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Abstract: Recently, the world is facing the terror of the novel corona-virus,
termed as COVID-19. Various health institutes and researchers are continu-
ously striving to control this pandemic. In this article, the SEIAR (susceptible,
exposed, infected, symptomatically infected, asymptomatically infected and
recovered) infection model of COVID-19 with a constant rate of advection is
studied for the disease propagation. A simple model of the disease is extended
to an advection model by accommodating the advection process and some
appropriate parameters in the system. The continuous model is transposed
into a discrete numericalmodel by discretizing the domains, finitely. To analyze
the disease dynamics, a structure preserving non-standard finite difference
scheme is designed. Two steady states of the continuous system are described
i.e., virus free steady state and virus existing steady state. Graphical results
show that both the steady states of the numerical design coincide with the
fixed points of the continuous SEIAR model. Positivity of the state variables
is ensured by applying theM-matrix theory. A result for the positivity property
is established. For the proposed numerical design, two different types of the
stability are investigated. Nonlinear stability and linear stability for the pro-
jected scheme is examined by applying some standard results. Von Neuman
stability test is applied to ensure linear stability. The reproductive number is
described and its pivotal role in stability analysis is also discussed. Consistency
and convergence of the numerical model is also studied. Numerical graphs are
presented via computer simulations to prove the worth and efficiency of the
quarantine factor is explored graphically, which is helpful in controlling the
disease dynamics. In the end, the conclusion of the study is also rendered.
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1 Introduction

Novel Coronavirus-19 is a newly emerged virus that initiated from China. Like other viruses,
coronavirus needs host cells for replication. It is considered that coronavirus transmitted from bats
to humans. This virus out broke in China and was declared a pandemic by WHO, after a short
span of time. Zhou et al. [1] developed a mathematical model to study its propagation in China.
the virus belongs to the SARS (severe acute respiratory syndrome) family [2]. It affects the nose,
upper throat, or lower respiratory tract. The general symptoms of the infection are cough, fever,
flu, and shortness of breath. When an infected person coughs or sneezes, its aerosols spread in
the environment and when its particles approach a susceptible individual directly or indirectly,
the spread of the virus takes place. This process is explained by Kucharski et al. [3]. This virus
disseminated rapidly around the globe, including Pakistan [4]. Coronavirus-19 does not have a high
rate of mortality even though it is dreadful. As it is a novel virus, no one has immunity against it.
Everyone is susceptible to it. So special care and precautionary steps must be followed for safety
purposes. There were 22.3 million confirmed COVID-19 cases around the globe. It is the need
of the hour to stop the propagation of COVID-19 among the susceptible people. Mathematical
modeling plays an important role in predicting the disease dynamics.

Every infectious disease cannot be stopped by applying for the research study and medicines.
Many other factors affecting the transmission of the disease should also be taken into con-
sideration [5]. When the mobility of individuals enhances the propagation of the disease then
the role of space coordinates as well as time coordinate become influential [6]. In this study, a
classical disease model is modified to the advection model by considering the advection terms
and some appropriate parameters. By considering these terms, the extended model has become
more realistic [7,8]. Jiang et al. [9] investigated the dynamics of coronavirus with clinical signs and
symptoms, by using artificial intelligence. Wang et al. [10] studied the constant value problems
and arbitrary value problems, moreover, he investigated the numerical solutions to these problems.
Tian [11] presented particle swarm optimization with chaos-based initialization for numerical
optimization. Naveed et al. [12] investigated the dynamics of the coronavirus model with the delay
technique. This model takes into account the dynamics of both the populations i.e., human beings
and viruses.

Basic reproductive number R0 is calculated to predict the disease occurrence in the pop-
ulation. The facts show that human behavior can minimize the epidemic level of coronavirus.
A compartmental model is used to understand the fundamentals of disease transmission. Cur-
rently, the characteristics of the COVID-19 is understood up to a great extent and mathematical
models are being presented by many researchers, but the advection process is not considered in
these models. Due to this deficiency in the models, clear understanding of the disease dynamics is
very difficult. Since, mobility is the basic need of humans to perform numerous activities in daily
life. But this essential factor is increasing the virus spread in the community. By considering pros
and cons of the COVID-19, we have proposed the mathematical model with advection, which
provides us with the understanding of the virus dynamics and its controllability. On the basis of
this study, the relevant authorities can formulate the health policy and precautionary measures,
with a more feasible approach.

The paper is arranged as follows: in Section 2, the deterministic coronavirus pandemic model
and its equilibria are described. Section 3, deals with the numerical method along with its posi-
tivity, stability, consistency and convergence analysis. In Section 4, the current work is explained
with numerical simulations. Finally, in Section 5, we reach at the conclusion and future direction
is also described.
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2 Construction of the Model

Many researchers took interest in the dynamics of contiguous diseases and their spread
with respect to time and space. The compartmental model is used to understand the basics of
disease transmission [13]. In the corona epidemic model, advection term is adjusted for the better
perception of the disease transmission. The nonstandard FD scheme is constructed with the
capability of structure perseverance [14,15]. In this model, the whole population is represented
with N(t) and is divided into five compartments as follows: for any time t, the susceptible humans
are represented with S(t), exposed humans with E(t), symptomatic infected humans with I(t),
asymptomatic infected with A(t) and the recovered humans with R(t). The parameters furnished
in the model are described as follows:
πs: The recruitment rate
μ: The mortality rate with natural incidences or due to virus infection
β1: The infection rate of symptomatic humans
β2: The infection rate of asymptomatic humans
ω1: The interaction rate of exposed humans with symptomatic infected humans
ω2: The interaction rate of exposed humans to asymptomatic infected humans
ω3: The rate of exposed humans who have recovered from the virus due to natural immunity
ω4: The rate of symptomatic carriers who have recovered after quarantine
ω5: The rate of quarantine or isolation of asymptomatic infected humans.
In the coronavirus pandemic model following assumption is made that dispersion of virus takes
place via symptomatic and asymptomatic carriers who make bilinear incidence rate with the
susceptible humans. Without loss of generality, all types of other interactions have been ignored.
The flow diagram of the 2019-nCov is presented in Fig. 1 [16]:

