and delta know the prey’s possible better position. The first top three results generated so far
are therefore saved, and the other search agents (including omegas) are forced to update their
positions as per the location of the best search agents. In this regard, the following formulas
are proposed.

�Dα =
∣∣∣ �C1 · �Yα − �Y

∣∣∣ , �Dβ =
∣∣∣ �C2 · �Yβ − �Y

∣∣∣ , �Dδ =
∣∣∣ �C3 · �Yδ − �Y

∣∣∣ (7)
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�Y1 = �Yα − �A1 ·
(
�Dα

)
, �Y2 = �Yβ − �A2 ·

(
�Dβ

)
, �Y3 = �Yδ − �A3 ·

(
�Dδ

)
(8)

�Y (t+ 1)=
�Y1+ �Y2+ �Y3

3
(9)

By attacking the prey when it stops moving, the grey wolves end the chase., as described
above. The value of �a is reduced in order to mathematically model the approach of the prey by
the grey wolves and the �A is dominated by �a as well. To explore the search space, the random
parameters A and C support candidate solutions.

3.2 Whale Optimization (WO) Algorithm
The WO algorithm was introduced in 2016 has become one of the intelligent meta-heuristic

algorithms and is inspired by the hunting mechanism of a humpback whale [30]. In hunting, these
whales are superior, and hunting actions can be considered to overcome the non-linear engineering
optimization problem. The whale’s hunting system is called a bubble-net feed. The trivial fishes
near the surface tend to hunt these whales. The steps to be taken are to encircle the target, bubble-
net feed movement, and hunt for targets in the search area. The search agent determines the target
location and surrounds the prey. For the algorithm, the initial search space location is uncertain,
and it assumes that the target prey is the best solution at present. The algorithm chooses the best
agent with this assumption while the other is updating its best position. The search agents swim
around the target within the shrinking circle, and the best position is updated simultaneously. The
whale’s hunting activity is modeled as follows.

�Q=
∣∣∣ �R. �Yn

∗
(m)− �Yn (m)

∣∣∣ (10)

�Yn (m+ 1)=
⎧⎨
⎩

�Yn
∗
(m)− �P. �Q if t< 0.5 (exploration)

�Q∗.ebi cos (2πb)+ �Yn
∗
(m) if t> 0.5 (exploitation)

⎫⎬
⎭ (11)

where the current iteration is defined by m, �Yn is the position vector of the search agents, �Yn
∗
is

the best current vector position and modified when each iteration has a successful solution, and
�P, �Q and �R are the vector coefficients. n is a random number [0, 1] and b is a random number
[−1, 1]. The vector coefficients, such as �P and �R are given as follows.

�P= 2�f. �r1−�f (12)

�R= 2 �r2 (13)

where �f in both the search space decreases from 2 to 0 over the iteration and the random variables
�r1 and �r2 between [0, 1].

3.3 Equilibrium Optimizer (EO) Algorithm
The idea behind the single-objective Equilibrium Optimizer was introduced in 2020 [31]. On a

control volume, where it uses a mass balance equation, EO is based on a dynamic mass balance.
The mass balance equation checks the mass amount in a control volume entering, leaving, and
producing. The equation of mass balance seeks the system’s equilibrium state. In order to be
eligible as a well-performing algorithm, EO has many benefits. These attributes include the ability
to maintain a balance between discovery and exploitation, the ability to execute them quickly,
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and the ability to retain flexibility between individual solutions. As a result, addressing several
single-objective optimizations, real-world problems have begun to gain popularity. In the following
three steps, the mathematical model of the single-objective EO algorithm is clarified.

During initialization, EO uses a particle group, in which each particle describes the vector
of concentration that includes the solution to the problem. The initial concentration vector is
arbitrarily developed using the following formula in the search space.

Yinitial
j = lb+ randj (ub− lb) , j= 0, 1, 2, 3, . . . ,n (14)

where, Yinitial
j denotes the vector concentration of the jth particle, ub and lb are upper and lower

limits of each variable, randj is a random number [0, 1], and n denotes the number of particles.
The EO algorithm chases for the system’s equilibrium state. While obtaining the equilibrium state,
EO achieves the near-optimal solution. EO doesn’t understand the amount of concentrations that
achieve the equilibrium state. Therefore, it assigns equilibrium candidates to the best four particles
in the population, plus another one containing the average of the best four particles. In the
exploitation and exploration processes, these five equilibrium candidates support EO. The first
four candidates seek better exploration, while the fifth candidate with an average value is seeking
change in exploitation. These five candidates possess a vector called the equilibrium pool.

