
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.012422

Article

Multi-Span and Multiple Relevant Time Series Prediction
Based on Neighborhood Rough Set

Xiaoli Li1, Shuailing Zhou1, Zixu An2,* and Zhenlong Du1

1School of Computer Science and Technology, Nanjing TECH University, Nanjing, 211816, China
2School of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Korea

*Corresponding Author: Zixu An. Email: anzixu@knu.ac.kr
Received: 30 August 2020; Accepted: 31 December 2020

Abstract: Rough set theory has been widely researched for time series predic-
tion problems such as rainfall runoff. Accurate forecasting of rainfall runoff is
a long standing but still mostly signi�cant problem for water resource planning
and management, reservoir and river regulation. Most research is focused on
constructing the better model for improving prediction accuracy. In this paper,
a rainfall runoff forecast model based on the variable-precision fuzzy neigh-
borhood rough set (VPFNRS) is constructed to predict Watershed runoff
value. Fuzzy neighborhood rough set de�ne the fuzzy decision of a sample
by using the concept of fuzzy neighborhood. The fuzzy neighborhood rough
set model with variable-precision can reduce the redundant attributes, and
the essential equivalent data can improve the predictive capabilities of model.
Meanwhile VFPFNRS can handle the numerical data, while it also deals well
with the noise data. In the discussed approach, VPFNRS is used to reduce
super�uous attributes of the original data, the compact data are employed
for predicting the rainfall runoff. The proposed method is examined utilizing
data in the Luo River Basin located in Guangdong, China. The prediction
accuracy is compared with that of support vector machines and long short-
term memory (LSTM). The experiments show that the method put forward
achieves a higher predictive performance.

Keywords: Rainfall and runoff; variable precision fuzzy neighborhood
rough set; LSTM; multi-span

1 Introduction

Accurate rainfall runoff prediction is of great signi�cance for the protection and manage-
ment of water resource. As the hydrologic evolution process holds the properties of nonlinearity
and uncertainty, exact rainfall runoff prediction is extremely dif�cult. Currently, much attention
for predicting rainfall runoff is still paid to establishing feasible and accurate model. Many
machine learning methods have been exploited for time series forecasting, such as arti�cial neu-
ral networks [1–3], genetic algorithm [4], fuzzy theory and support vector machine (SVM) [5].
Despite their successes in this �eld, there remain several unresolved issues to be addressed
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before predicting models could move from academic research and become established tools for
real-world applications.

Rough set theory, proposed by Pawlak [6–8], is widely used for feature selection, rule extrac-
tion and knowledge discovery from categorical data. Rough set describes the uncertainty with
the lower and upper approximation, it enhances the discrimination ability on the discrete data.
Conventional rough set employs equivalence relations to partition the universe, and generates the
mutually exclusive equivalence classes. Granularity relates to the generation accuracy of equiva-
lence classes, and the classical rough set regards the distribution embodied by the individual data
as granularity. The granularity is represented by both the individual data and neighboring ele-
ments, and the full exploitation of twofold granules [9] would increase the generalization capability
of rough set. In the paper these two kinds of granules are utilized for accurately predicting the
rainfall runoff.

The preservation of neighborhood structure and order structure is very important for feature
extraction and knowledge discovery. For the numerical data processing, such as rainfall runoff
prediction, discretization only can deal with individual data, but ignores the internal relationship
among data. Neighborhood rough set (NRS) fully considers the neighborhood attributes con-
tained within the data and extends the application scope of rough set. The hydrological rainfall
runoff, a special time series data studied in this paper, bears the characteristics of long time span,
incomplete and long duration, which bring a high degree of dif�culty to the investigation. In
the paper, NRS is applied to the rainfall runoff prediction for the �rst time, which achieves the
tradeoff between prediction accuracy and prediction ef�ciency.

Both feature selection and pattern discovery depend on the scope of data exploitation. Small
scope data contains the local feature or pattern, while the large scope data includes its global
equivalents. The selection of local or global data depends on the application requirement. The
rainfall runoff prediction should follow the double requirements, the forecast should be consistent
with the historical data, and it should be accurate in future periods. These two requirements
are interrelated. The consistency with historical data enhances the future trend prediction, and
accurate future prediction enriches the process of historical data processing. In detail, the rainfall
runoff forecast in this paper is to forecast the trend of future multiple periods and use the local
data of multiple period to forecast the rainfall runoff.