Figure 1: Flow diagram of the model

Azam et al. [17] successfully showed the importance of the advection, representing the bulk
transfer of the disease in various compartments of the population. The presented model with
the advection terms is a new one and the computations are pretty much connected to physical
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observations. The SEIAR advective COVID-19 model is described as:

St+α1Sx = πs− (β1I (x, t)S (x, t)+β2A (x, t)S (x, t))−μS (x, t) , (1)

Et+α2Ex = (β1I (x, t)S (x, t)+β2A (x, t)S (x, t))− (ω1+ω2+ω3 +μ)E (x, t) , (2)

It+α3Ix =ω1E (x, t)− (ω4+μ) I (x, t) , (3)

At+α4Ax =ω2E (x, t)− (ω5+μ)A (x, t) , (4)

Rt+α5Rx =ω3E (x, t)+ω4I (x, t)+ω5A (x, t)−μR (x, t) , (5)

with the initial conditions

ψ1 (x)= S (x, 0) , ψ2 (x)=E (x, 0) , ψ3 (x)= I (x, 0) , ψ4 (x)=A (x, 0) , ψ5 (x)=R (x, 0) , (6)

and the homogeneous Neumann boundary conditions

Sx =Ex = Ix =Ax=Rx = 0. (7)

The whole population is divided into five compartments as follows: at time t(≥ 0) and
location x(0 ≤ x ≤ L) the susceptible humans are described with S(x, t), exposed humans with
E(x, t), symptomatic infected humans with I(x, t), asymptomatic infected with A(x, t) and recov-
ered humans are expressed with R(x, t). Also, α1,α2,α3,α4,α5 are positive advection coefficients
according to susceptible, exposed, symptomatic infected, asymptomatic infected and recovered
classes. The rest of constants are mentioned above in the dynamical model formulation. All the
parameters used in PDE’s model are positive.

2.1 Equilibria of the Model
The Eqs. (1) to (5) admit two equilibrium states in the feasible region. The 2019-nCov free

equilibrium of the Eqs. (1) to (5) is described as follows:

EnCov free =
(
S1,E1, I1,A1,R1

)
=

(
πs

μ
, 0, 0, 0, 0

)
.

Also, 2019-nCov existing equilibrium of the system, from Eqs. (1) to (5) is as follows:

EnCov present =
(
S∗,E∗, I∗,A∗,R∗) .

where, S∗ = (ω1+ω2+ω3+μ)(ω4+μ)(ω5+μ)
β1ω1(ω5+μ)+β2ω2(ω4+μ) , E∗ = πs−μS∗

(ω1+ω2+ω3+μ) , I∗ = ω1E∗
ω4+μ , A∗ = ω2E∗

ω5+μ and

R∗ = ω3E∗+ω4I∗+ω5A∗
μ

.

Notice that the reproduction number of the model is defined as c= πs(ω2β2(ω4+μ)+ω1β1(ω5+μ))
μ(ω1+ω2+ω3+μ)(ω4+μ)(ω5+μ) .

2.2 Sensitivity Analysis of the Reproduction Number
To test the sensitivity of the reproduction number for each of its parameters, we proceed as

follows:

Cβ1 =
β1

RnCov
× ∂RnCov

∂β1
= β1ω1 (ω5+μ)
(ω2β2 (ω4+μ)+ω1β1 (ω5+μ))

> 0, Cπs =
πs

RnCov
× ∂RnCov

∂πS
= 1> 0,

Cβ2 =
β2

RnCov
× ∂RnCov

∂β2
= β2ω2 (ω4+μ)
(ω2β2 (ω4+μ)+ω1β1 (ω5+μ))

> 0,
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Cμ = μ

RnCov
× ∂RnCov

∂μ
=− 1

[ω2β2 (ω4+μ)+ω1β1 (ω5+μ)] (ω1+ω2+ω3+μ)(ω4+μ)(ω5 +μ)
×{μ(ω2β2+ω1β1) (ω1+ω2 +ω3+μ)(ω4+μ) (ω5+μ)+ (ω2β2 (ω4+μ)
+ω1β1 (ω5+μ))(μ(ω1+ω2+ω3+μ)(ω4 +μ)+μ(ω1+ω2.+ω3+μ)(ω5+μ)
+μ(ω4+μ)(ω5+μ)+ (ω1 +ω2+ω3+μ)(ω4+μ)(ω5 +μ))}< 0

Cω1 =
ω1

RnCov
× ∂RnCov

∂ω1
=− ω1 [ω2β2 (ω4+μ)−β1 (ω5+μ) (ω2+ω3+μ)]

(ω2β2 (ω4+μ)+ω1β1 (ω5+μ)) (ω1+ω2+ω3+μ)
< 0,

Cω2 =
ω2

RnCov
× ∂RnCov

∂ω2
=− ω2 [ω1β1 (ω5+μ)−β2 (ω4+μ) (ω1+ω3+μ)]

(ω2β2 (ω4+μ)+ω1β1 (ω5+μ)) (ω1+ω2+ω3+μ)
< 0,

Cω3 =
ω3

RnCov
× ∂RnCov

∂ω3
=− ω3

(ω1+ω2+ω3+μ)
< 0,

Cω4 =
ω4

RnCov
× ∂RnCov

∂ω4
=− ω4ω1β1 (ω5+μ)

(ω2β2 (ω4+μ)+ω1β1 (ω5+μ)) (ω4+μ)
< 0,

Cω5 =
ω5

RnCov
× ∂RnCov

∂ω5
=− ω5ω2β2 (ω4+μ)

(ω2β2 (ω4+μ)+ω1β1 (ω5+μ)) (ω5+μ)
< 0.

Notice that the parameters like β1, β2 and πs are sensitive due to the nature of the model. On
the other hand, the rest of the parameters are insensitive. More precisely, the sensitive parameters
of the model have a direct relation with the reproduction number. It means that dynamics of the
model depends on sensitive parameters i.e. any increase in sensitive parameters will eventually lead
to the fact that the virus is existing in the population and vice versa.