�Ceq,pool =
{ �Ceq(1), �Ceq(2), �Ceq(3), �Ceq(4), �Ceq(ave)

}
(15)

The update of the concentration allows EO to balance exploration and exploitation fairly.

�F = e−�λ(t−t0) (16)

where �λ is a random vector supposed to differ between 0 and 1, allowing turnover rate fluctuations
over a period of time, and t is reduced as the iteration count increases as per Eq. (17).

t=
(
1− It

Max_it

)(
a2

It
Max_it

)
(17)

It and Max_it are respectively, the current and the maximum number of iterations, and a2
is a constant to control the capacity to exploit. Another variable a1, is used to improve both
exploration and exploitation and is defined as follows.

�t0 = 1
�λ ln

(
−a1sign

(�r− 0.5
) [
1− e−�λt

])
+ t (18)

The rate of generation is referred to as G, which improves exploitation and is described as
follows.

�G= �G0e
−�l(t−t0) (19)

where, �l is a random vector (0, 1), and the initial generation rate called �G0 is formulated as follows.

�G0 = �GCP
( �Ceq− �λ �C

)
(20)

�GCP=
{
0.5r1, r2 ≥GP
0, r2 <GP

(21)
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where the random numbers are denoted as r1 and r2 and varies between 0 and 1. The vector
−→
GCP

is the parameter which controls the generation rate that controls whether the generation rate is
applied to the updating stage or not. Lastly, EO is updated using Eq. (22).

�C = �Ceq+
( �C− �Ceq

)
.�F +

�G
�λV

(
1− �F

)
(22)

The value of V is equal to 1. Readers are advised to refer [3] to the EO process for a more
comprehensive description.

3.4 Implementation Procedure
The implementation procedure of the BLDC motor parameter design process for all selected

algorithms is discussed as follows.

(a) The initialization is the first step in optimization problems.
(b) For position Yi, the problem dimension D is equal to five.
(c) Yi = [Yi1,Yi2,Yi3,Yi4,Yi5] = [Bd ,Ds,Be, δ,Bcs], and the values of Yi1,Yi2,Yi3,Yi4, and Yi5

are within the range as specified in Tab. 1.
(d) Initialize other parameters for all selected algorithms and adjust the parameters to get the

required performance.
(e) Two objective functions, such as f1 and f2, are handled separately in this paper.
(f) Evaluate the search agent’s position and look for the best position, and the position is

updated using Eqs. (9), (11), (22) for GWO, WO, and EO algorithms, respectively.
(g) The iteration count is updated by It= It+ 1 for all algorithms.

If It is less than Max_it, return to Step 6, else evaluate the current positions Y, and the
algorithm is terminated and gives the optimal output.

4 Simulation Results and Discussions

4.1 Simulation Results
The selected algorithms, such as GWO, WO, and EO, are tested for all the benchmark test

functions and few real-world problems. However, none of these algorithms are tested for BLDC
wheel motor design problems. Therefore, all the selected algorithms are applied directly to solve
this design problem and optimize the design variables by minimizing the motor’s total mass or
maximizing the motor’s efficiency. All the algorithms run 10 times for both the objective functions
and the control parameters of all algorithms are listed in Tab. 3. The control parameters are
selected based on several trial runs and literature studies.

All the selected algorithms proved their capability in handling real-world engineering prob-
lems. The design of the BLDC motor mentioned in Section 2 is added to test the effectiveness
of all algorithms further. For two objective problems, all algorithms also run 10 times, as stated
earlier. Two different case studies, such as minimizing the mass and maximizing efficiency, are
studied, and simulation is carried out.

Case 1:Maximizing theMotor Efficiency - In this case study, the BLDC motor design variables
are optimized by considering the objective function 1 given in Eq. (1). The selected algorithms,
such as GWO, WO, and EO algorithms are directly applied to the objective function 1, and the
optimized design variables for all 10 individual runs are listed in Tabs. 4–6. The bold letters in
each table display the best results for 10 runs. Tab. 4 shows that the best motor efficiency is



CMC, 2021, vol.67, no.2 2235

achieved by GWO during the 8th run and is equal to 95.3105%. From Tab. 5, it is observed
that the best motor efficiency is achieved by WO during the 9th run and is equal to 95.1545%.
Tab. 6 shows that the best motor efficiency is achieved by EO during the 8th run and is equal to
95.3177%, and also observed from Tab. 6 that the EO algorithm is giving consistent results during
all the runs. The convergence curve for all selected algorithms is illustrated in Fig. 2.

