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Abstract: The present paper paper, we estimate the theory of thermoelasticity a
thin slim strip under the variable thermal conductivity in the fractional-order form
is solved. Thermal stress theory considering the equation of heat conduction based
on the time-fractional derivative of Caputo of order � is applied to obtain a solu-
tion. We assumed that the strip surface is to be free from traction and impacted by
a thermal shock. The transform of Laplace (LT) and numerical inversion techni-
ques of Laplace were considered for solving the governing basic equations. The
inverse of the LT was applied in a numerical manner considering the Fourier
expansion technique. The numerical results for the physical variables were calcu-
lated numerically and displayed via graphs. The parameter of fractional order
effect and variation of thermal conductivity on the displacement, stress, and tem-
perature were investigated and compared with the results of previous studies. The
results indicated the strong effect of the external parameters, especially the time-
fractional derivative parameter on a thermoelastic thin slim strip phenomenon.

Keywords: Non-Fourier heat conduction; thermoelasticity; fractional derivative;
variable thermal conductivity

1 Introduction

Recently, more attention has been given to the uncoupled classical thermoelastic theory, which predicts
that two phenomena have a confliction and do not agree with the physical laboratory results. While the heat
conduction equation is the first phenomenon without any elastic terms, the second is the prediction of infinite
propagation speed for heatwaves due to the thermal signals in the equation of heat in a parabolic type. Biot
[1] is the prior who presented the coupled thermoelasticity theory between the motion equation and equation
of heat to overcome and release the confliction of the first shortcoming. However, the equation of heat for the
theory of coupled thermoelasticity in a parabolic form. Thus, both theories have shared and addressed the
second shortcoming.
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During the last five decades, more different theories developed the thermoelasticity theory to the
generalized theory of thermoelasticity. Lord et al. [2] who is the first introduced the theory by the
heat conduction equation based on the modified law of Fourier’s considering one relaxation time that
transforms the equation of heat conduction in a parabolic form to hyperbolic form the equation of
heat conduction. Green et al. (GL) [3] who modified the equation of energy and the relation of
Duhamel-Neumann, taking into account two thermal relaxation times. The third was by Green et al.
(GN) [4] who introduced a generalized theory of thermoelasticity. They included the ‘displacement
gradient-thermal’ within the constitutive variables independence but without dissipation accommodate
of the thermal energy.

The material characteristics at high temperatures, such as Poisson’s ratio, the elasticity modulus, the
coefficient of thermal expansion, and the thermal conductivity are not constants any more [5]. Recently
and because of scientific and technological development, the need to understand the actual actions of the
material features has become actual [6]. Budaev et al. [7] discussed the dependence temperature of shear
elasticity for some liquids which indicated that the increase of temperature depends on the decrease of
shear modulus and is explainable by increasing the fluctuation free volume. Rishin et al. [8] employed the
method of dynamic resonance to define the dependence temperature of the elasticity modulus of some
materials that have plasma-sprayed. The increasing results of test temperature in a monotonic decrease in
elasticity modulus. Honig et al. [9] discussed a method for the numerical inversion of the Laplace transform.

The equations of fractional derivatives and fractional differential were applied to obtain solutions to
some problems in viscoelasticity, fluid mechanics, physics, engineering, biology, signal processing,
mechanical engineering, systems identification, control theory, electrical engineering, finance, and fractional
dynamics [10]. It describes anomalous diffusion (subdiffusion, superdiffusion, diffusion of non-Gaussian)
that does not conform to the classical law of Fick in [11,12]. Numerically, the experiments show that in
various one-dimensional systems that have total momentum conservation, the thermal conduction does not
form in the Fourier law. Moreover, the thermal conductivity matches the size of the system in [13].