3 Numerical Modeling

By rewriting Eqs. (1) to (5) as

∂S
∂t

+α1 ∂S
∂x

= πs− (β1I (x, t)S (x, t)+β2A (x, t)S (x, t))−μS (x, t) , (8)

∂E
∂t

+α2 ∂E
∂x

= (β1I (x, t)S (x, t)+β2A (x, t)S (x, t))− (ω1+ω2 +ω3+μ)E (x, t) , (9)

∂I
∂t

+α3 ∂I
∂x

=ω1E (x, t)− (ω4+μ) I (x, t) , (10)

∂A
∂t

+α4 ∂A
∂x

=ω2E (x, t)− (ω5+μ)A (x, t) , (11)

∂R
∂t

+α5 ∂R
∂x

=ω3E (x, t)+ω4I (x, t)+ω5A (x, t)−μR (x, t) . (12)

For all t≥0, the initial conditions will be

ψ1 (x)= S (x, 0) , ψ2 (x)=E (x, 0) , ψ3 (x)= I (x, 0) , ψ4 (x)=A (x, 0) ,ψ5 (x)=R (x, 0) . (13)
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And the homogeneous Neumann boundary conditions will be

∂S
∂x

= ∂E
∂x

= ∂I
∂x

= ∂A
∂x

= ∂R
∂x

= 0. (14)

Our proposed scheme is developed by replacing the following time and space partial deriva-
tives in Eqs. (8) to (12),⎧⎪⎪⎨
⎪⎪⎩
δtXn+1

m = Xn+1
m −Xn

m

κ,

δxXn+1
m = Xn+1

m −Xn+1
m−1

h,

, (15)

where κ, and h, are partition norms of fixed partitions of intervals [0, T] and [0, L] respectively.
Where κ,= T

N and h,= L
M .

δtSn+1
m +α1δxSn+1

m = πs−
(
β1InmS

n+1
m +β2AnmSn+1

m

)
−μSn+1

m , (16)

δtEn+1
m +α2δxEn+1

m = (
β1I

n
mS

n
m+β2AnmSnm

)− (ω1+ω2+ω3+μ)En+1
m , (17)

δtIn+1
m +α3δxIn+1

m =ω1E
n
m− (ω4+μ) In+1

m , (18)

δtAn+1
m +α4δxAn+1

m =ω2Enm− (ω5+μ)An+1
m , (19)

δtRn+1
m +α5δxRn+1

m =ω3E
n
m+ω4I

n
m+ω5A

n
m−μRn+1

m . (20)

3.1 Development of the Proposed Nonstandard Finite Difference Scheme
Take Eq. (16) and apply discrete forms with respect to time and space respectively as defined

in Eq. (15). Then

Sn+1
m −Snm
κ,

+α1
Sn+1
m −Sn+1

m−1

h,
= πs−

(
β1I

n
mS

n+1
m +β2AnmSn+1

m

)
−μSn+1

m ,

Sn+1
m −Snm+α1κ,

Sn+1
m −Sn+1

m−1

h,
= κ,πs− κ,

(
β1I

n
mS

n+1
m +β2AnmSn+1

m

)
−μκ,Sn+1

m ,

Sn+1
m −Snm+λ1

(
Sn+1
m −Sn+1

m−1

)
= κ,πs− κ,

(
β1InmS

n+1
m +β2AnmSn+1

m

)
−μκ,Sn+1

m ,

Sn+1
m

(
1+λ1 + κ,

(
β1I

n
m+β2Anm

)+μκ, )−λ1Sn+1
m−1 = Snm+ κ,πs. (21)

Similarly, by applying same algebraic calculations we can also express Eqs. (17) to (20) in the
form of linear equations as follows,

En+1
m (1+λ2 + (ω1+ω2+ω3 +μ)κ, )−λ2En+1

m−1 =Enm+ κ, (β1InmSnm+β2AnmSnm
)
, (22)

In+1
m (1+λ3+ κ, (ω4+μ))−λ3In+1

m−1 = Inm+ κ,ω1Enm, (23)

An+1
m (1+λ4+ κ, (ω5+μ))−λ4An+1

m−1 =Anm+ κ,ω2E
n
m, (24)
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Rn+1
m (1+λ5+μκ, )−λ5Rn+1

m−1 =Rnm+ κ,ω3E
n
m+ κ,ω4I

n
m+ κ,ω5A

n
m. (25)

For simplification it is assumed that λ1 = α1κ,
h, , λ2 = α2κ,

h, , λ3 = α3κ,
h, , λ4 = α4κ,

h, and λ5 = α5κ,
h, , subject

to the following initial and boundary conditions
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 (xm)= S0m,

ψ2 (xm)=E0
m,

ψ3 (xm)= I0m,

ψ4 (xm)=A0
m,

ψ5 (xm)=R0
m,

δxSn1 = δxEn1 = δxIn1 = δxAn1 = δxRn1,
δxSnM = δxEnM = δxInM = δxAnM = δxRnM .

(26)

The notations, Snm,E
n
m, I

n
m,A

n
m,R

n
m are numerical approximations of S,E, I ,A,R at point

(xm, tn) .

3.2 M-matrix Theory and Positivity
Our proposed method can also be written in vector form as

For each n ∈ 0, 1, . . . ,N,

QSn+1 = Sn+ κ,πs, (27)

UEn+1 =En+ κ, (β1InSn+β2AnSn) , (28)

VIn+1 = In+ κ,ω1E
n, (29)

WAn+1 =An+ κ,ω2E
n, (30)

XRn+1 =Rn+ κ,ω3E
n+ κ,ω4I

n+ κ,ω5A
n. (31)

If M represents any of {Q,U ,V ,W ,X} then these all are real matrices of size (N+1)∗(N+1).
In general M can be written as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mn m1 0 0 0 0
m1 mn 0 · · · 0 0 0
0 m1 mn 0 0 0

...
. . .

...
0 0 0 mn 0 0
0 0 0 · · · m1 mn 0
0 0 0 0 m1 mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The diagonal entries are sn = 1+λ1+κ,
(
β1Inm+β2Anm

)+μκ,, en = (1+λ2+ (ω1+ω2+ω3+ μ)κ, ),
in = 1+ λ3 + κ, (ω4+μ), an = 1+ λ4 + κ, (ω5+μ) , and rn = 1+ λ5 +μκ,. The negative off-diagonal
entries of these matrices are s1 =−λ1,e1 =−λ2, i1 =−λ3,a1 =−λ4, r1 =−λ5.
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Here, we will use M-matrix theory to show the positivity of our proposed method. M-matrix
is a non-singular square matrix with positive inverse matrix. It is mentionable that diagonal
elements are positive and off-diagonals elements are zeros or negative. This fact is of great use to
show that our proposed scheme is positivity preserving. i.e., we will use the fact that Q,U ,V ,W ,X
are M-matrices and their inverses are non-negative due to restrictions on initial conditions.