The contributions of the paper are as follows:

The variable-precision fuzzy neighborhood rough set is �rstly applied for rainfall runoff prediction.
The variable-precision fuzzy neighborhood rough set is introduced into the rainfall runoff predic-
tion, which makes full use of the neighborhood relationship and trend, while also improving the
prediction accuracy.

Multi span times series prediction is proposed in this paper. The rainfall runoff forecast utilizes
multi spans data for achieving high prediction accuracy. Compared with the prediction of SVM
and long short-term memory (LSTM), the prediction accuracy of the proposed approach achieves
a higher degree of accuracy than SVM and LSTM.

The remainder of the paper is organized as follows: in Section 2 the relevant theories are
discussed, then a novel rainfall runoff prediction model based on VPFNRS is proposed, next the
experimental results and analysis are given, while the last section contains the conclusion and
future work proposals.
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2 Related Works

Rough set theory has been widely used in time series prediction [10–13], such as stock
prediction, �nancial forecasting, hydrological data assimilation, air quality evaluation and so on.
Reference [11] developed a novel fuzzy time-series model based on rough set rule induction for
forecasting stock indexes. This study employed the rough sets to generate forecasting rules to
replace fuzzy logical relationship rules based on the lag period. The experiment shows that the
proposed method outperforms the models listed in this paper in error indexes and pro�ts.

Time series forecasting plays an important role in the �eld of hydrology. Recent trends of
time series forecasting are based on data-driven techniques such as Arti�cial Neural Networks and
rough sets. Reference [14] developed a new rainfall-runoff model called SVR-GANN combining
SVR with a geomorphologic-based ANN model. The proposed model in simulating the daily
runoff was investigated in a case study of three sub-basins located in a semiarid region in Iran.
The results are compared with the methods mentioned in the paper. And they show that the
proposed model is more accurate. A novel combined model based on the information extracted
with ensemble empirical mode decomposition is proposed and validated on three datasets [15].
The model shows better performances with higher prediction accuracy and time ef�ciency.

The discrete rough set classi�er was used to ascertain the threshold of each attribute con-
tributing to landslide occurrence, based upon the knowledge database [16]. Based on Rough
Set theory and Petri Net (RSPN), a comprehensive evaluation model for eutrophication of
Xiangxi river was established by Yan et al. [17]. The results reveal that the RSPN model can
accurately and ef�ciently analyze the relationship between condition indicators and variations of
eutrophication degree.

Rough set theory provides us with another important method of data preprocessing. However,
the application of the rough set theory in rainfall runoff forecasting has not been widely studied.
In addition, classical rough set theory is based on the equivalence relation, so it is only applied
to the data sets with symbolic attributes. However, in practice, many data sets are numerical, so
it is necessary to discretize the numerical data. This can lead to the loss of a large amount of
information, leading to a decline in knowledge discovery ability. Neighborhood rough set model
and fuzzy rough set model are two important methods to resolving this problem. Both models
have their own advantages in rough approximation. On this basis, Cheng et al. [11] proposed a
fuzzy neighborhood rough set model, which can better process numerical data. This paper presents
a rainfall runoff prediction method based on fuzzy neighborhood rough set and introduces a
variable precision fuzzy neighborhood rough set model. The method can withstand the in�uence
of noise, thereby reducing the possibility of sample misclassi�cation.

3 Multi-Span and Multiple Rainfall Runoff Prediction

This paper discusses a rainfall runoff prediction method based on the variable-precision fuzzy
neighborhood rough set. In order to verify the performance of the models, SVM and LSTM
model are introduced for comparison.

3.1 Fuzzy Neighborhood Rough Set
Rough set theory introduced by Pawlak [8] is a new mathematical tool to deal with vague-

ness and uncertainty in the areas of machine learning, knowledge acquisition, decision analysis,
knowledge discovery from big data, expert systems, decision support systems, inductive reasoning,
and pattern recognition. Compared with other data mining methods, the major advantage of
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rough set is that it does not require any additional information. The classical rough set model
is just applicable to nominal data. In the real world, the values of attributes may be real-valued.
And the real-valued data need to be discretized before the dependency is evaluated. Discretization
might lead to information loss and decrease prediction accuracy. In order to solve this problem,
neighborhood rough sets and fuzzy rough sets are combined in this paper. Fuzzy theory has been
applied in many �elds, such as fuzzy reasoning [18], fuzzy control, time series, etcetera.

