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Abstract: Due to the advancements in remote sensing technologies, the gen-
eration of hyperspectral imagery (HSI) gets significantly increased. Accurate
classification of HSI becomes a critical process in the domain of hyperspectral
data analysis. The massive availability of spectral and spatial details of HSI
has offered a great opportunity to efficiently illustrate and recognize ground
materials. Presently, deep learning (DL) models particularly, convolutional
neural networks (CNNs) become useful for HSI classification owing to the
effective feature representation and high performance. In this view, this paper
introduces a new DL based Xception model for HSI analysis and classi-
fication, called Xcep-HSIC model. Initially, the presented model utilizes a
feature relation map learning (FRML) to identify the relationship among
the hyperspectral features and explore many features for improved classifier
results. Next, the DL based Xception model is applied as a feature extractor
to derive a useful set of features from the FRML map. In addition, kernel
extreme learning machine (KELM) optimized by quantum-behaved particle
swarm optimization (QPSO) is employed as a classification model, to identify
the different set of class labels. An extensive set of simulations takes place
on two benchmarks HSI dataset, namely Indian Pines and Pavia University
dataset. The obtained results ensured the effective performance of the Xcep-
HSIC technique over the existing methods by attaining a maximum accuracy
of 94.32% and 92.67% on the applied India Pines and Pavia University
dataset respectively.
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1 Introduction

Recently, hyperspectral remote sensing images have gained maximum attention among
researchers. As the hyperspectral images are robust in solving energy for fine spectra with an
extensive range of functions in climatic [1], armed forces, mining, and clinical domains. The
application of hyperspectral images is operated on imaging spectrometers, which is implanted
in various spaces. The imaging spectrum has been coined in the past decades. It is applied for
images in ultraviolet, transparent, closer-infrared, and mid-infrared regions of electromagnetic
waves. In imaging spectrometer in massive continuous as well as narrow bands have pixels in the
applied wavelength range are completely reflected. Thus, the hyperspectral images are composed
of maximum spectral resolution, enormous bands, and dense information. The computational
approaches of hyperspectral remote sensing images include image correction, noise limitation,
transformation, dimension reduction, and classification.

By considering the benefits of productive spectral data, enormous classical classifiers models
like k-nearest-neighbors (k-NN), and Logistic Regression (LR), were deployed. In recent times,
efficient feature extraction models and the latest classification have been introduced like spectral-
spatial classification as well as local Fisher discriminant analysis (FDA). Recently, Support Vector
Machine (SVM) is employed as an efficient and reliable manner for hyper-spectral classifiers,
particularly, for tiny training sample sizes. SVM applies ubiquitous 2-class data by understanding
the best decision hyper-plane that isolates training instances in the kernel with higher-dimensional
feature space. These extensions of SVM in hyperspectral image classifiers are projected for
enhancing the classification function. Neural networks (NN), like Multilayer Perceptron (MLP)
and Radial Basis Function (RBF), were examined for classifying remote sensing information.
In [2], the developers have introduced a semi-supervised NN scheme for large-scale hyperspectral
imagery (HSI) classification. Basically, in remote sensing classification, SVM is highly effective
when compared with conventional NN with respect to classification accuracy and processing cost.
In [3], a deeper structure of NN is assumed as a productive method for classification in which
the working function competes with the performance of SVM.

Deep learning (DL) related models have accomplished challenging performance in massive
applications. In DL, the Convolutional Neural Networks (CNNs) plays an important role in
computing visual-based issues. CNNs are biological-based as well as multilayer classes of DL
approach apply NN trained from end to end image pixel values in order to generate the simulation
outcome. Using the massive sources of training data and productive execution on GPUs, CNNs
has surpassed the traditional models even for human function, on massive vision-based tasks
along with image classification, object prediction, scene labeling, house value digit classification,
and face analysis. Followed by, the vision tasks in CNN were employed in alternate regions like
speech analysis. This is accomplished by predicting the proficient class of methods to learning
visual image content, by offering the up-to-date results on visual image classification as well as
visual-based issues.

In [4], developers provided a deep neural network (DNN) for HSI classification where Stacked
Autoencoders (SAEs) have been applied for extracting differential features. CNN was illustrated
for generating optimal classification function when compared with classical SVM classifications
and DNNs in visual-based area. Therefore, CNN is applied to visual-based issues which have been
deployed for various layers for the HSI classifier. Here, it is evident that CNNs are applied for
classifying hyper-spectral data after developing a proper layer structure. Based on these experi-
ments, it is apparent that classical CNNs like LeNet-5 with 2 Conv. layers are not suitable for
hyper-spectral data. In [5], feature relations map learning (FRML) is derived to achieve improved
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HSI classification. The relationships between the features are extracted under the application of
a particular function. It uses the CNN model to extract the features and the present pixel is
classified into the proper class label. Once the FRML is carried out on the whole image, a precise
land usage map is generated.

