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Abstract: The combination of a 4-node quadrilateral mixed interpolation of
tensorial components element (MITC4) and the cell-based smoothed finite ele-
ment method (CSFEM) was formulated and implemented in this work for the
analysis of free vibration and unidirectional buckling of shell structures. This
formulation was applied to numerous numerical examples of non-woven fab-
rics. As CSFEM schemes do not require coordinate transformation, spurious
modes and numerical instabilities are prevented using bilinear quadrilateral
element subdivided into two, three and four smoothing cells. An improvement
of the original CSFEM formulation was made regarding the calculation of
outward unit normal vectors, which allowed to remove the integral operator in
the strain smoothing operation. This procedure conducted both to the simplifi-
cation of the developed formulation and the reduction of computational cost.
A wide range of values for the thickness-to-length ratio and edge boundary
conditionswere analysed. The developed numericalmodel proved to overcome
the shear locking phenomenon with success, revealing both reduced imple-
mentation effort and computational cost in comparison to the conventional
FEM approach. The cell-based strain smoothing technique used in this work
yields accurate results and generally attains higher convergence rate in energy
at low computational cost.

Keywords: Mindlin–Reissner theory of plates; shear-locking; gradient/strain
smoothing technique; non-woven fabric

1 Introduction

Thin shells are of paramount importance in many engineering applications, namely in civil,
mechanical, textile, aeronautical and maritime areas. Shell structures can be found in large-span
roofs, liquid reservoirs and arch domes in civil engineering applications. Shells can also be used
in pressure vessels, pipes and turbine disks, as examples of mechanical engineering applications.
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Non-woven fabrics are examples found in many textile products that can be identified in ceiling
covering panels, roof linings for automotive interiors and geotextile mats [1,2]. Fuselages, missiles
and ship hulls are important examples of both aeronautical and marine engineering industries.
The above referred examples represent just a few structural applications that employ shells whose
vibrational actions and buckling are important aspects to take into account by engineers and
product development designers.

Mathematically, a shell structure can be analysed as a plate structure (or sheet) with curved
middle surface upon different boundary conditions. Plates can typically endure transverse loads
resulting in bending. Shells, on the other hand, withstand loads in any direction.

The formulations currently employed to describe the mechanical behaviour of shells use:
(A) curved shells elements, which are established on the basis of the general shell theory [3];
(B) degenerated shell elements, derived from the three dimensional solid theory [4]; and (C) flat
shell elements, which combine a plane membrane element and a plate bending element [5].
Due to their more straightforward mathematical formulation and lower computational costs, flat
shell elements are commonly used in many numerical computations to analyse the mechanical
behaviour of thin structures, even for complex loading and imposed boundary conditions [6].
A relevant aspect that affects the mechanical behaviour of flat shell elements regards the thickness
and curvature of their mid-surface. Concerning their thickness, these elements can be classified
as either thin or thick. The available mathematical approach to characterize thin shell elements
is based on Kirchoff–Love theory, for which the transverse shear deformations are considered
negligible. For the thick ones, the Mindlin theory is employed, which takes into account the
transverse shear deformations that can be affected by a well-known phenomenon referred to as
shear locking. This numerical setback is detected when the thickness-to-length ratio becomes large,
being characterized by a spurious stiffness due to the existence of a parasitic shear deformation
energy. Consequently, the numerical solutions turn inaccurate and impractical to describe stress
and strain fields developed in the physical domain. To prevent this phenomenon, several numerical
approaches have been developed, contributing to solve this problem in different degrees of success.
The reduced and selective integration scheme is one of the most appropriate technique to mitigate
the shear locking phenomenon. As proposed by Hughes et al. [7], the strain energy was separated
in two parts, shear and bending, whose different strain energies were obtained employing a
different integration scheme. Such reduced integration technique leads to numerical instabilities
due to rank deficiency, which yields in zero-energy modes [8,9]. Other techniques are the assumed
strain method [10], the field redistributed shape functions [11], the mixed interpolation of tensorial
components (MITC) technique [8,12,13] and the smoothed finite element method (SFEM) [14,15].

The MITC allows employing a full quadrature (or integration) in the components of the
stiffness matrix, thus eliminating detected inconsistencies of the used interpolation functions for
displacements and strains without considering the assumption of additional degrees of freedom.
This is the reason why the MITC method has recently been receiving much attention, in particular
for the implementation of shell elements and locking-free plates [16–18]. The theoretical funda-
ments of the MITC shell elements are well stablished in the literature [8,19–23], with numerous
test problems duly verified numerically [20]. However, no study has been conducted to analyse
convergence regarding the effect of shell thickness for different edge boundary conditions.

The cell-based smoothed finite element method (CSFEM), a typical S-FEM model proposed
by Nguyen-Xuan et al. [14], showed that the strain smoothing operation performed on the strain
matrices (i.e., improved solutions for lower ordered elements) allows to gain robustness of element
performance against geometric distortion, while providing accurate results and high convergence
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rate in energy, at low computational cost [24]. This is the solution for poor performance of
elements affecting many standard FEM computations involving irregular (intricate) geometries
that lies in the required mapping from the parental and the physical domain [24]. Also, contrarily
to Gauss integration techniques (in standard FEM), SFEM can evaluate strain fields directly at
each discrete point in cell boundaries. These characteristics are more flexible in regards to the
selection of element type within the integration domain and corresponding allowed node location.
This method renders possible to improve the adaptability of SFEM meshes comparatively to
standard FEM approaches.

In the SFEM approach, the strain values in an element are modified by smoothing the
compatible strain fields over smoothing domains, which originates important softening results. This
technique is now known as the cell-based FEM, or simply CSFEM [14,24–28].

In this work a combination of the 4-node quadrilateral MITC element (MITC4) and cell-
based FE method (CSFEM) was formulated and implemented (in Python) to analyse the mechan-
ical response of a rectangular non-woven fabric structure under free vibration and unidirectional
buckling. The original formulation of CSFEM was modified in the sense that the unit outward
normal vectors are substituted by outward normal vectors, which allowed to remove the integral
operator in the strain smoothing method. A wide range of values for the thickness-to-length ratio
was analysed considering different edge boundary conditions and various domain discretization
in standard numerical examples to demonstrate the robustness of the developed numerical formu-
lation. The achieved results were compared with analytical and standard FEM approaches, with
significant gains in implementation and computational costs.