De�nition 1. Let a decision table, S = 〈U , A, D〉, where U is a nonempty and �nite set of
sample {x1, x2, . . . , xm}, called a universe, A is a set of conditional attributes {a1, a2, . . . , an}, and
D is a decision attribute.

For ∀x ∈U , ∀a ∈A, the fuzzy neighborhood relation is de�ned as follows:

ra
(
xi, xj

)
=

{
ρ ·
(
1−

∣∣xi− xj
∣∣) ∣∣xi− xj

∣∣< δ
0

∣∣xi− xj
∣∣≥ δ (1)

where δ is a neighborhood radius with 0 < δ ≤ 1, ρ is an adjustable constant coef�cient and
0<ρ ≤ 1. Then, if B⊆A, there is a rB

(
xi, xj

)
=∩a∈B ra

(
xi, xj

)
.

According the Eq. (1), the fuzzy neighborhood of xi is de�ned as [xi]a.

[xi]a =
{
xj | ra

(
xi, xj

)
= ra

(
xj, xi

)
, xj ∈U , a ∈A

}
(2)

De�nition 2. Let a decision table, S = 〈U , A, D〉, where U is a nonempty and �nite set of
sample {x1, x2, . . . , xm}, D= {d1, d2, . . . , dk}, B⊆A. For ∀x ∈U , the fuzzy decision of x is de�ned
as follows:

fd (x, di, B)=

∣∣[x]B ∩ di
∣∣∣∣[x]B

∣∣ (3)

The fuzzy decision fd (x, d, B) represents the membership degree of x to di induced by B.
Then, the fuzzy decision matrix is de�ned as follows:

F (D, B)=


fd (x1, d1, B) · · · fd (xm, d1, B)

...
...

fd (x1, dk, B) · · · fd (xm, dk, B)

 (4)

Obviously,
∑k

i=1 fd (x, di, B)= 1 holds.

De�nition 3. Given two fuzzy sets X and Y on U , the fuzzy inclusion is de�ned as follows:

I (X , Y)=
|X ⊆Y |

U
(5)

where |X ⊆Y | indicates the sample number which its membership degree to X is less than or
equal to Y .

De�nition 4. Let a decision table, S = 〈U , A, D〉, where U is a nonempty and �nite set of
sample {x1, x2, . . . , xm}, D= {d1, d2, . . . , dk}, B⊆A, F(D, B) is a fuzzy decision matrix.
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For ∀x ∈ U , [x]B is its fuzzy neighborhood induced by B. The variable precision lower
approximations RB(D) and upper approximations RB (D) are de�ned as follows:

RB (D)=RB

(
→

fd1

)
, RB

(
→

fd2

)
, · · · , RB

(
→

fdk

)
(6)

RB (D)=RB

(
→

fd1

)
, RB

(
→

fd2

)
, · · · , RB

(
→

fdk

)
(7)

Also,

RB

(
→

fd i

)
=
{
x | I

(
[x]B , fdi

)
≥ α, x ∈ di

}
(8)

RB

(
→

fdi

)
=
{
x | I

(
[x]B , fdi

)
≥ β, x ∈ di

}
(9)

where
→

fdi represent a row in F (D, B), 0≤ α ≤ 1 and 0≤ β < 0.5, α = 1−β. The variable precision
positive region is de�ned as POSB (D)=RB (D).

De�nition 5. Let a decision table, S = 〈U , A, D〉, where U is a nonempty and �nite set of
sample {x1, x2, . . . , xm}, D= {d1, d2, . . . , dk}, B⊆A. The variable precision dependency degree of
D on B is de�ned as follows:

γB (D)=
|POSB (D)|
|U|

(10)

It can be deduced that the following expression holds. If B1 ⊆ B2 ⊆ A, then POSB1 (D) ⊆
POSB2 (D) and γB1 ≤ γB2 (D).