Podlubny [14] introduced an important overview of different fractional calculus applications in science,
engineering, and technology. Ross [15] and Miller et al. [16] introduced a historical brief of the progress of
fractional order calculus. Youssef et al. [17] discussed and made a new model for generalized
thermoelasticity theory in fractional order. Sherief et al. [18] presented a fractional calculus-based
thermoelasticity theory. Povstenko [19] studied axisymmetric stresses from pulses instantaneous and
diffusion sources in an infinite space in a diffusion of time-fractional equation in a two-dimensional.
Povstenko [20] applied Caputo time-fractional derivative technique on the thermal stresses theory based
on the equation of thermal conduction to explore thermal stresses in a circular cylindrical hole an infinite
body. Allam et al. [21] examined the interactions between the electromagneto-thermoelastic in a body
with a spherical cavity an infinite perfectly conducting considering the GN model. The elasticity modulus
is considered a linear function of temperature. Abouelregal [22] investigated the generalized thermo-
piezoelectric semi-infinite under the assumption of the fractional-order with temperature-dependent and
ramp-type heating. Structural continuous dependence in micropolar porous bodies is discussed in [23].
Study of heat and mass transfer in the Eyring–Powell model of peristaltically fluid propagating through a
rectangular compliant channel has been discussed by Riaz et al. [24]. Some new related works have been
discussed in [25–28].

In this work, we studied the thermoelasticity theory of a thin slim strip under the variable thermal
conductivity in the fractional-order form is solved. Thermal stress theory considering the equation of heat
conduction based on the time-fractional derivative of Caputo of order a is applied to obtain a solution.
We assumed that the strip surface is to be free from traction and impacted by a thermal shock. The
transform of Laplace (LT) and numerical inversion techniques of Laplace were considered for solving the
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governing basic equations. The inverse of the LTwas applied in a numerical manner considering the Fourier
expansion technique. The numerical results for the physical variables were calculated numerically and
displayed via graphs. The parameter of fractional order effect and variation of thermal conductivity on the
displacement, stress, and temperature were investigated and compared with the results of previous
studies. The results indicated the strong effect of the external parameters, especially the time-fractional
derivative parameter on a thermoelastic thin slim strip phenomenon. The obtained results are deduced to
special case if thermal conductivity and thermal shock neglect.

2 The Governing Equations

Considering an isotropic homogeneous thermoelastic thin slim strip, the generalized thermoelastic
governing differential equations in the fractional-order form [29] consist of:

(i) The motion equations, if the body forces were neglected

qu
::

i
¼ �þ lð Þuj;ji þ lui;jj � cTi (1)

(ii) The constitutive (stress-strain) equations

rij ¼ �ekkdij þ 2leij � cTdij (2)

where � and l are the Lamé parameters, rij is the tensor of stress, c ¼ at 3�þ 2lð Þ, at is the thermal
expansion coefficient, and q is the medium density, eij are the elements of the strain tensor, T0 is the
temperature reference, T is the temperature, and ui are the elements of the displacement vector.

(iii) Assuming series of Taylor of time-fractional order a is the new fractional form in the present paper
[21] presented the time-nonlocal dependence between the the heat flux vector and temperature gradient
discussed concerning fractional integrals and derivatives as follows:

qi þ sa0
a!

@a

@ta
qi ¼ �KT;i (3)

whereK is the heat conductivity, qi is the vector of thermal flux,
@a

@ta
is the fractional derivative of Caputo, and

a 0 < a � 1ð Þ is the fractional-order parameter.

(iv) The equation of heat conduction as time-fractional form takes the form [29]

KT;i
� �

;i ¼ dþ sa0
a!

@a

@ta

� �
qCE

@T

@t
þ cT0

@ekk
@t

� �
(4)

where CE is the unit mass specific heat.

Eq. (4) is the fractional derivatives of generalized energy equation considering the relaxation time s0.
Some of the theories of the law of thermal conduction follow different values of a and s0 as limit cases.
The theories of coupled or generalized thermoelasticity with one relaxation time and the generalized
theory of thermoelasticity without energy dissipation (TWOED) adopt restricted cases according to the
value of d, s0 and a.

The temperature Eq. (4), a ! 0 and d ¼ 1 tends to:

KT;i
� �

;i ¼ @

@t
þ s0

@2

@t2

� �
qCET þ cT0eð Þ (5)

this is the generalized theory that has a thermal relaxation time.
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In the restricted case, when a ! 0; s0 ¼ 1 and d ¼ 0; the heat conduction Eq. (4), tends to

KT;i
� �

;i ¼ qCE
@2T

@t2
þ cT0

@2e

@t2
(6)

This is the GN generalized theory without energy dissipation.