Though several models are existed in the literature, it is still needed to develop an effective
method with improved performance. This paper introduces an effective DL based Xception model
for HSI analysis and classification, called the Xcep-HSIC model. Firstly, the Xcep-HSIC model
applies a feature FRML for identifying the relationship among the hyperspectral features and
discovers many features for enhanced classifier outcome. Subsequently, the DL-based Xception
model is applied as a feature extractor to derive a useful set of features from the FRML map.
Finally, kernel extreme learning machine (KELM) optimized by quantum-behaved particle swarm
optimization (QPSO) is employed as a classification model, to identify the different set of class
labels. A series of experiments were carried out using 2 benchmark HSI dataset, namely Indian
Pines and Pavia University dataset.

2 Related Works

Generally, DL models are composed of massive hidden layers which intend to filter different
as well as invariant features of input data. These approaches were operated on the basis of image
classification, natural language computation, as well as speech analysis. In recent times, DL tech-
nologies have attained massive interest from remote sensing teams. This section explains the review
of DL based classification models and ensemble-based classification models for HSI classification.

2.1 Review of DL Models
The brief surveys of the DL approach for computing the remote information are acquired.

Chen et al. [6] developed a DL for computing HSI classification. A deep mechanism depends upon
the SAE which has been developed for processing feature extraction by achieving the optimal
classification accuracy when compared with shallow classifiers. Followed by, Chen et al. [7] present
a classification principle named Deep Belief Networks (DBN). The multi-layer DBN approach
has been deployed for learning deep features of hyper-spectral data, and learned features are
categorized by LR. Ding et al. [8] project the HSI classification approach according to the CNNs,
where the convolutional kernels are learned automatically from data using clustering. Wu et al. [9]
introduced a convolutional recurrent NN (CRNN) to classified hyper-spectral data. Conv. layers
are applied for extracting locally invariant features that are induced into recurrent layers for
accomplishing contextual data between diverse spectral bands. Li et al. [10] established a CNN-
related pixel-pairs feature extraction approach to HSI classification. The pixel-pair method is
developed for exploiting the affinity among the pixels and confirms enough data for CNN. Pan
et al. [11] develop a Vertet Component Analysis Network (VCANet) to extracted deep features
from HSIs normalized by using a rolling guided filter. Reference [12] presented the different
region-relied CNN for HSI classification that encodes semantic context-aware implications for
accomplishing challenging features.

2.2 Review of Ensemble Learning Models
The ensemble learning method applies several learning models for accomplishing effective pre-

diction function which is attained from the constituent learning techniques. Ceamanos et al. [13]
projected a hyper-spectral classifier according to the combination of various SVM classification
models. Huang et al. [14] established the multi-feature classifier which aims in developing SVM
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ensemble with several spectral as well as spatial characteristics. Gu et al. [15] projected various
kernels learning approaches which applies a boosting principle for screening minimum training
instances. It makes use of boosting trick for diverse integrations of restricted training instances
and adaptively compute the optimal weights of fundamental kernels. Qi et al. [16] imply several
kernels learning models that leverage Feature Selection (FS) and PSO.

3 The Proposed Xcep-HSI Model

The workflow contained in the Xcep-HSI method is shown in Fig. 1. As depicted, the
Xcep-HSI model performs the FRML map extraction process and then Xception based feature
extraction task takes place to derive a set of feature vectors. At last, the QPSO-KELM model is
applied to identify the different class labels of HSI.

Figure 1: The flow diagram of Xcep-HSI model

3.1 Feature Relations Map Learning
The processes involved in FRML map extraction are given as follows: Initially, the pixels in

the image are stored as a high dimensional vector where each element signify the spectral features
in every band. Then, the values of every two elements are determined using a normalized differ-
ence index (NDI) for constructing a 2-D matrix known as feature relation matrix, subsequently,
a matrix is converted into an image for building FRM. This concept is inspired by [5].

3.2 Feature Extraction
In recent times, the DL method is one of the well-known applications evolved from

Machine Learning (ML) technology with deepening of multi-layer Feed Forward Neural Networks
(FFNN). Under the application of restricted hardware goods, the count of layers in conventional
NN is restricted because of learned variables and relations among the layers need maximum
calculation time. Using the production of high-end systems, it can be feasible for training deep
approaches with the help of multi-level NN.