De�nition 6. Let a decision table, S = 〈U , A, D〉, where U is a nonempty and �nite set of
sample {x1, x2, . . . , xm}, D= {d1, d2, . . . , dk}, B⊆ A and a ∈ A−B. The signi�cance Sig (a, B, D)
of a relative to B is de�ned as follows:

Sig (a, B, D)= γB∪a (D)− γB (D) (11)

De�nition 7. Given a decision table, S= 〈U , A, D〉, U = {x1, x2, . . . , xm}, D= {d1, d2, . . . , dk},
B ⊆ A. B is named as a reduction of A if it satis�es the following conditions, γB (D) = γA (D)
and ∀a ∈B, γB−{a} (D) < γB (D).

De�nition 8. Let a decision table, S = 〈U , A, D〉, U = {x1, x2, . . . , xm}, A = {a1, a2, . . . , an},
D= {d1, d2, . . . , dk}. For ai in A, the �tting fuzzy rule is de�ned as follows:

fa, D =∪
k
j=1 �t

(
→

fdj

)
=∪

k
j=1 fai, dj (12)
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where
→

fdj ∈ F (D, ai), ∪ is a combination operation, and �t (·) is a �tting function. CA, D =∪
n
i=1 fai ,

D is de�ned as the �tting coef�cients. Then the calculation formula of the �tting fuzzy rule is
presented as follows:

FR (x)=


fa1, d1 (x) · · · fan, d1 (x)

...
. . .

...

fa1, dk (x) · · · fan, dk (x)

 (13)

De�nition 9. Let a decision table, S = 〈U , A, D〉, U = {x1, x2, . . . , xm}, A = {a1, a2, . . . , an},
D= {d1, d2, . . . , dk}. For ai ∈A, the weight of ai is de�ned as follows:

wai =

∣∣posai (D)
∣∣∑A

ai

∣∣posai (D)
∣∣ (14)

Apparently,
∑A

ai
wai = 1 holds. The weight vector is showed as

→

W =
{
wa1 , wa2 , . . . , wan

}
.

De�nition 10. Let a decision table, S = 〈U , A, D〉, U = {x1, x2, . . . , xm}, A = {a1, a2, . . . , an},
D= {d1, d2, . . . , dk}. For ∀x ∈U , the �tting fuzzy decision is de�ned as follows:

FD (x)= FR (x) ·
→

W
T

(15)

3.2 LSTMModel
Long Short-Term Memory network (LSTM) is a special type of Recurrent Neural Network

(RNN). LSTM compensates for the de�ciency of RNN in gradient diffusion and explosion. The
LSTM also alleviates the insuf�cient for long short-term memory. The LSTM model replaces the
RNN cells in the hidden layer with the LSTM cells, so that they remain in the long-term memory
cells. The structure of a standard LSTM is shown as Fig. 1. The LSTM contains three control
gates, namely the input gate i, the output gate o and the forgetting gate f .

xt ht

xtht-1 xtht-1

xtht-1

~ X X ~

i O

X

f

Ct

Figure 1: The structure of a standard LSTM unit
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In the paper, LSTM is used for the prediction. The �rst step in LSTM is to determine which
information should be discarded from the cell state. This task is accomplished by the forgetting
gate layer. The forgetting gate reads the output of the previous cell ht−1, the input of the current
cell xt and outputs a value between 0 and 1 for each cell state Ct−1, where “1” stands for complete
retention and “0” shows complete abandonment. Eq. (16) describes this process.

ft = σ
(
Wf · [ht−10, xt]+ bf

)
(16)

where σ shows the logistic sigmoid function, ft is the forget gate at time step t and bf represents
bias. The following procedure determines how much new information is stored in the current cell
state. This step can be described as follows.

it = σ (Wi · [ht−1, xt]+ bt)

C̃t = tanh (WC · [ht−1, xt]+ bC)
(17)

where it decides which values to be updated, C̃t represents the candidate values for updating.
Then, it and C̃t are combined to update the old cell state. The new cell state is shown as
the following:

Ct = ft ·Ct−1+ yt · C̃t (18)

Finally, output values are achieved based on the current cell state. The following equations
represent this step.

ot = σ (Wo · [ht−1, xt]+ bo)

ht = ot · tanh (Ct)
(19)

where ot determines which parts of the cell state are exported by running a sigmoid layer. ht is
the expected output which is multiplied by ot and a tanh layer. The cell state is processed by tanh
to get the value between −1 and 1.