Theorem 1: If ψ1,ψ2,ψ3,ψ4,ψ5 are positive functions then our proposed scheme from
Eqs. (21) to (25) subject to all the initial and boundary conditions in Eq. (26) are positive then
the system is solvable and has positive solutions.

Proof: We will use mathematical induction to prove the positivity and uniqueness. Our initial
data guarantees that S0,E0, I0,A0,R0 are all positive vectors.

Let us assume that it is true for some n, i.e., Sn,En, In,An,Rn are positive vectors.

Now, we have to show that it is also true for n + 1. Since Q,U ,V ,W ,X are M-matrices,
so the fact that they are non-singular and their inverses exist and they are positive is assured.
Furthermore, vectors on the right hand sides of the equations from Eqs. (27) to (31) are
also positive.

We can rewrite the system from Eqs. (27) to (31) as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sn+1 =Q−1(Sn+ κ,πs),
En+1 =U−1 (En+ κ, (β1InSn+β2AnSn)) ,
In+1 =V−1 (In+ κ,ω1En) ,

An+1 =W−1(An+ κ,ω2En),

Rn+1 =X−1(Rn+ κ,ω3En+ κ,ω4In+ κ,ω5An).

(32)

Notice that left hand sides of Eq. (32) are positive. So, it is true for all n. Hence, our proposed
scheme is capable of preserving positivity.

Next, we will use discrete form of Gronwall’s inequality. The inequality is stated in the form
of following lemma.

Lemma 1: If a discrete function
{
σ n|n= 0, 1, . . .N;κ,= T

N

}
satisfies the inequality

σn+1 ≤ ρn+1+ κ,C6

n∑
n=0

σn

then σn ≤ ρnenκ,C6,∀;n = 0, 1, . . .N. Where κ, and C6 are positive constants. For the following
results, we will assume that numerical solutions of our proposed scheme are uniformly bounded
and there exists a common bound M0 ≥ 0, at point (xm, tn) for the norms of the numerical
solutions obtained from Eqs. (16) to (20).

3.3 Nonlinear Stability
To establish the non-linear stability of the method, we will consider two numerical solu-

tions (S,E, I,A,R) ,
(
S′, E′, I′,A′,R′) of Eqs. (16) to (20) with respective sets of initial data

(ψ1,ψ2,ψ3,ψ4,ψ5) and (ψ ′
1,ψ

′
2,ψ

′
3,ψ

′
4,ψ

′
5).

δtS′
n+1
m +α1δxS′n+1

m = πs−
(
β1I

′n
mS

′n+1
m +β2A′n

mS
′n+1
m

)
−μS′n+1

m , (33)
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δtE′n+1
m +α2δxE′n+1

m = (
β1I

′n
mS

′n
m+β2A′n

mS
′n
m

)− (ω1+ω2+ω3+μ)E′n+1
m , (34)

δtI ′
n+1
m +α3δxI ′n+1

m =ω1E
′n
m− (ω4+μ) I ′n+1

m , (35)

δtA′n+1
m +α4δxA′n+1

m =ω2E
′n
m− (ω5+μ)A′n+1

m , (36)

δtR′n+1
m +α5δxR′n+1

m =ω3E
′n
m+ω4I

′n
m+ω5A

′n
m−μR′n+1

m . (37)

Subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ ′
1 (xm)= S

′0
m,

ψ ′
2 (xm)=E

′0
m ,

ψ ′
3 (xm)= I ′0m,
ψ ′
4 (xm)=A′0

m,

ψ ′
5 (xm)=R′0

m,

δxS′n1 = δxE′n
1 = δxI ′n1 = δxA′n

1 = δxR′n
1,

δxS′nM = δxE′n
M = δxI ′nM = δxA′n

M = δxR′n
M .

(38)

Subtract Eqs. (33) to (37) from Eqs. (16) to (20) simultaneously and let

πn
m = Snm−S′nm, εnm =Enm−E′n

m, �̈n
m = Inm− I ′nm, ęnm =Anm−A′n

m, n,nm =Rnm−R′n
m.

δtπ
n+1
m +α1δxπn+1

m =
(
β1I

′n
mS

′n+1
m +β2A′n

mS
′n+1
m −β1InmSn+1

m −β2AnmSn+1
m

)
+μπn+1

m (39)

δtε
n+1
m +α2δxεn+1

m = (
β1I

n
mS

n
m+β2AnmSnm− (

β1I
′n
mS

′n
m+β2A′n

mS
′n
m

))− (ω1+ω2+ω3 +μ)εn+1
m (40)

δt�̈
n+1
m +α3δx�̈n+1

m =ω1Enm−ω1E′n
m− (ω4+μ)�̈n+1

m (41)

δtęn+1
m +α4δxęn+1

m =ω2E
n
m− (ω5+μ)An+1

m −ω2E
′n
m+ (ω5+μ)A′n+1

m (42)

δtn,n+1
m +α5δxn,n+1

m =ω3E
n
m+ω4I

n
m+ω5A

n
m−μRn+1

m −ω3E
′n
m−ω4I

′n
m−ω5A

′n
m+μR′n+1

m (43)

δtπ
n+1
m +α1δxπn+1

m = β1(I ′nmS′n+1
m − InmS

n+1
m )+β2

(
A′n

mS
′n+1
m −AnmS

n+1
m

)
+μπn+1

m (44)

πn+1
m −πnm =−λ1

(
πn+1
m −πn+1

m−1

)
+β1κ,

(
�̈n
mS

′n+1
m − Inmπ

n+1
m

)
+β2κ, (ęnmS′

n+1
m −Anmπ

n+1
m )−μκ,πn+1

m

(45)

taking the absolute values on both sides of the last equation and apply triangular inequality as
well as using the upper bound M0 on the left-hand side to obtain,∣∣∣πn+1