Eq. (4) in the thermoelasticity coupled theory in the limiting case a ! 0; d ¼ 1 and s0 ! 0 as

KT;i
� �

;i ¼ qcE
@T

@t
þ cT0

@e

@t
: (7)

Variations in mechanical properties due to an imposed temperature field are not the only ones that
accompany heating. Similar variations are observed in the thermal properties characterized by such
coefficients as the thermal linear expansion coefficients of at, conductivity of thermal K and others. An
acceptable approximation in limited temperature interval is obtained by considering the thermal
conductivity to depend linearly on the change of temperature.

The function of thermal conductivity formed as a linear function of temperature is given as [30]

K ¼ K Tð Þ ¼ K0 1þ K1Tð Þ; K

k
¼ qCE (8)

where K Tð Þ is thermal conductivity as temperature-dependent, K1 is the thermal conductivity variation
(usually negative experimental coefficient), K0 denotes the thermal conductivity at T = T0, k is the
diffusivity, and t is the time.

Using Eq. (4) with Eq. (8), we get

KT;i
� �

;i ¼ dþ sa0
a!

@a

@ta

� �
K

k

@T

@t
þ cT0

@2e

@t

� �
(9)

Using the mapping

� ¼ 1

K0

ZT

0

K sð Þds (10)

where � is the mapping function.

Differentiating with respect to the coordinates, Eq. (10) tends to

�;i ¼ 1þ K1Tð ÞT;i (11)

Redifferentiating concerning the coordinates axis, we obtain

�;ii ¼ 1þ K1Tð ÞT;i
� �

;i (12)

Similarly, by differentiating with respect to time, the mapping is

_� ¼ 1þ K1Tð Þ _T (13)

From Eqs. (12) and (13), Eq. (9) is given as

�;ii ¼ @

@t
dþ sa0

a!
@a

@ta

� �
�

k
þ cT0

K0
e

� �
(14)
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From Eqs. (10) and (11), we have

� ¼ T þ K1

2
T2 (15)

Substituting from Eq. (11) into Eq. (1), we obtain

q
@2ui
@t2

¼ �þ lð Þuj;ij þ lui;jj � c
1þ K1Tð Þ�;i (16)

For the linearity governing partial differential equations, considering the condition
T � T0j j
T0

<< 1, give
the approximating function of the thermal conductivity K Tð Þ.

Then, Eq. (16) takes the form

q
@2ui
@t2

¼ �þ lð Þuj;ij þ lui;jj � c�;i (17)

Using Eq. (15) and neglecting the small values of temperature, the constitutive relation reduces to

rij ¼ �ekkdij þ 2leij � c�dij (18)

3 Formulation of the Problem

Taking into account a thin rod semi-infinite with the half-space region x � 0, the x�axis perpendicular
to the layer, parallel to oyz plane, the one-dimension displacement vector is given as

ux ¼ u x; tð Þ; uy ¼ uz ¼ 0

The strain components are

e ¼ exx ¼ @u

@x

The heat equation is

@2�

@x2
¼ @

@t
dþ sa0

a!
@a

@ta

� �
1

k
�þ cT0

K0
e

� �
(19)

The equation of motion is

@2u

@t2
¼ �þ 2lð Þ @

2u

@x2
� c

@�

@x
(20)

The constitutive relation takes the form

rxx ¼ r ¼ �þ 2lð Þ @u
@x

� c� (21)

4 Boundary Conditions

Considering a half-space x � 0 that primarily rests and has an initial temperature T0 with zero velocity of
temperature, the original conditions are
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u x; 0ð Þ ¼ @u x; 0ð Þ
@t

¼ 0

T x; 0ð Þ ¼ @T x; 0ð Þ
@t

¼ 0 (22)

We assume that when x ¼ 0, the surface becomes free from stresses and is put in sudden heating. The
boundary conditions take the form

� The thermal boundary conditions:

T ¼ T0H tð Þ; for x ¼ 0 (23)

� ¼ t0H tð Þ; for x ¼ 0 (24)

where H tð Þ is function of Heaviside unit step

t0 ¼ T0 1þ K1

2
T0

� �

� The boundary conditions concerning mechanical stress, displacement, and temperature are

rxx ¼ 0; for x ¼ 0 (25)

� and

u x; tð Þ; T x; tð Þ; � x; tð Þf g ! 0; as x ! 1; t > 0:

5 The Solution of the Problem

To simplify the physical quantities, we put them in the following non-dimensional forms

x0 ¼ c1
k
x; u0 ¼ c1

k
u; t0 ¼ c21

k
t

r
0
xx ¼

rxx
qc21

; s
0
0 ¼

c21
k
s0; (26)