3.3 SVMModel
SVM has been introduced as a classi�cation method of solving linear and non-linear problems

in [15]. In the real world, most of the problems are nonlinear. The method of solving this
limitation is to map the input data into a higher dimensional feature space, and then perform
the liner regression in this feature space. The explanatory variables of time series data are the
input vectors playing a major role as supports of the training models. For training data (xi, yi),
(i= 1, · · · , l), xi ∈Rd and yi ∈R. xi is the input vector, yi is the output vector and l is the number
of samples. The nonlinear SVM regression (SVR) is de�ned as the following:

f (w, b)=w ·φ (x)+ b (20)

where w is the weighting vector, b is the offset vector and φ (x) is the mapping function (also
named as the kernel function).

The classi�cation ability of SVM is decided by the training error and classi�cation boundary.
SVR achieves the minimization of objective regression function, as Eq. (21) illustration.

min
w, b, ξ , ξ∗

1
2

wT w+C
N∑

i=1

(
ξi+ ξ

∗
i
)

(21)
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Subject to


yi− (w ·φ (x)+ b)≤ ε+ ξi

(w ·φ (x)+ b)− yi ≤ ε+ ξ
∗
i

ξi, ξ∗i ≥ 0, i= 1, 2, · · · , N

where ε is the insensitive loss function which controls SVM over�tting degree. If the difference
between observed value and predicted one isn’t greater than ε, the predicted value is regarded as
non-loss. ξ and ξ∗i are the slack variables. C is the penalty coef�cient which is used for controlling
the in�uence of the slack coef�cient to objective function. SVM optimization function is a convex
quadratic, for the sake of simplifying the calculation the dual form is generally adopted, which is
de�ned as Eq. (22).

W
(
α∗,α

)
=−ε

L∑
i=1

(
α∗i +αi

)
+

L∑
i=1

(
α∗i −αi

)
−

1
2

L∑
i, j=1

(
αi−α

∗
i
)(
αj −α

∗
j

)
K
(
xi, xj

)
(22)

Subject to
∑L

i=1
(
α∗i −αj

)
= 0 and 0≤ α∗i , αi ≤C, where α∗ and α are the Lagrange multipliers,

k
(
xi, xj

)
is kernel function and L is the number of samples. The nonlinear regression function of

SVM is given as Eq. (23), where N (N�L) is the number of the support vector.

f (x)=
N∑

i, j=1

(
α∗i −αj

)
k
(
xi, xj + b

)
(23)

Non-linear SVM regression need estimate ε, C and calculate k
(
xi, xj

)
.

4 Hydrological Rainfall Runoff Prediction via Fuzzy Neighborhood Rough Set

The main study area (see Fig. 2) is the Luo River Basin located in Guangdong, China,
an area of approximately 150 km2. The experimental data come from 4 hydrological control
stations along the Nangao reservoir in the Luo River Basin. The original data included daily
rainfall, evapotranspiration and runoff observed at four hydrological stations between 1994 and
2003. The original data spanning 10 years were divided into 2 groups. The data from the �rst
8 years were used as the training sample set, and the data from the latter 2 years were the test
sample set. Annual average rainfall is about 2330 mm (during the �ood season from April to
September, rainfall is about 1890 mm, 81% of the total annual precipitation). The variance of
annual precipitation is about 1090 mm2. The average stream�ow into the Nangao Reservoir is
8.76 m3/s. Mean annual volume is 2.76× 108 m3. The variance of annual average stream�ow is

3.40
(
m3/s

)2
.

4.1 Data Preprocess
The main goal of this paper is to develop a rainfall runoff prediction model for forecasting

the stream�ow of the Nangao Reservoir. It is well known that the appropriate input variables
contain important features about the complex autocorrelation among data set. In general, rain-
fall(precipitation), previous �ows, evaporation, temperature, etc. are associated with the rainfall
runoff model. Most studies used rainfall and previous �ow as inputs. In this study, the precipi-
tation, previous �ows and evaporation are selected as input variables, and the discharge Q serves
as the output variable.
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Figure 2: Location map for the study area

In this paper, P is for precipitation and Ep is for potential evapotranspiration. For the
convenience of calculation, the value of P is substituted by [P−Ep] in process.