∣∣∣− ∣∣πn∣∣≤ 2λ1
∣∣∣πn+1

∣∣∣+β1κ,M0
∣∣�̈n

∣∣+β1κ,M0

∣∣∣πn+1
∣∣∣+β2κ,M0

∣∣ęn∣∣+β2κ,M0

∣∣∣πn+1
∣∣∣

+μκ,
∣∣∣πn+1

∣∣∣ ≤Cκ,
∣∣∣πn+1

∣∣∣+β1κ,M0
∣∣�̈n

∣∣+β2κ,M0
∣∣ęn∣∣ ,
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where as C1 = 2α1h, +β1M0+β2M0 +μ, by taking sum on both sides, we have

k+1∑
n=0

(∣∣∣πn+1
∣∣∣− ∣∣πn∣∣≤C1κ,

∣∣∣πn+1
∣∣∣+β1κ,M0

∣∣�̈n
∣∣+β2κ,M0

∣∣ęn∣∣) ,
using the telescopic sum on left-hand side and then rearranging the terms algebraically, we have

∣∣∣πn+1
∣∣∣−

∣∣∣π0
∣∣∣ ≤C11κ,

n+1∑
n=0

∣∣σn∣∣ ,
where

C11 =C1+β1M0 +β2M0 = 2
α1

h,
+ 2β1M0+ 2β2M0+μ

σn = ∣∣πn∣∣+ ∣∣εn∣∣+ ∣∣�̈n
∣∣+ ∣∣ęn∣∣+ ∣∣n,n∣∣ , ∀ n= 0, 1, 2, . . . ,N

∣∣∣πn+1
∣∣∣≤

∣∣∣π0
∣∣∣+C1κ,

n+1∑
n=0

σn, ∀ n= 0, 1, 2, . . . ,N (46)

Similarly, we can use telescopic sum for equations Eqs. (35) to (38) and by adopting the same
process, following results hold:

∣∣∣εn+1
∣∣∣ ≤ ∣∣∣ε0∣∣∣+C2κ,

n+1∑
n=0

σn, ∀ n= 0, 1, 2, . . . ,N,
∣∣∣�̈n+1

∣∣∣≤ ∣∣∣�̈0
∣∣∣+C3κ,

n+1∑
n=0

σn, ∀ n= 0, 1, 2, . . . ,N,

∣∣∣ęn+1
∣∣∣ ≤

∣∣∣ę0
∣∣∣+C4κ,

n+1∑
n=0

σn, ∀ n= 0, 1, 2, . . . ,N,
∣∣∣n,n+1

∣∣∣≤
∣∣∣n,0

∣∣∣+C5κ,
n+1∑
n=0

σn, ∀ n= 0, 1, 2, . . . ,N,

In the above inequalities, the constants C2,C3,C4 and C5 are described as follows:

C2 = 2
α2

h,
+ 2β1M0 + 2β2M0 + (ω1+ω2+ω3)μ, C3 = 2

α3

h,
+ (ω4+μ)+ (ω1) ,

C4 = 2
α4

h,
+ (ω5+μ)+ω2,C5 = 2

α5

h,
+ω3 +ω4+ω5+μ,

By adding the above inequalities, ∀ n= 0, 1, 2, . . . ,N, we get,∣∣∣πn+1
∣∣∣+ ∣∣∣εn+1

∣∣∣+ ∣∣∣�̈n+1
∣∣∣+ ∣∣∣ęn+1

∣∣∣+ ∣∣∣n,n+1
∣∣∣

≤
∣∣∣π0

∣∣∣+
∣∣∣ε0

∣∣∣+
∣∣∣�̈0

∣∣∣+
∣∣∣ę0

∣∣∣+
∣∣∣n,0

∣∣∣+ κ, (C11+C2 +C3+C4+C5)

n+1∑
n=0

∣∣σn∣∣ ,

σn+1 ≤ σ0 + κ,C6
∑n+1

n=0 σn ≤ σ0 + κ,C6
∑n

n=0 σn + λσn+1, where C6 is given by
where C6 = 2α1+α2+α3+α4+α5h, + 4β1M0+ 4β2M0+ 4μ+ (ω1+ω2+ω3)μ+ 2ω4+ 2ω1+ 2ω5+ω2+ω3.

It is clear that C6 is positive and depends upon h,.
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Subtracting λσn+1 from both sides of the above inequality, we get

σn+1(1−λ)≤ σ0 + κ,C6

n∑
n=0

σn.

This implies that σn+1 ≤ σ0 (1−λ)−1+ κ,C6 (1−λ)−1 ∑n
n=0 σn.

It satisfies the condition of Lemma (1). Hence the conclusion followed from lemma 1 that
our proposed scheme possesses non-linear stability.

3.4 Linear Stability
At this stage, we will use von-Neumann criteria to show the linear stability of the proposed

method in the result:

Theorem 2: The proposed scheme is linearly stable if ψ1,ψ2,ψ3,ψ4 and ψ5 are positive
functions.

Proof: By following von-Neumann criteria let ∅1,∅2,∅3,∅4 and ∅5 be positive numbers and
let

{
ϕni , i= {S,E, I ,A,R}} be real numbers. By taking a solution of the proposed discrete model

in the form as mentioned in the next step:

∅
n+1
S ei∅1mh,

(
1+λ1+ κ,

(
β1Inm+β2Anm

)+μκ, )−λ1∅n+1
S ei∅1(m−1)h, =∅

n
Se

i∅1mh,+ κ,πs,
next, freeze nonlinear term and put Pn

m = κ,
(
β1Inm+β2Anm

)
as a positive constant. After simplifi-

cation, we have

∅
1
S

(
1+λ1 −λ1e−i∅1h,+Pn

m+μκ,
)
= 1. (47)

By applying similar process on rest of the equations, we will get the following

∅
1
E

(
1+λ2 + (ω1+ω2+ω3 +μ)κ,−λ2e−i∅2h,

)
= 1 (48)

∅
1
I

(
1+λ3 + κ, (ω4+μ)−λ3e−i∅3h,

)
= 1 (49)