The DL technique is evolved from CNN with a high rate of function in massive applications
like image processing, ML, speech examination, and object prediction. Moreover, CNN is a
multi-layer NN [17]. Additionally, CNN is benefited from feature extraction that limits the pre-
processing phase to a greater extent. Therefore, it is not sufficient to perform a pre-study for
identifying the features of an image. The CNN is collected of Input, Convolutional, Pooling, Fully
Connected (FC), Relu, Dropout as well as classification layers. The performances of these layers
are defined in the following.

• The input layer is the first layer of CNN. Here, data is provided to this system with no pre-
processing. Here, input size differs from pre-trained DL structures are applied. For instance,
the input size for the AlexNet method is 227× 227× 3.

• Convolution layer has relied on CNN which is applied for extracting the feature maps
with the help of pixel matrices of image. Also, it is depending upon the circulation of
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a specific filter. Consequently, a novel image matrix has been accomplished. Filters have
different sizes like 3× 3, 5× 5, 7× 7, 9× 9, or 11× 11.

• The rectified linear units (ReLU) layer exists behind the Conv. layer. Here, it can be
considered as an activation function that follows the negative values that are provided
as input to function down to zero. A significant feature that discriminates the function
from activation functions like a hyperbolic tangent, sinus has generated robust outcomes.
Typically, these functions have been applied for nonlinear conversion operations.

• The pooling layer is computed after Conv. and ReLU mechanism. It is mainly applied for
reducing the size of the input and eliminates the system from memorizing. As the Conv.
layer, the pooling procedure applies diverse sized filters. This filter considers max or average
pooling functions on image matrices which considers the particular attribute. Followed by,
maximum pooling is applied as it showcased optimal function.

• FC layer emerges after Conv, ReLU as well as Pooling layers. The neurons in this layer are
attached to the regions of the existing layer.

• A dropout layer is applied for eliminating the network memorizes. A performance of this
approach is computed by the arbitrary elimination of few nodes of a system.

• The classification layer is evolved after FC Layer where the classification process has been
performed. In classification, probability values refer to that it is nearby the class. These
measures are accomplished with the help of the softmax function.

Xception model

In this study, DL based Xception architecture is utilized to extract the features. The Xception
system is identical to inception (GoogLeNet), whereby the inception is replaced by depth-wise
separate Conv. layers. In particular, Xception’s structure is developed according to the linear stack
of a depth-wise separate Conv. layer (36 conv. layers) with a linear residual attached (Fig. 2) [18].
In this model, there are 2 significant Conv. layers are used namely, depthwise and pointwise conv.
layer. In depth-wise conv. layer, a spatial convolution takes place automatically in channels of
input data, and point-wise conv. layer, in which a 1 × 1 conv. layer maps the result of novel
channel space under the application of a depth-wise convolution.

Figure 2: The structure of the xception model
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3.3 QPSO-KELM Based Classification
ELM is defined as a novel learning approach for training “generalized” single hidden layer

feedforward neural networks (SLFNs) that are applicable to gain supreme generalization function
with robust learning speed on complex issues. ELM contains input, hidden as well as output layer,
in which input and hidden layers are linked using input weights whereas output and hidden layers
are linked using resultant weights. In contrast with CNN, ELM does not require regular parameter
modification. The base ELM is classified into 2 major phases namely, ELM feature mapping as
well as ELM parameter solving [19]. Initially, a concealed depiction is attained from actual input
data through nonlinear feature mapping. Based on the ELM principle, diverse activation functions
could be applied in the ELM feature mapping phase. Secondly, output weight parameters are
resolved using MoorePenrose (MP) generalized converse and lower norm least-squares solution
of a typical linear method with no learning rounds. It is applied that N various training samples
have been employed, {X , Y } = {(xi, yj)}Ni=1, in which xi ∈ R

d signifies a d-dimensional input vector
as well as yj ∈ R

c denotes a c-dimensional target vector. The ELM system along with Q hidden
nodes are depicted as given below:

yi =
Q∑
j=1

βjhj
(
ωj ·xj + bj

)
, i= 1, 2, . . . , N, (1)

where ωj ∈ R
d implies the input weight vector, bj refers to the hidden layer bias, and βj ∈ R

c

indicates the final weight vector for jth hidden node. hj(·) represents the final value of jth hidden
node. In the case of simplification, Eq. (1) is illustrated as

Hβ =Y , (2)

where H denotes the hidden layer outcome matrix and β implies the resultant weight matrix.