Table 3: Control parameters of all algorithms

S. No. Parameters Values

1 Number of search agents 50
2 Maximum number of iterations 500
3 Convergence parameter (GWO and WO) Linear decrease from 2 to 0
4 Constants a1 and a2 (EO) 2 and 1, respectively
5 Generation probability (EO) 0.5

Table 4: Optimized variables for objective function 1 by GWO for all 10 runs

Run No. Bd (T) Be (T) Bcs (T) Ds (m) δ (A/m2) Efficiency

1 1.8000 0.6481 1.0547 0.2036 2.012E+ 06 95.3035
2 1.8000 0.6504 1.0954 0.2037 2.004E+ 06 95.3094
3 1.8000 0.6473 1.0541 0.2034 2.005E+ 06 95.3024
4 1.7912 0.6474 1.1027 0.2042 2.007E+ 06 95.3089
5 1.8000 0.6473 1.0539 0.2032 2.003E+ 06 95.3082
6 1.8000 0.6468 1.0708 0.2037 2.001E+ 06 95.3098
7 1.7977 0.6474 1.0082 0.2035 2.036E+ 06 95.3100
8 1.7983 0.6491 1.0331 0.2024 2.002E + 06 95.3105
9 1.8000 0.6528 0.8461 0.2012 2.101E+ 06 95.2973
10 1.8000 0.6527 1.1371 0.2040 2.000E+ 06 95.3035
∗Bold letters indicate the best results

Table 5: Optimized variables for objective function 1 by WO for all 10 runs

Run No. Bd (T) Be (T) Bcs (T) Ds (m) δ (A/m2) Efficiency

1 1.3194 0.7399 1.1645 0.2007 3.524E+ 06 94.3151
2 1.6835 0.7255 0.8953 0.1977 2.532E+ 06 95.1365
3 1.8000 0.7600 0.9523 0.1937 2.463E+ 06 95.1536
4 1.6209 0.7122 0.8176 0.1980 2.623E+ 06 95.0899
5 1.4660 0.7600 0.7353 0.1937 3.571E+ 06 94.4536
6 1.6936 0.7515 0.8201 0.1943 2.720E+ 06 95.0556
7 1.3983 0.7232 0.9098 0.1986 3.182E+ 06 94.6522
8 1.8000 0.7600 0.7212 0.1927 2.861E+ 06 94.9887
9 1.8000 0.7598 1.0924 0.1939 2.361E + 06 95.1545
10 1.7756 0.7600 0.9973 0.1945 2.490E+ 06 95.1348
∗Bold letters indicate the best results
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Table 6: Optimized variables for objective function 1 by EO for all 10 runs

Run No. Bd (T) Be (T) Bcs (T) Ds (m) δ (A/m2) Efficiency

1 1.8000 0.6479 0.9148 0.2017 2.043E+ 06 95.3172
2 1.8000 0.6481 0.9001 0.2014 2.044E+ 06 95.3176
3 1.8000 0.6480 0.9045 0.2014 2.043E+ 06 95.3175
4 1.8000 0.6481 0.8973 0.2012 2.043E + 06 95.3177
5 1.8000 0.6478 0.9287 0.2019 2.038E+ 06 95.3170
6 1.8000 0.6481 0.8975 0.2013 2.043E+ 06 95.3177
7 1.8000 0.6481 0.9089 0.2014 2.038E+ 06 95.3176
8 1.8000 0.6481 0.9173 0.2013 2.032E+ 06 95.3174
9 1.8000 0.6481 0.9109 0.2013 2.035E+ 06 95.3176
10 1.8000 0.6482 0.9022 0.2012 2.040E+ 06 95.3177
∗Bold letters indicate the best results

(a) (b)

(c)