∅
1
A

(
1+λ4+ κ, (ω5+μ)−λ4e−i∅4h,

)
= 1 (50)

∅
1
R

(
1+λ5+μκ,−λ5e−i∅5h,

)
= 1. (51)

Taking the norm on both sides of Eqs. (53) to (57) and bounding them from above implies that
∣∣∣∅1

S

∣∣∣ ≤ 1
1+ 2λ1+Pn

m+μκ, < 1,

∣∣∣∅1
E

∣∣∣ ≤ 1
1+ 2λ2+ (ω1+ω2+ω3+μ)κ,

< 1,
∣∣∣∅1

I

∣∣∣≤ 1
1+ 2λ3+ κ, (ω4+μ)

< 1,

∣∣∣∅1
A

∣∣∣ ≤ 1
1+ 2λ4+ κ, (ω5+μ)

< 1,
∣∣∣∅1

R

∣∣∣≤ 1
1+ 2λ5+μκ,

< 1.

All these equations satisfy von-Neumann stability criteria. Hence our proposed scheme is stable.
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3.5 Consistency
To deal with the consistency analysis of the numerical scheme for Eqs. (16) to (20), let us

assume continuous operators as

Ls= ∂s
∂t

+α1 ∂s
∂x

−πs+ (β1i (xm, tn) i (xm, tn)+β2a (xm, tn) i (xm, tn))+μs (xm, tn) ,

Le = ∂e
∂t

+α2 ∂e
∂x

− (β1i (x, t) s (x, t)−β2a (x, t) s (x, t))+ (ω1+ω2+ω3 +μ)e (x, t) ,

Li = ∂i
∂t

+α3 ∂i
∂x

−ω1e (x, t)+ (ω4+μ) i (x, t) ,

La= ∂a
∂t

+α4 ∂a
∂x

−ω2e (x, t)+ (ω5+μ)a (x, t) ,

Lr= ∂r
∂t

+α5 ∂r
∂x

−ω3e (x, t)−ω4i (x, t)−ω5a (x, t)+μr (x, t) .

Let the discrete operators are

Ls= δtsn+1
m +α1δxsn+1

m −πs+
(
β1inms

n+1
m +β2anmsn+1

m

)
+μsn+1

m ,

Le = δten+1
m +α2δxen+1

m − (
β1i

n
ms

n
m+β2anmsnm

)+ (ω1+ω2+ω3+μ) en+1
m ,

Li = δtin+1
m +α3δxin+1

m −ω1e
n
m+ (ω4+μ) in+1

m ,

La= δtan+1
m +α4δxan+1

m −ω2enm+ (ω5+μ)an+1
m ,

Lr= δtrn+1
m +α5δxrn+1

m −ω3e
n
m−ω4i

n
m−ω5a

n
m+μrn+1

m .

Theorem 3: If ω = {s, e, i,a, r} ∈ C2,2
x,t ([0,L]× [0,T ]) and the norm κ,< 1 then there exists a

constant Å > 0 independent of κ, and h, such that for each m = 1, . . . ,M − 1, n = 1, . . .N − 1,
max{|Ls−Ls |, |Le−Le| , |Li−Li |, |La−La| , |Lr−Lr|} ≤Å(h,+κ, ).

Proof: Using the boundedness and smoothness of s and applying Taylor’s series, there exist
positive constants d1,d2,d3,d4 and d5 such that∣∣∣∣∂s∂t − δtsn+1

m

∣∣∣∣ ≤ ds1κ, ,
∣∣∣∣ ∂s∂x − δxsn+1

m

∣∣∣∣≤ ds2h, ,
∣∣∣i (xm, tn) s (xm, tn)− inms

n+1
m

∣∣∣≤ ds3h, ,

∣∣∣a (xm, tn) s (xm, tn)− anms
n+1
m

∣∣∣≤ ds4h, ,
∣∣∣s (xm, tn)− sn+1

m

∣∣∣≤ ds5κ, .

since d1,d2,d3,d4 and d5are independent of h, and κ, .

As a result |Ls−Ls| ≤Ås (h,+κ, ) holds if

Ås = ds1+α1ds2+β1ds3+β2ds4+μds5, independent of h, and κ, .

In a similar fashion, there exist constants Åe,Åi,Åa,År which don’t depend on κ, and h, i.e.,

|Le−Le
∣∣≤Åe (h,+κ, ) , |Li−Li

∣∣≤Åi (h,+κ, ) , |La−La| ≤Åa (h,+κ, ) , |Lr−Lr| ≤År (h,+κ, )
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Hence our proposed scheme is consistent and first order accurate in time and space. Finally, we
have the positive constant Åindependent of time and space norms such that

Å=Ås ∨Åe ∨Åi ∨Åa ∨År,

which also doesn’t depend upon norms.

3.6 Convergence
Theorem 4: Let us assume that ψi > 0, (i= 1, 2, 3, 4, 5) and s, e, i, a, r be the exact solutions

of Eqs. (1) to (5) subject to initial and boundary conditions Eqs. (6) to (7). Then the numerical
solutions S, E, I , A, R, of Eqs. (16) to (20) subject to Eq. (26) with linear order in time and space
converges to exact solution if κ,C < 1, where C > 0.

Proof: For convenience, let us assume that all the constants are the same as mentioned in
nonlinear stability. Also, notice that the solutions exist and are positive as discussed earlier in this
manuscript. Under these circumstances, it is obvious that the following discrete system is satisfied,

δtsn+1
m +α1δxsn+1

m = πs−
(
β1i

n
ms

n+1
m +β2anmsn+1

m

)
−μsn+1

m + άn+1
m (52)

δten+1
m +α2δxen+1

m = (
β1inms

n
m+β2anmsnm

)− (ω1+ω2+ω3 +μ) en+1
m +υn+1

m (53)

δtin+1
m +α3δxin+1

m =ω1e
n
m− (ω4+μ) in+1

m +Þn+1
m (54)

δtan+1
m +α4δxan+1

m =ω2e
n
m− (ω5+μ)an+1

m + _ρn+1
m (55)

δtrn+1
m +α5δxrn+1

m =ω3enm+ω4inm+ω5anm−μrn+1
m +κ

n+1
m (56)

where, άn+1
m , υn+1

m , Þn+1
m , _ρn+1

m and κ
n+1
m are the local truncation errors.