2 Theory

2.1 Governing Equations
Consider the linear elastic domain � contained within the so-called Lipschitz-continuous

boundary � (Fig. 1), under surface-traction t on the boundary �t, and body force b within the
domain �. Besides the Dirichlet boundary conditions u applied in the domain �u (i.e., fixed),
the elastic domain � is also subjected to the Neumann boundary conditions u′ in �t, such that
�u ∩�t = φ, with (�u ∪�t)⊂ �.

e3

O

�u

�t

�

b t = t

e1

�

~
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Figure 1: Elastic domain � of an arbitrary shape subjected to traction t and distributed body
forces b

Assume that the displacements induced in the domain � are the state variables of this
problem (considering that � does not include its boundary �). Upon small deformation (i.e.,
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elastic problems), the strain energy is simply a function of the displacement u, being determined
as follows,

U (u)≡ 1
2

∫
�

σ (u) : ε (u) d� (1)

with σ standing for the Cauchy stress tensor and ε for the strain tensor, defined as

ε = 1
2

[
∇u+ (∇u)T

]
(2)

which is known as the compatibility equation. ∇ = (∂/∂x, ∂/∂y) is the gradient vector. Stress–
strain components (i.e., the constitutive equations) are established as

σ =D : ε (3)

being D the elasticity tensor (see [29] for plane stress analysis).

The local equations of equilibrium for a static problem is formulated through,

divσ + b= 0 (4)

While the boundary conditions in terms of stress dictate

σ n= t (5)

with n representing the outward unitary normal vector to �t illustrated in Fig. 1. Eq. (4) is
frequently referred to as the strong form, because the differential equation must be satisfied at each
point of the domain �. In addition, Eq. (4) must provide a solution u that is smooth enough such

that its second-order derivatives are continuous, i.e., u ∈ [
C2 (�)

]3
. In this sense, although Eq. (4)

only considers the existence of a divergence operator, being a first-order derivative, the continuous
mechanics problem has second-order derivatives, since strain implies derivatives of displacements
(Eq. (2)).

The purpose of the so-called boundary-value problem is to identify the displacement value
u that satisfies Eqs. (4) and (5) within � and �t, respectively, as well as the Dirichlet boundary
condition (i.e., ũ = u = 0 on �u). If the applied forces lead to deformations in the direction of
those forces, then one can conclude that the work is performed by those forces. Such work is
calculated through

W (u)=
∫∫

�

u · bd�+
∫
�t

u · td�t (6)

which contemplates the work performed by the body forces b and the work resulting from the
applied surface-traction t = t̃. Upon the application of an external concentrated load f (not
represented in Fig. 1), Eq. (6) must include the Dirac delta measure. Hence, the potential energy
stored in the elastic domain is computed from the difference between the elastic strain energy
(Eq. (1)) and the work performed by the applied loads (Eq. (6)),

�(u)= 1
2

∫∫
�

σ (u) : ε (u) d�−
∫
�

u · bd�−
∫
�t

u · td�t (7)



CMC, 2021, vol.67, no.3 2769

For all displacements that satisfy the boundary conditions, i.e., those that are adequate to the
boundary-value problem (Eqs. (4) and (5)), the potential energy �(u) in Eq. (7) is stationary on
the solution spaces

ϑ =
{
u ∈

[
C2 (�)

]3 ∣∣∣∣ u= 0 on x ∈ �u, σ · n= t on x ∈�t
}

(8)

which are used in the following to get a generalized solution to the differential equation through
the principle of minimum total potential energy. Thus, for the solution u that minimizes �(u)
in Eq. (7), ϑ in Eq. (8) must be extended so that the potential energy �(u) can be estimated
correctly. For this reason, ϑ is known as the space of finite energy or space of kinematically
admissible displacements, being defined as

Z=
{
u ∈

[
H1 (�)

]3 ∣∣∣∣ u= 0 on x ∈ �u
}

(9)

with H1 (�) representing the Sobolev space of unitary order [30].

The principle of minimum potential energy formulated in Eq. (7) requires attaining a station-
ary condition for the potential energy, whose principle is related to the variational formulation.
Hence, consider that the displacement u ∈Z is the solution of the problem that allows minimizing
the total potential energy, and assume that the functional � is defined in Z. Therefore, if the
quantity

δ�
(
u; ũ

) = lim
τ→0

1
τ

[
�

(
u+ τ ũ)−�(u)]= d

dτ
�

(
u+ τ ũ) ∣∣∣∣

τ=0
(10)

exists, then it refers to the first variation of � at u in the same direction of ũ. Thus, if this limit
exists within the domain ∀ũ ∈ Z, then it is possible to conclude that � is differentiable (Fréchet
concept) at u. Also, if a functional admits a first variation, then one can establish a quantitative
criterion for its minimization. In this respect, suppose that u is defined such that

�(u)≤�(w) , ∀w∈ Z (11)

then u is said to minimize � over Z. Also, if Eq. (11) is valid for ∀w ∈Z that respects ‖w− u‖ ≤ d,
for some d ∈ R

+, hence � presents a relative minimum value at u.

According to Eq. (11), for ∀ũ ∈ Z and for any appropriately small value of τ , if � has a
relative minimum at u, then one can establish

�(u)=min
τ

(
u+ τ ũ) = (

u+ τ ũ) ∣∣∣∣
τ=0

(12)

which means that for fixed values of u and ũ, the real value function on parameter τ , i.e.,
�

(
u+ τ ũ)

, leads to a minimum value at point τ = 0. Hence, one can conclude that if the

functional �(u) admits a first variation, then the quantity �
(
u+ τ ũ)

is a differentiable function
of τ . Consequently, a necessary condition for a minimum value of � at u is

δ�
(
u; ũ

) = d
dτ

(
u+ τ ũ) ∣∣∣∣

τ=0
= 0, ∀ũ ∈Z (13)
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which, as mentioned above, represents a variation of � at u in the direction of ũ. Eq. (13) estab-
lishes the principle of minimum potential energy for any kinematically admissible displacement
value ũ.