As ELM has massive benefits, massive ELM variants have been presented for reporting the
functions of remote sensing. Next, the better function of ELM on HSIs are applied in real-
time applications. Kernel learning models are evolved from ML approaches for identifying the
typical relationships among features and labels. When compared with common applications, kernel
learning approaches perform optimally in accelerating the nonlinear associations from features and
labels. Usually, nonlinear connections from pixels and ground covers exist in HSIs. In order to
resolve these problems, the KELM framework is projected as a classifier in spectral-spatial clas-
sification approach. Also, it unifies kernel learning with ELM and expands the explicit activation
function into an implicit mapping function that eliminates arbitrarily produced attribute problems
and showcases the supreme generalization ability. Followed by, KELM is applied extensively as
a classification approach for predicting the ground covers for every pixel. Fig. 3 illustrates the
network structure of the KELM model.

The combination of actual spectral features Xspec and learned spatial features Xspat, and
spectral-spatial features Xss = [Xspec, Xspat] are obtained. In order to equate the function (2), the
final weight matrix is determined as,

β =H+Y , (3)

where H+ implies the MP generalized converse for H. Basically, matrix H+ is illustrated as H+ =
HT (HHT )−1, in which HT denotes transpose of H. In order to get generalization, true value C

is included with diagonal units of HHT . Hence, Eq. (3) is depicted as β =HT
(
I
C

+HHT
)−1

Y ,
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which attains the least-squares estimation cost function for resolving β. The applied input spectral-
spatial data xssi , the ELM classification models is equated mathematically as shown below:

f (xssi )= h(xssi )β = h(xssi )HT
(
I
C

+HHT
)−1

Y . (4)

Figure 3: The network structure of KELM

In ELM, feature mapping h(xssi ) are unknown to the user. Hence, Mercer’s condition has been
applied as a kernel matrix for ELM in the form of,

�ELM =HHT , (5)

where the ith row as well as rth column units are �ELMi, r = h(xssi ) · h(xssr ) = K(xssi , x
ss
r ). In the

case of ith row vector in �ELM , �ELMi = h(xssi )HT = [K
(
xssi , x

ss
1

)
; . . . ; K

(
xssi , x

ss
N

)
]. Therefore, the

summarization of KELM is implied as,

f
(
xssi

) = h
(
xssi

)
HT

(
I
C

+HHT
)−1

Y =

⎡
⎢⎢⎣
K(xssi , x

ss
1 )

...

K(xssi , x
ss
N)

⎤
⎥⎥⎦
T (

I
C

+�ELM

)−1

Y . (6)

To enhance the function of the newly presented spectral-spatial classification model, the QPSO
algorithm has been applied for computing the parameter C for KELM.

In Liu et al. [20] presented a QPSO that eliminates the velocity vector of actual PSO and
prominently modifies the upgrading principle of particles’ location for searching effective element.
Initially, QPSO is a combination of quantum computing as well as PSO. Then, QPSO depends
upon the implication of the quantum state vector. It uses the probabilistic amplitude depiction of
quantum for coding the particles that creates a particle with the superposition of massive states
and employs quantum rotation gates for realizing the upgrade the performance. Fig. 4 shows the
flowchart of QPSO model [21]. The iterative function of QPSO is varied from PSO. Followed
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be, in contrary PSO, QPSO requires no velocity vectors for particles and some parameters for
modifying and make the implementation simpler. The upgraded principle of particles’ location of
QPSO is defined in the following:

Pt+1
id = φ ×Pbestid + (1−φ)×Pbestgd ±β × ∣∣Cd −Ptid

∣∣× ln
(
1
u

)
, (7)

where N implies the population of particles; D denotes the dimension of issues; Ptid refers the

location of particle; Pbestid defines the local best position; Pbestgd signifies the global best position;

Cd = (1/N)
∑N

i=1Pid , d = 1, . . . , D, C =C1, . . . ; Cd represents mean local best positions.