In order to ensure that all variables receive equal weighting during the training process, it is
necessary to normalize the raw data (precipitation) to the interval from −1 to 1 or from 0 to 1.
Therefore, the presented method processes the scaled data, and the output data are returned to
their original scale. The data are normalized between 0.1 and 0.9. The scaling and reverse scaling
equations are as follows:

Pn (t)= 0.1+ 0.8×
(

P (t)−Pmin

Pmax−Pmin

)
(24)

Qn,obs (t)= 0.1+ 0.8×
(

Qobs (t)−Qmin

Qmax−Qmin

)
(25)

Qsim =Qsim (t)=Qsim+
1.0
0.8
× (Qn (t)− 0.1)× (Qmax−Qmin) (26)

where P (t) is the observed precipitation data, Pn (t) is the scaled precipitation data at time t, Pmin
and Pmax are the minimum and maximum of the precipitation data series during the simulation
period. Qobs (t) is observed stream�ow, Qn, obs (t) is normalized observed stream�ow, Qn (t) is the
predicted stream�ow using VPFNRS model, Qsim (t) is the reverse scaled stream�ow, Qmin and
Qmax are the minimum and maximum of the observed stream�ow.

4.2 Proposed Model
In this study, a VPFNRS model is developed to simulate the stream�ow at the Nangao Reser-

voir. The stream�ow responds to the precipitation and runoff from the rainfall-runoff process. The
spatial distribution of precipitation is not considered. The average rainfall data were calculated
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using the Thiesssen polygon method. This data was used as the input data of the VPFNRS
model. In the VPFNRS model, we use a concept, N: the time of precipitation impact, which
is a parameter in the model. The N represents that the runoff value on the day N is predicted
using historical data from the past N days (including rainfall on the previous N days and runoff
on the previous N days). Therefore, N is determined as a parameter, which can be selected in
the following model structure. The stream�ow at time t correlates with the past stream�ow at
times t− 1, t− 2, . . .. So, the current and the observed times are t− 1, t− 2, etc. and the future
(forecasted) time is t, and the future precipitation (i.e., P (t)) is assumed to be known in this
model. Precipitation data that are assumed to be known at times t, t− 1, . . . , t−N + 1 (N day)
and stream�ow data (simulated) at times t− 1, t− 2, . . . , t−N+ 1 (N− 1 day) are used to predict
the stream�ow at t (where t denotes the day). The forecasting model applied in real time can be
expressed as the following equation:

Qn (t)= fvpfnrs (Pn (t) , Pn (t− 1) , · · · , Pn (t−N+ 1) , Qn (t− 1) , Qn (t− 2) , · · · , Qn (t−N+ 1)) (27)

where the function fvpfnrs indicates the VPFNRS model, t is the time (day), Pn (t) , Pn (t− 1) , . . .
and Pn (t−N+ 1) are the normalized precipitation data at times t, t− 1, . . . , t−N + 1 (N day).
Qn (t− 2) , . . . , Qn (t−N+ 1) are the simulated normalized stream�ow at time t− 1, . . . , t−N + 1
(N− 1 day), Qn (t) is the simulated normalized stream�ow at the future time t.

The work of the presented model includes two stages. Firstly, the variable-precision fuzzy
neighborhood rough set theory is used to reduce the input data of the model, so as to simplify
the input and improve the ef�ciency. Secondly, taking the reduction set as the input, the decision
rules are extracted based on fuzzy decision making. The reasonable prediction of rainfall runoff
is realized. The processing work�ow of the VPNFRS prediction model is sketched as pseudocode
in Algorithm 1.

Algorithm 1: Rainfall runoff prediction based on VPFNRS model
Require: Decision table (U , A, D) , δ,ρ,β.
Ensure: Decision rules

1: Step 1. Initialize red =Φ, Sig= 0, B=A− red.
2: Step 2. ∀a ∈A, Calculate the fuzzy neighborhood relation ra, then calculate the fuzzy decision

F (D, A).
3: Step 3. Calculate reduction set.
4: while TRUE do
5: for ai ∈B do
6: Calculate rred∪ai

7: for each xi ∈U do
8: Calculate the lower approximation Rred∪ai

(D)
9: end for

10: Calculate the signi�cance of ai : Sig (ai, red, D)
11: end for
12: retrieve ak with max ({Sig (ai, red, D)})
13: if Sig (ai, red, D) > Sig then
14: red = red ∪ {ak}