Considering Eq. (7), a first variation of �(u) establishes,

δ
(
u; ũ

)= δU (
u; ũ

)− δW (
u; ũ

)= 0, ∀ũ ∈Z (14)

which configures the variational equation of the structural problem. The first term of Eq. (14)
is related with the strain energy U (u) and the constitutive equations (i.e., Eqs. (1) and (3),
respectively). Therefore, upon substitution yields

δU
(
u; ũ

)= ∫∫
�

ε
(
ũ
)
: D : ε (u) d�≡ a

(
u, ũ

)
(15)

In this equation, a
(
u, ũ

)
is the energy-bilinear form, since it is linear in each of its arguments

u and ũ. One can conclude that ε (u) is made the same as ε
(
ũ
)
in Eq. (2), by substituting ũ into u,

which makes d
(
u, ũ

)
symmetric with respect to their arguments. In regards to the work performed

by the applied load, Eq. (6) allows to establish

δW
(
u; ũ

) = ∫∫
�

ũ · bd�+
∫
�t

ũ · td�t ≡ l
(
ũ
)

(16)

with l
(
ũ
)
standing for the load-linear form. This formulation only regards conservative loads,

which makes the functional l
(
ũ
)
independent of the displacement. Therefore, one can rewrite

Eq. (14) as follows,

d
(
u, ũ

) = l
(
ũ
)
, ∀ ũZ (17)

This equation has a unique solution, ∈ Z, if the load-linear form in right-hand side is
continuous in the space, Z, and if energy-bilinear form in the left-hand side is positive definite
on Z. Then, if a solution exists to the differential equation, one can conclude that there will be a
solution for the variational equation, Eq. (16). Additionally, if the applied surface-traction t (i.e.,
distributed function) is a Dirac delta measure, i.e., is a concentrated load, then Eq. (4) may not
have a solution. Besides that, the variational equation (Eq. (16)) still has a solution, known as
generalized solution.

Consider � at the configuration domain (R3) forming the mid-surface of the Mindlin-
Reissener shell described by,

ϑ =
{
(x, y, z) ∈R

3
∣∣∣∣ (x,y) ∈�⊂R

2, z ∈
[
− t
2
,
t
2

]}
(18)

Fig. 2 shows an anisotropic shell, for which the analysis of the membrane deformations can
be performed. In such domain the uncoupling of bending and shear deformations is feasible.
Therefore, the displacement assumption turns,

u (x, y, z)= u0 (x,y)+ zβx (x,y)

v (x, y, z)= v0 (x,y)+ zβy (x,y) (19)

w (x, y, z)=w0 (x,y)
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with u0, v0 and w0 standing, respectively, for the membrane displacement components along x, y
and z directions.
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Figure 2: Moderately thick sheet fabric showing characteristic dimensions

The matrices of membrane strain εm and curvature strain εb are calculated from the
corresponding 2D differential operators,

Lm
2D =

⎡
⎢⎣
∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x

⎤
⎥⎦ , Lb

2D =

⎡
⎢⎣
0 ∂/∂x

−∂/∂y 0

−∂/∂x ∂/∂y

⎤
⎥⎦ (20)

and the displacement components
(
u= [

u0 v0 w0
]T ; β = [

βx βy
]T)

, turning,

εm =Lm
2Du=

⎡
⎢⎣
u0,x

v0,y

u0,y+ v0,x

⎤
⎥⎦ , εb =Lb

2Dβ =

⎡
⎢⎣
βx,x

−βy,y
βx,y−βy,x

⎤
⎥⎦ (21)

while the membrane strain is defined by

εs =
{
γxy

γyz

}
=

[
w,x+βx
w,y−βy

]
(22)

Considering Eq. (1), as the shell is submitted to pre-buckling in-plane stresses (i.e., σ0x, σ0y
and τ0xy), the geometric elastic strain energy gives

Uσ = 1
2

∫
V

(
εg

)T
τεg dV (23)
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being εg defined as the geometrical strain matrix, which is evaluated as a function of the 3D
differential operator (L3D),

L3D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂/∂x 0 0

∂/∂y 0 0

0 ∂/∂x 0

0 ∂/∂y 0

0 0 ∂/∂x

0 0 ∂/∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

and, based on the of the displacement assumption (Eq. (19)),

εg =L3D u=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u,x

v,y

w,z

u,y+ v,x

v,z+w,y

u,z+w,x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

The pre-buckling in-plane stress is expressed as,

τ =

⎡
⎢⎣

τ 0 0

0 τ 0

0 0 τ

⎤
⎥⎦ (26)

being,

τ =
[
σ 0
x σ 0

xy

σ 0
xy σ 0

y

]
(27)

2.2 Finite Element Formulation

The general displacement solution uh = [
u v w βx βy

]T of the finite element model for
the shell is defined as follows,

uh =
nI∑
I=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

NI (x) 0 0 0 0

0 NI (x) 0 0 0

0 0 NI (x) 0 0

0 0 0 0 NI (x)

0 0 0 NI (x) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
dI (28)

with nI stands for the total number of nodes of the finite element, NI (x) the bilinear shape

functions related to node I , and dI =
[
uI vI wI θxI θyI

]T the nodal degrees of freedom of uh,
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also associated to node I . Let neI be the number of nodes of the element. Then, the approximate
form of the membrane strain field is established as follows,

εm =
neI∑
I=1

Bm
I dI (29)

in which,

Bm
I =

⎡
⎢⎣
NI ,x 0 0 0 0

0 NI ,y 0 0 0

NI ,y NI ,x 0 0 0

⎤
⎥⎦ (30)

The discrete curvature field εb, the shear strain field εs, and the geometrical strain field are
expressed by,

εb =
neI∑
I=1

Bb
I dI (31)