Figure 4: The flowchart of QPSO algorithm

4 Experimental Validation

The performance of the Xcep-HSIC model is simulated using Intel i5, 8th generation PC
with 16 GB RAM, MSI L370 Apro, Nividia 1050 Ti4 GB. For simulation, Python 3.6.5 tool
is used along with pandas, sklearn, Keras, Matplotlib, TensorFlow, opencv, Pillow, seaborn and
pycm. The experiments are conducted on 2 benchmark HSI datasets [22] such as Indian Pines and
Pavia University dataset. For experimentation, 50% of data is used for training and testing cor-
respondingly. The parameter setting of PSO algorithm is, population size: 20, maximum particle



CMC, 2021, vol.67, no.2 2401

velocity: 4, initial inertia weight: 0.9, final inertia weight: 0.2, and maximum number of iterations:
50. The parameters involved in ELM are filter count: 17, pooling window size: 17∗17, number of
convolution branches: 2, and convolution filter size: 15∗15. Finally, the parameter setting of CNN
model are listed here, batch size: 50, epoch count: 10, learning rate: 0.05, and momentum: 0.9.
A detail related to the dataset and the obtained outcomes is discussed in the subsequent sections.

4.1 Dataset Used
The Indian Pines dataset is illustrated in Fig. 5. It is composed of 145 × 145 pixels and

224 spectral reflectance bands from the wavelength range 0.4–2.5 μm. This view is comprised of
maximum agriculture and a minimum of forests or alternate natural perennial vegetation. Here,
2-lane highways, one rail line, and few low-density housing, alternate building formations as well
as smaller roads. Because of newly developed crops in June, corn and soybeans are in the primary
stage of development with coverage by 5%. An accessible sample is classified as 16 classes for
a sum of 10,366 samples as depicted in Tab. 1. The count of bands is limited by 200 while
eliminating the band covering the water absorption region.

Figure 5: Indian Pines dataset (a) sample image (b) ground truth

The Pavia University dataset is illustrated in Fig. 6. It is composed of 610× 610 pixels and
103 spectral bands along with a spatial resolution of 1.3 m, however, few samples in an image
are not embedded with details and should be removed before examination. The actual category is
classified as 9 with a total of 42,761 samples as depicted in Tab. 2.

4.2 Results Analysis
Fig. 7 visualizes the accuracy and loss graphs attained by the presented model on the India

Pines and Pavia University dataset. Fig. 7a shows the accuracy graph of the Xcep-HSIC model
on the applied India Pines dataset under a distinct number of epochs. The figure portrayed that
the training and validation accuracies get increased with an increase in the number of epochs.

Particularly, the Xcep-HSIC model has reached a higher validation accuracy of 0.9432.
Fig. 7b illustrates the loss graph analysis of the Xcep-HSIC model India Pines dataset. The loss
graph tends to be decreased with an increase in epoch count, signifying the better performance
of the Xcep-HSIC model interms of training and validation losses. Specifically, the Xcep-HSIC
model reaches to the least validation loss of 0.27. Fig. 7c implies the accuracy graph of the
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Xcep-HSIC approach on the applied Pavia University dataset under various counts of epochs. The
figure depicted that the training and validation accuracies are enhanced with maximization in the
count of epochs. Ultimately, the Xcep-HSIC method has attained maximum validation accuracy
of 0.9267. Fig. 7d demonstrates the loss graph examination of the Xcep-HSIC scheme Pavia
University dataset. The loss graph is reduced by increased epoch value which denotes the better
function of the Xcep-HSIC framework with respect to training and validation losses. Particularly,
the Xcep-HSIC technique accomplishes a minimum validation loss of 0.275.

Table 1: Indian Pines dataset

Count Class Train Test

1 Alfalfa 23 23
2 Corn-notill 714 714
3 Corn-mintill 415 415
4 Corn 119 118
5 Grass-pasture 242 241
6 Grass-trees 365 365
7 Grass-pasture-mowed 14 14
8 Hay-windrowed 239 239
9 Oats 10 10
10 Soybean-notill 486 486
11 Soybean-mintill 1228 1227
12 Soybean-clean 297 296
13 Wheat 103 102
14 Woods 633 632
15 Building-grass-trees-drives 193 193
16 Stone-steel-towers 47 46
Total 5125 5121

Figure 6: Pavia University dataset (a) sample image (b) ground truth
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Table 2: Pavia University dataset

Count Class Train Test

1 Asphalt 3316 3315
2 Meadows 9325 9324
3 Gravel 1050 1049
4 Trees 1532 1532
5 Painted metal sheets 673 672
6 Bare Soil 2515 2514
7 Bitumen 665 665
8 Self-blocking bricks 1841 1841
9 Shadows 474 473
Total 21391 21385

Tab. 3 provides a detailed comparative study of the results attained by the Xcep-HSIC model
with existing methods [23,24] on the applied two dataset interms of accuracy and testing time.
The value of accuracy needs to be high and testing time needs to be low for effective HSI
classification outcome.