15: B=B−{a+ k}
16: Sig= Sig (ak, red, D)

(Continued)
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17: else
18: break
19: end if
20: end while
21: Step 4. Calculate the weight vector

→

W and fuzzy decision matrix F (D, A)
22: Step 5. Extracting rules
23: for each ai ∈ red do
24: for each dj ∈D do
25: Calculate fai,dj

26: end for
27: Calculate CA,D
28: end for
29: Step 6. Rule matching
30: for each ai ∈ red and dj ∈D do
31: Calculate the �tting fuzzy rule FR (x)
32: end for
33: Calculate the �tting fuzzy decision FD (x)

5 Results and Analysis

In this section four stages, including data preprocessing, training the proposed model, cali-
brating model and testing are used for developing a rainfall runoff prediction model based on
VPFNRS. The implementation process is shown in Algorithm 1. The code of the VPFNRS
model is written in the Python language, and the VPFNRS model is trained on 8 years of data
(Year, 1994–2001) for every case. The training data is divided into training set and veri�cation set
according to the ratio of 7:3. The original data are normalized according to the formula 22–23
before training the model. Then, all data are discretized to n intervals. Referring to literature [16],
the appropriate number of categories for human short memory function is seven, or seven plus or
minus two. This study uses 7 as linguistic intervals. The values of each attribute are partitioned
into seven linguistic intervals of equal length. The length L could be de�ned as the following:
L= (Qmax−Qmin) /7, where Qmax and Qmin are the maximum and minimum of attribute values,
respectively. In this way, the predicted results are fuzzy. The fuzzy result is then reduced to the
crisp value, which is the midpoint of the corresponding interval. In addition, the root mean square
error (RMSE), the correlation coef�cient (R), the mean bias error (MBE) and the Nash-Sutcliffe
coef�cient of ef�ciency (CE) of the observed and simulated stream�ow are used to assess the
performance of the rainfall runoff model.

Obtaining the optimal prediction depends on having suitable model parameters. The “N”
mentioned above is a parameter that affects the prediction ef�ciency of the model. In the study,
different N (2, 3, 5, 7) were set to train the model to determine the optimal N value. Fig. 3 shows
the simulated results during the calibration period and the correlation coef�cient using eight years
of data for different N. In the case of different N values, better simulated values are obtained
during the calibration period. However, the simulation results at N = 5 are better than others. The
correlation coef�cient R is 0.9974 vs. 0.985 of N = 2, 0.9767 of N = 3 and 0.9889 of N = 7. From
Tab. 1, we �nd RMSE re�ects consistent results. The MBE values of the three models in the
Tab. 1 show the overestimation or underestimation to different degrees, but the VPFNRS model
for N = 5 is still effective. The CE value re�ects the con�dence of the model. The closer CE is
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to 1, the higher the credibility of the model. Clearly, the CE value of the VPFNRS model FOR
N = 5 days is closest to 1 in Tab. 1 So, we select N to be 5 in the following experiments.
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Figure 3: Comparison between observed and simulated daily runoff using different N (N = 2, 3,
5, 7)

Table 1: Statistical characteristics of simulated daily runoff (1994–2001) using different
N (N = 2, 3, 5, 7)