εs =
neI∑
I=1

Bs
I dI (32)

εg =
neI∑
I=1

Bg
I dI (33)

with,

Bb
I =

⎡
⎢⎣
0 0 0 0 NI ,x

0 0 0 −NI ,y 0

0 0 0 −NI ,x NI ,y

⎤
⎥⎦ (34)

Bs
I =

[
0 0 NI ,x 0 Ni

0 0 NI ,y −Ni 0

]
(35)

and

Bg
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI ,x 0 0 0 0

NI ,y 0 0 0 0

0 NI ,x 0 0 0

0 NI ,y 0 0 0

0 0 NI ,x 0 0

0 0 NI ,y 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)



2774 CMC, 2021, vol.67, no.3

The nodal unknowns can be expressed by considering the discretized system of equations
of the Mindlin/Reissner theory for shells. Therefore, using the FEM procedure for a static
analysis, yields

ked= f (37)

with the stiffness at the element domain �e given by

ke = km+kb +ks =
∫
�e

(
Bm)TDmBm d�+

∫
�e

(
Bb

)T
DbBb d�+

∫
�e

(
Bs)TDsBs d� (38)

and the corresponding load components defined,

f =
∫
�e
ρNd�+ f̃ (39)

considering f̃ the prescribed boundary load components. For vibration analysis, the discretized
governing equation is(
K−ω2M

)
d= 0 (40)

with K standing for the global stiffness matrix and ω for the natural frequency of the mechanical
system. M represents the global mass matrix which is established through the assembly of the
element matrix, as follows

me =
∫
�e

NTmNd� (41)

To analyse the buckling effect, the discretized governing equation is(
K−λcKg

)
d= 0 (42)

with λc representing the critical buckling load, and

Kg =
∫
�e

(
Bg)T τ Bgd� (43)

where for the present case, τ = t

⎡
⎢⎣

τ 0 0 0 0

0 τ 0 0 0

0 0 τ 0 0

⎤
⎥⎦.

2.3 Mixed Interpolation of Tensorial Component
Mindlin–Reissner type plate elements are affected by an intrinsic limitation known as locking,

i.e., the presence of spurious stresses in plates of small thickness, which can occur in the last
term of Eq. (38). This numerical non-conformity is a characteristic of low-order finite elements,
which is solved by employing higher-order elements [31]. Early methods to try tackling the locking
phenomenon in thin plates employed reduced integration, or a selective reduced integration [32].
By splitting the strain energy into a shear part and a bending part, it turns possible to apply
different integration rules for each loading component. This method leads to an instability owing
to rank deficiency, which results in zero-energy modes that can be solved by an hourglass con-
trol [27]. Transverse shear locking, a well-known type of locking induced by transverse forces
under bending and large oscillating shear/transverse forces, can benefit from a simple smoothing
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procedure to drastically improve the results [31]. Nevertheless, shell elements fail the completeness
condition [27], known as patch test [33], and exhibit an instability owed to rank deficiency [31]. To
solve this important limitation, independent interpolation fields in the natural coordinate system
are performed to obtain the approximation of the shear strains [10] by means of[
γx γy

]T = [
γξ γη

]T J−T (44)

Shear strain components in the natural coordinate system γi (i = ξ , η) are obtained consid-
ering the mid-point edge nodes of the element shown in Fig. 2 (i.e., nodes A, B, C and D), by
applying a permutation index notation

γi =
[(
1−ψ(i)

)
γ
θ(i)
i + (

1+ψ(i)
)
γ
φ(i)
i

]
2

(45)

ψ , θ , φ =
{
ψ(ξ)= η⇔ θ (ξ)=B⇔ φ (ξ)=D, i= ξ
ψ(η) = ξ⇔ θ (η)=A⇔ φ (η)=C, i= η

(which allows obtaining: γξ = γi=ξ and γ B
ξ = γ θ(i=ξ )i=ξ ). J stands for the Jacobian matrix. A conve-

nient way to eliminate the parasitic transverse shear strains in the element is to place the sampling
points at ξ = 0, in the case that the shell is submitted to bending relative to the η-axis. It should
be noted that the shear component γξ varies linearly along the ξ -direction. With the purpose to
retain a linear variation of the component γξ along η-direction, two sampling points were chosen,
A and C (Fig. 2), and the pattern coordinates ξ = 0, η= 1 and ξ = 0, η=−1. Similarly, a linear
variation of the component γη is retained along ξ -direction, by choosing the points B and D, and

the coordinates ξ = 1, η= 0 and ξ =−1, η= 0. Considering the shear values γ B
ξ , γ

D
ξ and γA

ξ , γ C
ξ ,

and considering the way that the discretized fields uh were made, the shear matrix turns

Bs
i = J−1

[
0 0 Ni, ξ −b12i Ni, ξ b11i Ni, ξ 0

0 0 Ni,η −b22i Ni,η b21i Ni,η 0

]
(46)

with

bj ki =ψ(j)φ (j)θ(k),ψ(j)

ψ , φ, θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ(j)= ξi ⇔ φ (1)= x⇔ θ (1)=M, j= k= 1

ψ(j)= ξi ⇔ φ (1)= x⇔ θ (2)=M, j= 1, k= 2

ψ(j)= ηi ⇔ φ (2)= y⇔ θ (1)=L, j= 2, k= 1

ψ(j)= ηi ⇔ φ (2)= y⇔ θ (2)=L, j= k= 2

(47)

considering that (i, M, L) ∈ {(1, B, A) , (2, B, C) , (3, D, C) , (4, D, A)}, ξi ∈ {−1, 1, 1,−1} and
ηi ∈ {−1,−1, 1, 1}.