Fig. 8 investigates the HSI classification outcome of the Xcep-HSIC model on the applied
dataset in terms of accuracy. On the classification of the India Pines dataset, the figure reported
that the SRST model has led to poor HSI classification outcomes by obtaining a minimal accuracy
of 87.55%. Likewise, the RBF-SVM method has resulted in a somewhat superior and closer
accuracy of 87.6%. Eventually, the DNN model has tried to outperform the earlier models with
a moderate accuracy of 87.93%. Simultaneously, the LeNet-5 model has revealed a slightly better
HSI classification outcome with an accuracy of 88.27% whereas the near-optimal accuracy of
90.13% has been obtained by the CNN model. At last, the proposed Xcep-HSIC model has
outperformed other HSI classifiers with a maximum accuracy of 94.32%. On the classification
of the Pavia University dataset, the figure illustrated that the SRST approach has resulted in
inferior HSI classification result by accomplishing the least accuracy of 81.78%. Likewise, the
LeNet-5 framework has implied a considerable and closer accuracy of 89.09%. Followed by, the
DNN method has attempted to surpass the traditional approaches with an acceptable accuracy of
89.56%. At the same time, the RBF-SVM technology has exhibited moderate HSI classification
results with the accuracy of 90.52% while the closer optimal accuracy of 92.56% was achieved
by the CNN scheme. Eventually, the proposed Xcep-HSIC model has outperformed other HSI
classifiers with a maximum accuracy of 92.67%.

Fig. 9 analyzes the testing time of the proposed Xcep-HSIC model with the compared meth-
ods on the India Pines and Pavia university dataset. During the classification of the India Pines
dataset, the figure showed that the DNN model requires a maximum testing time of 3.21 s, which
is ignorantly higher than the other methods. Followed by, the RBF-SVM model has reached a
slightly lower testing time of 2.67 s whereas an even lower testing time of 2.34 s has been needed
by the LeNet-5 model. On continuing with, the CNN model has achieved a competitive outcome
with an acceptable testing time of 1.98 s. But the proposed Xcep-HSIC model has demonstrated
effective classification results with a minimum testing time of 1.65 s. In the classification of the
Pavia university dataset, the figure demonstrated that the DNN scheme needs high testing time of
3.19 s that is higher than compared approaches. Besides, the RBF-SVM framework has attained
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a moderate testing time of 2.43 s while an even lower testing time of 2.23 s is required by the
LeNet-5 technology. In line with this, the CNN technique has accomplished competing results
with a considerable testing time of 1.85 s. However, the newly presented Xcep-HSIC method has
showcased efficient classification outcomes with a lower testing time of 1.42 s.

Figure 7: (a) Accuracy graph of India Pines dataset (b) loss graph of India Pines dataset
(c) accuracy graph of Pavia University dataset (d) loss graph of Pavia University dataset

The above-mentioned experimental results analysis showcased that the Xcep-HSIC model has
been found as an effective HSI classification model to identify the distinct classes of HSI. The
Xcep-HSIC model has reached a maximum accuracy of 94.32% and 92.67% on the applied India
Pines and Pavia University dataset respectively.
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Table 3: Result analysis of existing with proposed Xcep-HSIC methods

Methods Accuracy (%) Testing time (s)

India Pines dataset Pavia Uni. Dataset India Pines dataset Pavia Uni. dataset

Xcep-HSIC 94.32 92.67 1.65 1.42
CNN 90.16 92.56 1.98 1.85
RBF-SVM 87.60 90.52 2.67 2.43
DNN 87.93 89.56 3.21 3.19
LeNet-5 88.27 89.09 2.34 2.23
SRST 87.55 81.78 – –
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5 Conclusion

This paper has developed a new model for HSI analysis and classification using the Xcep-
HSIC model. The Xcep-HSI model performs the FRML map extraction process and then
Xception based feature extraction task takes place to derive a set of feature vectors. At last,
QPSO-KELM model is applied to identify the different class labels of HSI. In order to determine
the parameters of KELM, the QPSO algorithm is introduced which helps to increase the overall
classification performance. An extensive range of experiments was performed on two benchmark
HSI dataset namely Indian Pines and Pavia University dataset. The simulation outcome verified
the supremacy of the Xcep-HSIC technique over the existing methods with the maximum accuracy
of 94.32% and 92.67% on the applied India Pines and Pavia University dataset. In future, the
performance of the Xcep-HSIC model can be improved using parameter tuning strategies for the
Xception model.
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