�0 ¼ c

qc21
�; c21 ¼

�þ 2lð Þ
q

From Eq. (26), the governing equations (eliminating the primes for convenience) take the forms

r ¼ @u

@x
�� ¼ e�� (27)

@2u

@t2
¼ @2u

@x2
� @�

@x
¼ De� D� ¼ Dr (28)

@2e

@t2
¼ D2e� D2� ¼ D2r (29)

D2� ¼ @

@t
dþ sa0

a!
@

@t

� �
�þ eeð Þ (30)

where D ¼ @=@x and e ¼ c2T0k= qc21K0

� �
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6 The Solution in the Laplace Transform Domain

If we apply the following LT

�f sð Þ ¼
Z 1

0
e�stf tð Þdt

Applying it in Eqs. (27)–(30), and using the initial conditions in Eq. (22), we get

�r ¼ �e� �� (31)

D2�r ¼ s2�e (32)

D2 � g
� �

�� ¼ ge�e; g ¼ s dþ sa0
a!
sa

� �
(33)

The boundary conditions in Eqs. (24) and (25) and the regularity condition in the LT domain take the
forms

�� ¼ t0
s

for x ¼ 0 (34)

r ¼ 0 for x ¼ 0 (35)

u x; sð Þ; T x; sð Þf g ! 0; as x ! 1
By eliminating �e, we get

D2 � s2
� �

�r ¼ s2 �� (36)

D2 � g 1þ eð Þ� �
�� ¼ ge�r (37)

By eliminating �r between Eqs. (36) and (37), we get

D4 � s2 þ g 1þ eð Þ� �
D2 þ g e s2��� ¼ 0 (38)

Also, we can show that �r satisfies

½D4 � LD2 þM ��r ¼ 0 (39)

where

L ¼ s2 þ g 1þ eð Þ� �
; M ¼ es2g

The solution of Eqs. (38) and (39) takes the form

�r ¼ A1s
2exp �m1xð Þ þ A2s

2exp �m2xð Þ (40)

�� ¼ A1 m2
1 � s2

� �
exp m1xð Þ þ A2 m2

2 � s2
� �

exp m2xð Þ (41)

where the parameters m1 and m2 satisfy the equation

m4 � Lm2 þM ¼ 0
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We can get the displacement using Eq. (28), such that

�u ¼ 1

s2
D�r

Thus, we obtain

�u ¼ A1m1exp m1xð Þ þ A2m2exp m2xð Þ (42)

The temperature increment �T is given by providing a solution to (15) to give

�T ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2K1

��
p
K1

: (43)

We utilize the problem’s boundary conditions to evaluate the A1 and A2 parameters. Eqs. (34) and (35)
with Eqs. (40) and (41), they immediately give

A1 þ A2 ¼ 0 (44)

A1 m2
1 � s2

� �þ A2 m2
2 � s2

� �
exp m2xð Þ ¼ �t0

s
(45)

The solution of the former system of the linear equations provides the parameters A1 and A2

in the form

A1 ¼ � �t0
s m2

2 � m2
1

� � ; A1 ¼ �t0
s m2

2 � m2
1

� � (46)

Hence,

�r ¼ � �t0s

m2
2 � m2

1

� � exp �m1xð Þ þ �t0s

m2
2 � m2

1

� � exp �m2xð Þ (47)

�� ¼ � �t0 m2
1 � s2

� �
s m2

2 � m2
1

� � exp m1xð Þ þ �t0 m2
2 � s2

� �
s m2

2 � m2
1

� � exp m2xð Þ (48)

�u ¼ � �t0m1

s m2
2 � m2

1

� � exp m1xð Þ þ �t0m2

s m2
2 � m2

1

� � exp m2xð Þ (49)

Accordingly, the problem is solved in the transformed domain completely.