2776 CMC, 2021, vol.67, no.3

2.4 Strain Smoothing Method

The modification of the compatible strain fields εm, εb, εg (i.e., Eqs. (29), (31) and (33),
respectively) can be directly evaluated using the assumed displacement field. The smoothed strain
field ε at xc can be computed using the integral approximation technique [34] in the following way,

ε (xc)=
∫
�c

ε (x) Φ (x−xc) d� (48)

�(x−xc) is a smoothing function associated with xc, that fulfils the following basic condition

�(x−xc)≥ 0 and ε (xc)=
∫
�c

ε (x) � (x−xc) d� (49)

For a sake of simplicity, �(x−xc) can be defined using the Heaviside-type
smoothing function,

�(x−xc)=
{
1/Ac, x ∈�c

0, x /∈�c
(50)

in which Ac represents the area of the smoothing cell (Fig. 3), �c ⊂�e. Combining Eqs. (50) and
(48), and upon consideration of the divergence theorem, the smoothed strain field in xc yields,

ε (xc)= 1
2Ac

∫
�c

(
ui,xj + uj,xi

)
d�= 1

2Ac

∫
�c

(
uinj+ ujni

)
d� (51)

being ni and nj the Cartesian components of the unit outward normal vector on the cell boundary

�c =∪nbb=1�
b
c (see Fig. 3d). By applying the smoothed operator (Eq. (48)), to Eqs. (29), (31) and

(33), it may be established

εm = 1
Ac

∫
�c

εm (x) d�= 1
Ac

∫
�c

(
nm

)T um (x) d�= 1
Ac

(
nm

)T um (x) (52)

εb = 1
Ac

∫
�c

εb (x) d�= 1
Ac

∫
�c

(
nb

)T
ub (x) d�= 1

Ac

(
nb

)T
ub (x) (53)

εg = 1
Ac

∫
�c

εg (x) d�= 1
Ac

∫
�c

(
ng

)T ug (x) d�= 1
Ac

(
ng

)T ug (x) (54)

with nm, nb and ng standing for the outward normal vectors. Hence, the relationship between the
strain fields and nodal displacement components can be evaluated by,

εm =B
m
c d (55)

εb =B
b
cd (56)

εg =B
g
cd (57)
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Figure 3: Division of �e into nc cells to form �c domains

It should be noted that the strains are constant within the domain of each cell �c, while the
matrices of non-local strain displacement are defined as,

B
m
cI =

1
Ac

⎡
⎢⎣
NInx 0 0 0 0

0 NIny 0 0 0

NIny NInx 0 0 0

⎤
⎥⎦ (58)

B
b
cI =

1
Ac

⎡
⎢⎣
0 0 0 NInx 0

0 0 −NIny 0 0

0 0 −NInx NIny 0

⎤
⎥⎦ (59)

B
g
cI =

1
Ac

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NInx 0 0 0 0

NIny 0 0 0 0

0 NInx 0 0 0

0 NIny 0 0 0

0 0 NInx 0 0

0 0 NIny 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(60)
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It should be noted that the integration points in Fig. 3 are used to evaluate Eqs. (58)–(60),
along each segment of �c. Therefore, Eq. (38) becomes

k
e = k

m+k
b+ks (61)

where,

km =
∫
�e

(
B
m
c

)T
DmB

m
c d�=

nc∑
j=1

(
B
m
c j

)T
DmB

m
c jAc j (62)

kb =
∫
�e

(
B
b
c

)T
DbB

b
cd�=

nc∑
j=1

(
B
b
c j

)T
DbB

b
c jAc j (63)

The geometrical element stiffness matrix can be defined as follows,

kg =
∫
�e

(
B
g
c

)T
τDgB

g
cd�=

nc∑
j=1

(
B
g
c j

)T
τ B

g
c jAc j (64)

(a) (b)

L L

z

t

y
x

Figure 4: Illustration of (a) a thin square non-woven fabric sheet and (b) a Mindlin sheet 20× 20
Q4 mesh employed in free vibration and buckling numerical analyses

Table 1: Numerical results of non-dimensional natural frequency � for a CCCC sheet considering
t/L= 0.01, k= 0.8601 and ν = 0.3

Mesh CS-FEM MITC FEM Analytical [35]

�c = 1 �c = 2 �c = 3 �c = 4

10× 10 Q4 0.179090 0.179453 0.179634 0.179815 0.180056 0.180047 0.1754
15× 15 Q4 0.17701 0.177168 0.177247 0.177325 0.17743 0.177425
20× 20 Q4 0.176296 0.176384 0.176428 0.176472 0.17653 0.176527
25× 25 Q4 0.175968 0.176024 0.176052 0.176080 0.176117 0.176115
30× 30 Q4 0.175790 0.175829 0.175848 0.175868 0.175893 0.175891
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Table 2: Numerical results of non-dimensional natural frequency � for a SSSS sheet considering
t/L= 0.01, k= 0.8333 and ν = 0.3

Mesh CS-FEM MITC FEM Analytical [35]

�c = 1 �c = 2 �c = 3 �c = 4

10× 10 Q4 0.097077 0.097179 0.097230 0.097282 0.097350 0.097350 0.0963
15× 15 Q4 0.096635 0.096680 0.096702 0.096725 0.096755 0.096755
20× 20 Q4 0.096480 0.096506 0.096518 0.096531 0.096548 0.096548
25× 25 Q4 0.096409 0.096425 0.096433 0.096441 0.096452 0.096452
30× 30 Q4 0.096370 0.096382 0.096387 0.096393 0.096400 0.096400

Table 3: Numerical results of non-dimensional natural frequency � for a CCCC sheet considering
t/L= 0.1, k= 0.8601 and ν = 0.3

Mesh CS-FEM MITC FEM Analytical [35]

�c = 1 �c = 2 �c = 3 �c = 4

10× 10 Q4 1.621835 1.624356 1.625613 1.626868 1.628537 1.625867 1.5940
15× 15 Q4 1.604610 1.605709 1.606258 1.606806 1.607536 1.606331
20× 20 Q4 1.598654 1.599268 1.599575 1.599882 1.600290 1.599605
25× 25 Q4 1.595908 1.596300 1.596496 1.596692 1.596952 1.596512
30× 30 Q4 1.594419 1.594691 1.594827 1.594962 1.595143 1.594836

Table 4: Numerical results of non-dimensional natural frequency � for a SSSS sheet considering
t/L= 0.1, k= 0.8333 and ν = 0.3