Figure 2: Convergence curve for objective function 1; (a) GWO, (b) WO, (c) EO

From Fig. 2, it is observed that the EO algorithm converges to the maximum efficiency very
quickly than the GWO and WO algorithms. Therefore, it is concluded that the EO algorithm is
performing better in handling objective function 1 of the BLDC motor design problem.
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Case 2: Minimizing the Motor Mass - In this case study, the BLDC motor design variables are
optimized by considering the objective function 2 as given in Eq. 2. As similar to the previous
case study, the selected algorithms, such as GWO, WO, and EO algorithms, are directly applied
to objective function 2, and the optimized design variables for all 10 individual runs are listed in
Tabs. 7–9. The bold letters in each table display the best results for 10 runs. Tab. 6 shows that
the best motor mass is achieved by GWO during the 1st run and is equal to 10.5770 kg. From
Tab. 8, it is observed that the best motor mass is achieved by WO during the 3rd run and is equal
to 10.6286 kg. From Tab. 9, it is observed that the best motor mass is achieved by EO during
the 8th run and is equal to 10.5690 kg, and also observed from Tab. 9 that the EO algorithm is
giving consistent results during all the runs. The convergence curve for all selected algorithms is
illustrated in Fig. 3.

Table 7: Optimized variables for objective function 2 by GWO for all 10 runs

Run No. Bd (T) Be (T) Bcs (T) Ds (m) δ (A/m2) Total Mass (Kg)

1 1.7983 0.6514 1.5970 0.1901 3.837E + 06 10.5770
2 1.7990 0.6545 1.5952 0.1886 3.764E+ 06 10.5836
3 1.8000 0.6524 1.5666 0.1886 3.752E+ 06 10.5955
4 1.8000 0.6564 1.6000 0.1855 3.582E+ 06 10.5997
5 1.8000 0.6525 1.5892 0.1893 3.793E+ 06 10.5820
6 1.8000 0.6522 1.6000 0.1902 3.845E+ 06 10.5776
7 1.7960 0.6533 1.5572 0.1879 3.716E+ 06 10.6111
8 1.8000 0.6509 1.5964 0.1929 4.006E+ 06 10.5946
9 1.8000 0.6544 1.6000 0.1885 3.755E+ 06 10.5823
10 1.7949 0.6492 1.5946 0.1942 4.076E+ 06 10.6133
∗Bold letters indicate the best results

Table 8: Optimized variables for objective function 2 by WO for all 10 runs

Run No. Bd (T) Be (T) Bcs (T) Ds (m) δ (A/m2) Total Mass (Kg)

1 1.8000 0.6654 1.3681 0.1911 4.074E+ 06 10.8286
2 1.7999 0.6512 1.5999 0.1986 4.359E+ 06 10.7011
3 1.7982 0.6652 1.5984 0.1859 3.673E + 06 10.6286
4 1.7791 0.6635 1.2312 0.1981 4.555E+ 06 11.1998
5 1.7540 0.7313 1.4037 0.1839 4.118E+ 06 11.2242
6 1.7495 0.7024 1.4589 0.1956 4.639E+ 06 11.2207
7 1.7971 0.6455 1.5075 0.2089 4.992E+ 06 11.0934
8 1.7894 0.7377 1.5958 0.1791 3.768E+ 06 11.0671
9 1.6677 0.6791 1.5999 0.1972 4.495E+ 06 11.0646
10 1.6706 0.6935 1.6000 0.1900 4.146E+ 06 11.0214
∗Bold letters indicate the best results
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Table 9: Optimized variables for objective function 2 by EO for all 10 runs

Run No. Bd (T) Be (T) Bcs (T) Ds (m) δ (A/m2) Total Mass (Kg)

1 1.8000 0.6499 1.6000 0.1919 3.937E+ 06 10.5764
2 1.7998 0.6616 1.5965 0.1893 3.862E+ 06 10.6140
3 1.8000 0.6511 1.6000 0.1902 3.842E+ 06 10.5699
4 1.8000 0.6437 1.6000 0.2008 4.436E+ 06 10.7074
5 1.8000 0.6511 1.6000 0.1901 3.835E+ 06 10.5693
6 1.7996 0.6526 1.6000 0.1886 3.749E+ 06 10.5721
7 1.8000 0.6497 1.5999 0.1922 3.952E+ 06 10.5781
8 1.8000 0.6513 1.6000 0.1898 3.820E + 06 10.5690
9 1.8000 0.6506 1.6000 0.1908 3.877E+ 06 10.5712
10 1.8000 0.6520 1.6000 0.1889 3.764E+ 06 10.5695
∗Bold letters indicate the best results

(a) (b)

(c)

Figure 3: Convergence curve for objective function 2; (a) GWO, (b) WO, (c) EO

From Fig. 3, it is observed that the EO algorithm converges to the minimum mass very
quickly than the GWO and WO algorithms. Therefore, it is concluded that the EO algorithm is
performing better in handling objective function 2 of the BLDC motor design problem.