7 Inversion of the Laplace Transform

It is too difficult to obtain the analytical inverse the LT of the intricate solutions to the temperature,
displacement, stress, and strain in the LT domain. The method of numerical inversion is outlined to solve
the problem in the physical domain. Durbin [31] obtained the approximation formula

f tð Þ ¼ 2est

t1
� 1

2
Re F sð Þ½ � þ Re

XN
n¼0

Re F sþ 2inp
t1

� �� �
cos

2np
t1

� �

�Im F sþ 2inp
t1

� �� �
sin

2np
t1

� �
2
664

3
775

0
BB@

1
CCA (50)

It is worth noting that choosing the free parameters N and st1 is significant for the accurate results and
applying the method’s Korrecktur and the methods of convergence acceleration. The values of the parameters
in Eq. (50) are defined as t1 ¼ 20, s ¼ 0:25; and N ¼ 1000.
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8 Numerical Results

To calculate the analytical procedure, we take into account a numerical physical example. The findings
depict the variations of the non-dimensional values of temperature, displacement, and thermal stresses. Thus,
we consider the following values material constants (Copper material and the type 316) as shown in Tab. 1.

The computations for the results obtained are carried out for the time t ¼ 0:15 to obtain the displacement
u, temperature T ; and stress rxx. They were conducted for several x 0 � x � 5ð Þ, for different values of the
parameter of fractional-order a with a wide range of ð0 < a � 1Þ that contains both cases of conductivity;
ð0 < a < 1Þ for low conductivity and a ¼ 1 for normal conductivity. Here, the numerical results are
displayed graphically in Figs. 1–3.

It should be pointed out that, the increasing value of a decreases the speed of wave propagation of the
stress and the temperature, whereas the displacement increases. We have noticed that the a value has a strong
effect on all distributions. From these figures, the surface stress equals zero and matches the prescribed
boundary condition.

In Figs. 4–6, we presented the stress, temperature, and displacement, respectively with different values
of K1. The thermal conductivity parameter has a significant impact on all fields. Physically, for the variable K,
the temperature is a linear function with negative values of K1, the heat conductivity decreases with the

Table 1: The constants of the material [32]

Parameter Value Parameter Value

CE 383:1 JKg�1 K�1 l 0:497425 �

q 8954Kgm�3 b �2654:53

at 1:78 � 10�4 K�1 K0 386Wm�1 K�1 s�1

T0 293K E 0:0150

K1 �0:1

Figure 1: The effect of fractional order parameter on temperature distribution
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arising of the temperature, and the distance between the particles increases. The wave speed progress of all
fields is slower. Thus, the values of all fields of quantities decrease.

The physical field variables numerical values were calculated and presented by graphs in Figs. 7–9
respect to the axis x to clear the variations nature of the field in the context of different thermoelastic
models. The figures illustrate that all variables nearly have the same nature for the (LS), (GN), and (CD)
models. Their behaviors are significantly different. The wave propagation with finite speeds is manifested
in all figures for theories of (LS) and (GN). It differs for the case for considering the coupled equation of
heat conduction (CD) model, in which the mechanical and thermal effects fill the entire space.

Figure 2: The effect of fractional order parameter on displacement distribution

Figure 3: The effect of fractional order parameter on stress distribution
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Figure 4: The effect of variation of thermal conductivity on displacement distribution

Figure 5: The effect of variation of thermal conductivity on temperature distribution

Figure 6: The effect of variation of thermal conductivity on the stress distribution
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Figure 7: The temperature distribution in different theories of thermoelasticity

Figure 8: The displacement distribution in different theories of thermoelasticity

Figure 9: The stress distribution in different theories of thermoelasticity
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9 Conclusion

The main observations from these figures are organized as:

� The LT technique is applied to derive the temperature, displacement, and stress due to the mechanical
and thermal shock temperatures.

� The parameter a has a strong impact on all the physical quantities.

� Considering the new models applied, we introduced a novel classification for the materials based on
their fractional order parameter a- a novel sign of ability.

� The results motivate the investigation of the conducting thermoelastic.

� The graphs illustrate the significant effect of the thermal conductivity on all the quantities fields and in
different materials that we take into account in any analysis of heat conduction.

� The field quantities, displacement, temperature, stress, and do not depend only on the state and the
space variables t and x but rely on the value of K1, as well which has a considerable role in
developing all quantities.

� The different thermoelasticity theories, i.e., Lord and Shulman, GN, and classical dynamical coupled
theories were compared.

� In the generalized thermoelasticity, the wave propagation with a finite speed is evident in all these
figures. This is not the case of the theory of coupled thermoelasticity, where the considered
function has non-vanishing values for all of x values due to the propagation with an infinite speed
of the signal thermal waves.
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