Mesh CS-FEM MITC FEM Analytical [35]

�c = 1 �c = 2 �c = 3 �c = 4

10× 10 Q4 0.937637 0.938577 0.939046 0.939516 0.940141 0.939935 0.9300
15× 15 Q4 0.933542 0.933954 0.934161 0.934367 0.934641 0.934551
20× 20 Q4 0.932112 0.932343 0.932458 0.932574 0.932727 0.932677
25× 25 Q4 0.931450 0.931598 0.931671 0.931745 0.931843 0.931812
30× 30 Q4 0.931091 0.931193 0.931245 0.931296 0.931364 0.931342

Table 5: Numerical results of non-dimensional natural frequency � for a SSSS sheet considering
t/L= 0.1, k= 0.8333 and ν = 0.3 (using a mesh: 30× 30 Q4)

Mode m− n CS-FEM MITC FEM Mindlin [35]

�c = 1 �c = 2 �c = 3 �c = 4

1 1–1 0.931091 0.931193 0.931245 0.931296 0.931364 0.931342 0.930
2 2–1 2.227249 2.227508 2.227744 2.227979 2.228222 2.228032 2.219
3 1–2 2.227249 2.227720 2.227849 2.227979 2.228222 2.228032 2.219
4 2–2 3.416492 3.417814 3.418475 3.419136 3.420016 3.418949 3.406
5 3–1 4.185884 4.186313 4.186797 4.187281 4.187746 4.187053 4.149
6 1–3 4.185884 4.186852 4.187067 4.187281 4.187746 4.187053 4.149
7 3–2 5.238504 5.240597 5.242123 5.243647 5.245359 5.242132 5.206
8 2–3 5.238504 5.241556 5.242602 5.243647 5.245359 5.242132 5.206
9 4–1 6.009895 6.011010 6.011933 6.012854 6.013836 6.013836 6.520
10 1–4 6.009895 6.011743 6.012299 6.012854 6.013836 6.013836 6.520
11 3–3 6.620909 6.621499 6.622231 6.622964 6.623648 6.622002 6.834
12 4–2 6.620909 6.622374 6.622669 6.622964 6.623648 6.622002 7.446
13 2–4 6.878402 6.883519 6.886075 6.888628 6.892027 6.883471 7.446
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Table 6: Numerical results of non-dimensional natural frequency � for a SSSS sheet considering
t/L= 0.01, k= 0.8333 and ν = 0.3 (using a mesh: 30× 30 Q4)

Mode m− n CS-FEM MITC FEM Mindlin [35]

�c = 1 �c = 2 �c = 3 �c = 4

1 1–1 0.096370 0.096382 0.096387 0.096393 0.096400 0.096400 0.0963
2 2–1 0.241523 0.241554 0.241583 0.241612 0.241642 0.241642 0.2406
3 1–2 0.241523 0.241580 0.241596 0.241612 0.241642 0.241642 0.2406
4 2–2 0.386116 0.386295 0.386385 0.386475 0.386594 0.386593 0.3847
5 3–1 0.485757 0.485819 0.485889 0.485959 0.486026 0.486025 0.4807
6 1–3 0.485757 0.485897 0.485928 0.485959 0.486026 0.486025 0.4807
7 3–2 0.629412 0.629742 0.629982 0.630223 0.630493 0.630487 0.6246
8 2–3 0.629412 0.629893 0.630058 0.630223 0.630493 0.630487 0.6246
9 4–1 0.832602 0.832706 0.832835 0.832964 0.833084 0.833081 0.8156
10 1–4 0.832602 0.832860 0.832912 0.832964 0.833084 0.833081 0.8156
11 3–3 0.871134 0.872050 0.872508 0.872966 0.873576 0.873557 0.8640
12 4–2 0.974930 0.975444 0.975913 0.976381 0.976864 0.976848 0.9592
13 2–4 0.974930 0.975868 0.976125 0.976381 0.976864 0.976848 0.9592

Table 7: Numerical results of non-dimensional natural frequency � for a CCCC sheet considering
t/L= 0.1, k= 0.8601 and ν = 0.3 (using a mesh: 30× 30 Q4)

Mode m− n CS-FEM MITC FEM R-R [35] [36]

�c = 1 �c = 2 �c = 3 �c = 4

1 1–1 1.594419 1.594691 1.594827 1.594962 1.595143 1.594836 1.5940 1.5582
2 2–1 3.055547 3.056102 3.056459 3.056817 3.057240 3.056336 3.0390 3.0182
3 1–2 3.055547 3.056263 3.056540 3.056817 3.057240 3.056336 3.0390 3.0182
4 2–2 4.282932 4.284875 4.285845 4.286815 4.288107 4.284832 4.2650 4.1711
5 3–1 5.079738 5.080694 5.081174 5.081652 5.082289 5.080391 5.0350 5.1218
6 1–3 5.128075 5.128999 5.129459 5.129920 5.130534 5.128918 5.0780 5.1594
7 3–2 6.009895 6.011010 6.011933 6.012854 6.013836 6.013836 6.0178
8 2–3 6.009895 6.011743 6.012299 6.012854 6.013836 6.013836 6.0178
9 4–1 6.128879 6.131764 6.133569 6.135371 6.137529 6.130685 7.5169
10 1–4 6.128879 6.132492 6.133933 6.135371 6.137529 6.130685 7.5169
11 3–3 7.162518 7.166630 7.168686 7.170740 7.173477 7.173477 7.7288
12 4–2 7.541235 7.542099 7.542860 7.543621 7.544414 7.541495 8.3985
13 2–4 7.541235 7.542758 7.543190 7.543621 7.544414 7.541495 8.3985
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Table 8: Numerical results of non-dimensional natural frequency � for a CCCC sheet considering
t/L= 0.01, k= 0.8601 and ν = 0.3 (using a mesh: 30× 30 Q4)

Mode m− n CS-FEM MITC FEM R-R [35] [36]