CMC, 2021, vol.67, no.2 2239

4.2 Performance Comparison
The performance of the selected algorithms, such as GWO, WO, and EO, are compared with

other metaheuristic algorithms, such as PSO, ACO, and BA. The optimized design variables for
both objective functions of the BLDC motor by all algorithms are listed in Tabs. 10 and 11. All
algorithms run 10 times to check the reliability, and the best results are listed.

It is observed from Tabs. 10 and 11 that the EO algorithm is performing better than any of
the algorithms, and the results produced by the EO algorithm are consistent, and the reliability
of the EO is comparatively higher than the other algorithms. The statistical results, such as
Min, Max, Mean, and standard deviation (STD) of all algorithms, are listed in Tab. 12. The
superiority of the EO over PSO, ACO, BA, GWO, and WO in the above-mentioned indicators can
be concluded. The design parameters achieved by the proposed EO algorithm, when the efficiency
is maximum or when the total mass is minimal, are shown in Tab. 12.

Table 10: Performance results of objective function 1 for maximizing efficiency

Method PSO ACO BA GWO WO EO

Ds (mm) 202.1 201.2 202.2 202.4 193.9 201.2
Be (T) 0.6476 0.6481 0.6535 0.6491 0.7598 0.6482
δ (A/mm2) 2.0417 2.0437 2.0514 2.0022 2.3614 2.0402
Bd (T) 1.8 1.8 1.8 1.7983 1.8 1.8
Bcs (T) 0.9298 0.8959 0.9792 1.0331 1.0924 0.9022
Efficiency (%) 95.315 95.316 95.311 95.314 95.164 95.321
Mtot (kg) 15 15 14.95 14.98 14.75 15
Evaluations 1600 1200 1590 500 500 500
∗Bold letters indicate the best results

Table 11: Performance Results of objective function 2 for minimizing the mass

Method PSO ACO BA GWO WO EO

Ds (mm) 186.01 187.07 191.92 190.14 185.91 189.84
Be (T) 0.6992 0.6636 0.6580 0.6514 0.6652 0.6513
δ (A/mm2) 3.2406 2.5054 3.9728 3.837 3.673 3.820
Bd (T) 1.7731 1.7466 1.7710 1.7983 1.7982 1.8000
Bcs (T) 1.5334 1.6000 1.5943 1.5970 1.5984 1.6000
Efficiency (%) 94.221 94.775 94.494 93.807 93.145 94.875
Mtot (kg) 11.609 12.082 10.585 10.5770 10.6286 10.569
Evaluations 1600 1200 1590 500 500 500
∗Bold letters indicate the best results
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Table 12: Statistical summary of all algorithms

Objective Function Statistics PSO ACO BA GWO WO EO

1 Min −0.9531 −0.9531 −0.9531 −0.953 −0.9513 −0.9532
Max −0.9214 −0.9245 −0.9298 −0.9379 −0.9358 −0.9355
Mean −0.9488 −0.9358 −0.9414 −0.9518 −0.9495 −0.9527
STD 0.00754 0.00987 0.00654 0.00209 0.00416 0.0021

2 Min 11.61 12.08 10.59 10.61 11.02 10.57
Max 14.58 14.15 14.73 13.07 13.53 14.08
Mean 10.97 11.04 10.88 10.88 11.14 10.69
STD 0.4478 0.5878 0.4698 0.464 0.4556 0.4137

5 Conclusion

This paper deals with the optimal design of a brushless DC wheel motor, and the main
aim of the optimization technique is to maximize the efficiency of the machine or minimize its
total mass. An analytical model discussed in the literature was considered to accomplish this
purpose, and numerous optimization techniques, such as GWO, WO, and EO, were applied. Two
different objective functions are formulated and utilized to optimize the design variable of the
BLDC motor. The results obtained from the selected algorithms are compared with the other
metaheuristic algorithms, such as PSO, ACO, and BA, and show that the EO algorithm can give
optimized and best results for both the objective functions. Also, in terms of Min, Max, Mean,
and STD, the EO algorithm can give the lowest values than the other algorithms. It can thus be
inferred that the EO algorithm is an effective algorithm to be applied to the problem of BLDC
wheel motor design.

For future research, the authors have planned to investigate both the objective functions
simultaneously to get the optimal trade-off between the motor mass and motor efficiency by
applying the multi-objective versions of GWO, WO, and EO. In addition, the multi-objective
versions can also be investigated to handle different uncertainties during the optimization process.
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