Since, by using Theorem 3, there exists a constant Å independent of norms κ, and h,, such that∣∣∣Án∣∣∣ , |υn| , |Þn| , |_ρn| and |κn| ≤Å (h,+κ, ) , for each n= 0, 1, 2, . . . ,N.

Now subtract Eq. (52) from Eq. (16), we get the following expressions,

δt

(
Sn+1
m − sn+1

m

)
+α1δx

(
Sn+1
m − sn+1

m

)
=−β1

(
InmS

n+1
m − inms

n+1
m

)
−β2

(
AnmS

n+1
m − anms

n+1
m

)

−μ(Sn+1
m − sn+1

m )− άn+1
m

let us assume that πn
m = Snm− snm, ε

n
m =Enm− enm, �̈n

m = Inm− inm, ę
n
m =Anm− anm, n,

n
m =Rnm− rnm, after

simplifying, we have,

πn+1
m −πnm =−λ1

(
πn+1
m −πn+1

m−1

)
+β1κ,

(
�̈n
ms

n+1
m − Inmπ

n+1
m

)
+β2κ,

(
ęnms

n+1
m −Anmπ

n+1
m

)

−μκ,πn+1
m − κ, άn+1

m .



2946 CMC, 2021, vol.67, no.3

Taking absolute values on both sides of the last equation and applying triangular inequality
then use upper bound M0 on the left-hand side to obtain,∣∣∣πn+1

∣∣∣− ∣∣πn∣∣≤ 2λ1
∣∣∣πn+1

∣∣∣+β1κ,M0
∣∣�̈n

∣∣+β1κ,M0

∣∣∣πn+1
∣∣∣+β2κ,M0

∣∣ęn∣∣+β2κ,M0

∣∣∣πn+1
∣∣∣

+μκ,
∣∣∣πn+1

∣∣∣≤Cκ,
∣∣∣πn+1

∣∣∣+β1κ,M0
∣∣�̈n

∣∣+β2κ,M0
∣∣ęn∣∣+ κ, ∣∣άn∣∣

where C = 2
α1

h,
+β1M0+β2M0+μ, by taking sum on both sides, we have the following expression:

k+1∑
n=0

(∣∣∣πn+1
∣∣∣− ∣∣πn∣∣≤Cκ,

∣∣∣πn+1
∣∣∣+β1κ,M0

∣∣�̈n
∣∣+β2κ,M0

∣∣ęn∣∣+ κ, ∣∣άn∣∣) .

Using telescopic sum on the left-hand side and then rearranging terms algebraically we have

∣∣∣πn+1
∣∣∣− ∣∣∣π0

∣∣∣ ≤C1κ,
n+1∑
n=0

∣∣σn∣∣+ κ,
n+1∑
n=0

∣∣άn∣∣

Since, initial conditions provide that π0 = 0.

C1 =C+β1M0 +β2M0 = 2
α1

h,
+ 2β1M0+ 2β2M0+μ

σn = ∣∣πn∣∣+ ∣∣εn∣∣+ ∣∣�̈n
∣∣+ ∣∣ęn∣∣+ ∣∣n,n∣∣ , ∀ n= 0, 1, 2, . . . ,N.

⇒
∣∣∣πn+1

∣∣∣≤C1κ,
n+1∑
n=0

σn+ κ,
n+1∑
n=0

∣∣άn∣∣ , ∀ n= 0, 1, 2, . . . ,N.

Similarly, we can show that

∣∣∣εn+1
∣∣∣≤C2κ,

n+1∑
n=0

σn+ κ,
n+1∑
n=0

∣∣υn∣∣ , ∀ n= 0, 1, 2, . . . ,N,

∣∣∣�̈n+1
∣∣∣≤C3κ,

n+1∑
n=0

σn+ κ,
n+1∑
n=0

∣∣Þn∣∣ , ∀ n= 0, 1, 2, . . . ,N,

∣∣∣ęn+1
∣∣∣≤C4κ,

n+1∑
n=0

σn+ κ,
n+1∑
n=0

∣∣_ρn∣∣ , ∀ n= 0, 1, 2, . . . ,N,

∣∣∣n,n+1
∣∣∣≤C5κ,

n+1∑
n=0

σn+ κ,
n+1∑
n=0

∣∣κn
∣∣ , ∀ n= 0, 1, 2, . . . ,N,
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By adding all these inequalities, we have the following:

∣∣∣πn+1
∣∣∣+

∣∣∣εn+1
∣∣∣+

∣∣∣�̈n+1
∣∣∣+

∣∣∣ęn+1
∣∣∣+

∣∣∣n,n+1
∣∣∣ ≤C1κ,

n+1∑
n=0

σn+C2κ,
n+1∑
n=0

σn+C3κ,
n+1∑
n=0

σn

+C4κ,
n+1∑
n=0

σn+C5κ,
n+1∑
n=0

σn+ κ,
n+1∑
n=0

∣∣άn∣∣

+ κ,
n+1∑
n=0

∣∣υn∣∣+ κ,
n+1∑
n=0

∣∣Þn∣∣+ κ,
n+1∑
n=0

∣∣_ρn∣∣+ κ,
n+1∑
n=0

∣∣κn
∣∣

,∀ n= 0, 1, 2, . . . ,N,

σn+1 ≤ ρn+1 +C6κ,
n∑

n=0

σn, ∀ n= 0, 1, 2, . . . ,N (57)

where ρn+1 = κ,∑n+1
n=0

∣∣άn∣∣+ κ,∑n+1
n=0 |υn| + κ,

∑n+1
n=0 |Þn| + κ,

∑n+1
n=0 |_ρn| + κ,

∑n+1
n=0 |κn| .

Then Lemma 1⇒ σn ≤ ρnenκ,C6

Hence we concluded that

|πn| , |εn| , ∣∣�̈n
∣∣ , ∣∣ęn∣∣ , |n,n| ≤ σn ≤ ρnenκ,C6 ≤ Å (h,+κ, ) . Our proposed scheme has the

convergence of linear order in time and space.