�c = 1 �c = 2 �c = 3 �c = 4

1 1–1 0.175790 0.175829 0.175848 0.175868 0.175893 0.175891 0.1754 0.1743
2 2–1 0.359804 0.359896 0.359957 0.360017 0.360089 0.360082 0.3576 0.3576
3 1–2 0.359804 0.359926 0.359972 0.360017 0.360089 0.360082 0.3576 0.3576
4 2–2 0.529658 0.530026 0.530210 0.530394 0.530639 0.530616 0.5274 0.5240
5 3–1 0.649644 0.649843 0.649943 0.650043 0.650176 0.650162 0.6402 0.6465
6 1–3 0.652801 0.652986 0.653078 0.653171 0.653294 0.653282 0.6432 0.6505
7 3–2 0.810772 0.811409 0.811815 0.812220 0.812702 0.812651 0.8015
8 2–3 0.810772 0.811583 0.811902 0.812220 0.812702 0.812651 0.8015
9 4–1 1.049627 1.049839 1.050032 1.050225 1.050425 1.050402 1.0426
10 1–4 1.049627 1.050013 1.050119 1.050225 1.050425 1.050402 1.0426
11 3–3 1.080217 1.081735 1.082493 1.083251 1.084260 1.084141 1.0628
12 4–2 1.199590 1.200769 1.201372 1.201969 1.202761 1.202662 1.1823
13 2–4 1.204826 1.205979 1.206542 1.207110 1.207870 1.207780 1.1823

Table 9: Numerical results of non-dimensional natural frequency � for a SCSC sheet considering
t/L= 0.1, k= 0.8222 and ν = 0.3 (using a mesh: 30× 30 Q4)

Mode m− n CS-FEM MITC FEM Mindlin

�c = 1 �c = 2 �c = 3 �c = 4

1 1–1 1.302448 1.302584 1.302706 1.302828 1.302955 1.302788 1.302
2 2–1 2.401693 2.402257 2.402536 2.402815 2.403189 2.402591 2.398
3 1–2 2.901311 2.901601 2.901906 2.902211 2.902511 2.901959 2.888
4 2–2 3.854944 3.856364 3.857266 3.858167 3.859240 3.856982 3.852
5 3–1 4.266729 4.267812 4.268188 4.268563 4.269174 4.267844 4.237
6 1–3 4.990535 4.990964 4.991465 4.991966 4.992443 4.991209 4.936
7 3–2 5.491102 5.494350 5.495749 5.497146 5.499156 5.493867
8 2–3 5.836633 5.838743 5.840387 5.842028 5.843823 5.838722
9 4–1 6.009895 6.011010 6.011933 6.012854 6.013836 6.013836
10 1–4 6.009895 6.011743 6.012299 6.012854 6.013836 6.013836
11 3–3 6.653747 6.655322 6.655766 6.656210 6.657029 6.654570
12 4–2 7.162518 7.166630 7.168686 7.170740 7.173477 7.173477
13 2–4 7.271811 7.277049 7.279860 7.282666 7.286271 7.274263
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Table 10: Numerical results of non-dimensional natural frequency � for a SCSC sheet consider-
ing t/L= 0.01, k= 0.8222 and ν = 0.3 (using a mesh: 30× 30 Q4)

Mode m− n CS-FEM MITC FEM Mindlin

�c = 1 �c = 2 �c = 3 �c = 4

1 1–1 0.141422 0.141439 0.141454 0.141470 0.141486 0.141486 0.1411
2 2–1 0.267700 0.267779 0.267821 0.267863 0.267917 0.267913 0.2668
3 1–2 0.340137 0.340180 0.340228 0.340276 0.340323 0.340320 0.3377
4 2–2 0.462838 0.463060 0.463219 0.463378 0.463558 0.463546 0.4608
5 3–1 0.502601 0.502778 0.502846 0.502913 0.503017 0.503011 0.4979
6 1–3 0.637848 0.637927 0.638025 0.638123 0.638215 0.638208 0.6279
7 3–2 0.687135 0.687708 0.687996 0.688284 0.688667 0.688639
8 2–3 0.761328 0.761721 0.762071 0.762422 0.762786 0.762758
9 4–1 0.844625 0.844933 0.845031 0.845128 0.845296 0.845283
10 1–4 0.980502 0.981555 0.982236 0.982917 0.983720 0.983653
11 3–3 1.019250 1.020339 1.020764 1.021189 1.021835 1.021780
12 4–2 1.039509 1.039637 1.039802 1.039968 1.040120 1.040107
13 2–4 1.163856 1.164455 1.165072 1.165688 1.166298 1.166243

Table 11: Numerical results of non-dimensional natural frequency � for a CCCF sheet consider-
ing t/L= 0.1, k= 0.8601 and ν = 0.3 (using a mesh: 30× 30 Q4)

Mode m− n CS-FEM MITC FEM Mindlin

�c = 1 �c = 2 �c = 3 �c = 4

1 1–1 1.083162 1.083349 1.083424 1.083492 1.083582 1.083199 1.089
2 2–1 1.746471 1.746999 1.747200 1.747396 1.747694 1.746189 1.758
3 1–2 2.674374 2.674770 2.674936 2.675088 2.675288 2.674425 2.673
4 2–2 3.211195 3.211917 3.212335 3.212749 3.213262 3.210839 3.216
5 3–1 3.304154 3.305615 3.306088 3.306550 3.307325 3.304131 3.318
6 1–3 3.837385 3.839567 3.840268 3.840947 3.841998 3.841998 4.615
7 3–2 4.576690 4.579256 4.580417 4.581571 4.583178 4.575977
8 2–3 4.786956 4.787602 4.787887 4.788151 4.788496 4.786879
9 4–1 5.295560 5.296426 5.297076 5.297724 5.298441 5.295077
10 1–4 5.348007 5.349635 5.350219 5.350772 5.351524 5.351524
11 3–3 5.360165 5.362655 5.363387 5.364104 5.365381 5.360180
12 4–2 5.768408 5.773567 5.775097 5.776610 5.779196 5.779196
13 2–4 6.439317 6.442665 6.444737 6.446802 6.449275 6.437471
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Table 12: Numerical results of non-dimensional natural frequency � for a CCCF sheet consider-
ing t/L= 0.01, k= 0.8601 and ν = 0.3 (using a mesh: 30× 30 Q4)