N RMSE R MBE CE

2 7.238 0.9850 −0.4852 0.9695
3 8.9315 0.9767 −0.3713 0.9536
5 3.4328 0.9974 0.2731 0.9931
7 6.2035 0.9889 −0.6037 0.9776
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To test the performance of the model, this experiment simulates the rainfall-runoff process
from DOY (Day of year) 206 (July 25, 2002) to DOY 288 (October 15, 2002) using the VPFNRS
model, the SVM model and the LSTM rainfall runoff model. The simulated results of the rainfall-
runoff process for the three models are compared, and the advantages and disadvantages of the
three models are analyzed. Fig. 4 shows a comparison between the observed and predicted daily
runoff by VPFNRS, SVM and LSTM model. The time of precipitation impact (N) is 5 days. We
�nd the forecast results of the three models show great consistency with the actual observed values
in the curve trend. During the peak period, it also demonstrates a good �t. However, we can still
see the advantage of the VPFNRS model over other models. For example, the observed discharge
is 263.3 m3/s in the �rst peak at DOY 217, the simulated values are 274.57 m3/s for VPFNRS,
336.6 m3/s for LSTM and 228.9 m3/s for SVM. Obviously, the stream�ow predicted by VPFNRS
model is closer to the observed value. Similar results are shown at several other peak points, such
as DOY 230, DOY 231, DOY 260 and so on. The results of statistical analysis in Tab. 2 further
con�rm this conclusion. For the entire simulation period, the correlation coef�cients are 0.9283,
0.8764, 0.9722, and the RMSE are 20.8218, 30.6097, 10.1161 for the LSTM, SVM and VPFNRS
model, respectively. From the Tab. 2, we �nd all three models overestimate the stream�ow during
the forecast period. And the MBE of the VPFNRS model is minimal. Also, the CE value of
the VPFNRS model is closest to 1. All these demonstrate that the proposed model is feasible
and reliable.

Figure 4: The daily runoff comparison among the observation (DOY 206-288, 2002), the predic-
tion by VPFNRS, SVM and LSTM model for N = 5

Fig. 5 shows a scatter plot of the simulated stream�ow VS the observed stream�ow for the
SVM, LSTM and the VPFNRS model. The dashed line represents y= x and the dash dot lines
indicate y = x− 50 and y = x+ 50. The forecast period is also DOY 206 to DOY 288 in 2002
year, and N = 5 is still used. Fig. 5 presents that the stream�ow is overestimated by the three
models. We �nd that the VPFNRS model performed better than both the LSTM and the SVM
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models. During the predicting, one scatter plot point for the VPFNRS method fall in the given
strip region. Five points fall outside the strip region or on the boundary of the strip region for
the LSTM model, and three points fall outside the strip region or on the boundary of the strip
region for the SVM model.

Table 2: Statistical characteristics of simulated daily runoff (DOY 206-288, 2002) using three
different methods

Method RMSE R MBE CE

LSTM 20.8218 0.9283 10.9724 0.6307
SVM 30.6097 0.8764 7.2916 0.2019
VPFNRS 10.1161 0.9722 2.5036 0.9128

Figure 5: Comparison between observed and simulated daily runoff (DOY 206-288, 2002) using
the VPFNRS, SVM and LSTM model for N = 5d

Fig. 6 presents an error comparison of the predicted results using the three models. Clearly
the VPFNRS model remains optimal. The �gure shows that the absolute error of The VPFNRS
model is mostly �oating around zero, and the maximum absolute error is about 80, LSTM is
about 101, and SVM is about 127. The rainfall on that day (DOY 230) is 99.55 mm2. In addition,
in DOY 216, the precipitation is 107.7 mm2, and the absolute error of the three models is
respectively 168.9 LSTM, 117.6 SVM and 28 VPFNS model. It was observed that the two days
were heavy rainfall days. In other words,the error of the three models is relatively large in the days
of heavy rainfall, but the error of the VPFNRS model is still the smallest. The reason for the
increased error may be that the underlying surface factor is not considered. Runoff is formed only
when precipitation falls on the underside of the basin. The difference of the underlying surface
will directly affect the stream�ow. Therefore, the underlying surface and climate factors will be
considered to improve the prediction ef�ciency of the model in the later research.
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Figure 6: Error comparison of the predicted results using three models

6 Conclusion

Accurate rainfall runoff prediction is a critical issue in the area of hydrological information
processing. In the paper the fuzzy neighborhood rough set is introduced for predicting the rainfall
runoff. The proposed method is able to forecast the future rainfall runoff by providing a deep
simulation of the essential hydrological factors. The experiments show that the approach presented
here could accurately predict the rainfall runoff.

The rainfall and runoff data of different historical length are exploited for predicting the
runoff of future variable-length. So the given algorithm has an adjustable predictability, under
one framework the same historical data is employed in multiple ways. Meanwhile, the stream�ow
in different future times can be accurately predicted.

The rainfall runoff prediction method can be extended to similar climactic zones. For dif-
ferent hydrological conditions, it needs to be recti�ed for predicting the runoff in the new zone.
Additionally, the breadth of available historical data for prediction is limited, in the experiment,
days beyond 5 would lead to a deterioration in the predictive performance.
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