4 Numerical Application and Simulations

The numerical solutions of Eqs. (1) to (5) are in good agreement with the dynamical behavior
of the model by using different assumed values of the parameters. Khan et al. [18] presented the
parameter values as follows:

πs = 0.5, β1 = 1.05, β2 = 1.05, μ = 0.5, ω1 = 0.47876, ω2 = 0.000398, ω3 = 0.0854302, ω4 =
0.09871, ω5 = 0.1243, for RnCov < 1. For RnCov > 1, πs = 0.5, β1 = 1.05, β2 = 1.05, μ= 0.5, ω1 =
0.47876, ω2 = 1.000398, ω3 = 0.0854302, ω4 = 0.09871 and ω5 = 0.1243.

The initial conditions are,

S (x, 0)=
{
0.5x, 0≤ x< 0.5

0.5 (1−x) , 0.5≤ x≤ 1
, E (x, 0)=

{
0.2x, 0≤ x< 0.5

0.2 (1−x) , 0.5≤ x≤ 1
,

I (x, 0)=
{
0.1x, 0≤ x< 0.5

0.1 (1−x) , 0.5≤ x≤ 1
, A (x, 0)=

{
0.1x, 0≤ x< 0.5

0.1 (1−x) , 0.5≤ x≤ 1
,

R (x, 0)=
{
0.1x, 0≤ x< 0.5

0.1 (1−x) , 0.5≤ x≤ 1
.

Example 1: nCov free equilibrium (EnCov free)
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For the simulations, we let πs= 0.5, β1 = 1.05, β2 = 1.05, μ= 0.5, ω1 = 0.47876, ω2 = 0.000398,
ω3 = 0.0854302, ω4 = 0.09871 and ω5 = 0.1243. By using initial conditions and performing simple
calculations, we get RnCov= 0.7223< 1.

EnCov free =
(
S1,E1, I1,A1,R1) =

(
πs

μ
, 0, 0, 0, 0

)
= (1, 0, 0, 0, 0) is a nCov free equilibrium of the

system Eqs. (8) to (12).

Figure 2: Mesh graphs of Eqs. (8) to (12) for different parameters for instance πs= 0.5, β1 = 1.05,
β2 = 1.05, μ = 0.5, ω1 = 0.47876, ω2 = 0.000398, ω3 = 0.0854302, ω4 = 0.09871 and ω5 = 0.1243,
by using initial conditions and RnCov= 0.7223<1



CMC, 2021, vol.67, no.3 2949

Figure 3: Mesh graphs of Eqs. (8) to (12) for different parameters like πs = 0.5, β1 = 1.05, β2 =
1.05, μ = 0.5, ω1 = 0.47876, ω2 = 1.000398, ω3 = 0.0854302, ω4 = 0.09871 and ω5 = 0.1243, by
using the initial conditions and RnCov= 1.1659> 1
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We use proposed NS finite difference scheme to plot the graphs of Fig. 1. The graphs are
approximate solutions of SEIAR system from Eqs. (8) to (12). It can be observed that our
proposed scheme is converging to EnCov free.

Example 2: nCov present equilibrium (EnCovpresent)

For the simulations, we fix the parameter values as πs = 0.5, β1 = 1.05, β2 = 1.05, μ = 0.5,
ω1 = 0.47876, ω2 = 1.000398, ω3 = 0.0854302, ω4 = 0.09871 and ω5 = 0.1243. Then RnCov =
1.1659 > 1. We use the proposed NS finite difference scheme from Eqs. (8) to (12) to plot
the graphs of Fig. 2. These graphs are the approximate solutions of our discrete system at
nCov present equilibrium point. From Fig. 3 we can see that our proposed scheme converges to
EnCov present. Furthermore simulations in Fig. 4 show that if we increase the quarantine parameter
(a) ω4 = 0.29871, (b) ω4 = 0.49871 and (c) ω4 = 0.89871 then this can help us in decreasing the
infection in the population.

Figure 4: Effect of quarantine strategy on symptomatic infected human by increasing quarantine
parameter (a) ω4 = 0.29871, (b) ω4 = 0.49871 and (c) ω4 = 0.89871
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From Fig. 4, it is observed that by the implementation of the quarantine strategy the infection
can be decreased in the population.

4.1 Effect of Quarantine
In Fig. 5, we have presented the effect of quarantine on the dynamical behavior of asymp-

tomatic infected compartment of the model. We observe that the increase in quarantine strategy
reduce the number of asymptomatic humans.

Figure 5: Effect of quarantine

5 Conclusion

In this article, we have presented the mathematical model and the dynamics of coronavirus
(nCov-19). Our new formation deals with the nCov-19 virus transmission. The role of advection
in the virus propagation is elaborated. We have investigated the approximate solutions of the
proposed PDE model based on logical background and numerical simulations by focusing on the
relationship of different biological, environmental and physical factors that determine the spatial
spreading of nCov-19. We have proposed a positivity-preserving finite-difference scheme. Taylor’s
series and first-order approximation for time and space partial derivatives are used to solve the
model. The discrete system have two fixed points which are identical to the equilibrium points
of the (continuous) SEIAR model. Also, it is shown that both set of equilibrium points have the
same stability properties. It is shown that the solution of the discrete system is positive for positive
initial conditions by using M-matrix theory. In addition, the basic reproductive number associated
with the discrete model is also mentioned which leads to disease threshold value. It is shown that
the featured discrete model is linearly stable in the sense of von Neumann. Its non-linear stability
and the convergence are also proved by using discrete Gronwall’s inequality. The consistency of
the scheme is checked by using Taylor’s theorem and it is verified that the proposed scheme
has first-order accuracy in both time and space variables. The numerical simulations executed in
Figs. 1–3 unveil the fact that our proposed scheme preserves the main structural properties of
the continuous system and if we increase the value of the quarantine parameter, infection in the
population can be decreased and controlled. The mathematical model (1–5) proposed for novel
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COVID-19 including the advection is a good addition to the existing models. The results obtained
via simulations will provide a tribune for various authors to compare their studies. An immediate
extension of the current work may be the corresponding two space dimensional models. Further
the obtained results need to be studied in the light of the physical behavior of all the state
variables. The tricky part of the current and future research is to consider and devise reliable
numerical schemes.
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