Mode m− n CS-FEM MITC FEM Mindlin

�c = 1 �c = 2 �c = 3 �c = 4

1 1–1 0.116925 0.116946 0.116953 0.116959 0.116969 0.116919 0.1171
2 2–1 0.195190 0.195269 0.195296 0.195322 0.195365 0.195190 0.1951
3 1–2 0.310577 0.310632 0.310649 0.310666 0.310692 0.310580 0.3093
4 2–2 0.375546 0.375677 0.375744 0.375810 0.375897 0.375632 0.3740
5 3–1 0.394394 0.394645 0.394718 0.394790 0.394918 0.394641 0.3931
6 1–3 0.570349 0.570868 0.571073 0.571278 0.571585 0.570997 0.5695
7 3–2 0.604879 0.604989 0.605025 0.605059 0.605113 0.604901
8 2–3 0.662529 0.662714 0.662838 0.662961 0.663104 0.662798
9 4–1 0.691010 0.691521 0.691657 0.691790 0.692045 0.691682
10 1–4 0.848069 0.848863 0.849284 0.849704 0.850245 0.849370
11 3–3 0.867421 0.868582 0.868964 0.869343 0.869978 0.869211
12 4–2 1.003934 1.004128 1.004195 1.004258 1.004355 1.003997
13 2–4 1.057172 1.057424 1.057622 1.057820 1.058035 1.057703

Table 13: Normalized eigenvalues for buckling (kb =L2λcr/π
2Db

11) considering a SSSS sheet with
t/L= 0.001, k= 0.8333 and ν = 0.3

Mesh CS-FEM MITC FEM Analytical [35]

�c = 1 �c = 2 �c = 3 �c = 4

10× 10 Q4 4.066699 4.075307 4.079611 4.083914 4.066699 4.066699 4.000
15× 15 Q4 4.029397 4.033152 4.035030 4.036908 4.029397 4.029396
20× 20 Q4 4.016478 4.018577 4.019626 4.020676 4.016478 4.016478
25× 25 Q4 4.010522 4.011861 4.012531 4.013201 4.010522 4.010522
30× 30 Q4 4.007293 4.008222 4.008686 4.009150 4.007293 4.007293

Table 14: Normalized eigenvalues for buckling (.kb =L2λcr/π
2Db

11.) considering a SSSS sheet with
t/L= 0.05, k= 0.8333 and ν = 0.3

Mesh CS-FEM MITC FEM Analytical [35]

�c = 1 �c = 2 �c = 3 �c = 4

10× 10 Q4 3.993495 4.001830 4.005997 4.010164 3.993495 3.993031 3.944
15× 15 Q4 3.957261 3.960899 3.962717 3.964536 3.957261 3.957059
20× 20 Q4 3.944711 3.946745 3.947761 3.948778 3.944711 3.944599
25× 25 Q4 3.938926 3.940223 3.940872 3.941520 3.938926 3.938854
30× 30 Q4 3.935789 3.936688 3.937138 3.937588 3.935789 3.935739

Table 15: Normalized eigenvalues for buckling (kb =L2λcr/π
2Db

11) considering a SSSS sheet with
t/L= 0.1, k= 0.8333 and ν = 0.3

Mesh CS-FEM MITC FEM Analytical [35]

�c = 1 �c = 2 �c = 3 �c = 4

10× 10 Q4 3.791114 3.798718 3.802520 3.806321 3.791114 3.789459 3.786
15× 15 Q4 3.757742 3.761062 3.762722 3.764382 3.757742 3.757022
20× 20 Q4 3.746181 3.748037 3.748965 3.749893 3.746181 3.745779
25× 25 Q4 3.740851 3.742035 3.742628 3.743220 3.740851 3.740595
30× 30 Q4 3.737961 3.738782 3.739193 3.739603 3.737961 3.737783



2784 CMC, 2021, vol.67, no.3

Table 16: Normalized eigenvalues for buckling (kb = L2λcr/π
2Db

11) considering a SSSS sheet with
t/L= 0.2, k= 0.8333 and ν = 0.3

Mesh CS-FEM MITC FEM Analytical [35]

�c = 1 �c = 2 �c = 3 �c = 4

10× 10 Q4 3.170980 3.176550 3.179335 3.182118 3.170980 3.166487 3.264
15× 15 Q4 3.145574 3.148009 3.149227 3.150444 3.145574 3.143616
20× 20 Q4 3.136768 3.138131 3.138812 3.139493 3.136768 3.135675
25× 25 Q4 3.132708 3.133577 3.134012 3.134447 3.132708 3.132010
30× 30 Q4 3.130506 3.131109 3.131411 3.131712 3.130506 3.130022

(a)

(b)

Figure 5: Mode shape of non-dimensional natural frequency � for a CCCC sheet considering
t/L = 0.01, k = 0.8601, ν = 0.3 and 35× 35 Q4 mesh for �c = 4 for (a) 6th and (b) 12th mode
shapes
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(a)

(b)

Figure 6: Mode shape of non-dimensional natural frequency � for a SSSS sheet considering t/L=
0.01, k= 0.8333, ν = 0.3 and 35× 35 Q4 mesh for (a) 6th and (b) 12th mode shapes

3 Numerical Examples

Two examples have been analysed regarding the application of the CS-FEM and MITC4
formulations. The performed analyses comprise the problematic of free vibration and buckling
of a square non-woven fabric sheet (Fig. 4a) employing a mesh regularly structured (Fig. 4b)
in the range of 10 to 35 elements. The adopted values for the thickness-to-length ratio (t/L)
are the ones given in Tabs. 1–16, together with the used configuration (i.e., number of elements
i × i and corresponding number of nodes, Q4), and the number of smoothing cells (sub-cells
�c). Additionally, the used boundary conditions, i.e., fully simply supported (SSSS) and fully
clamped (CCCC), as well as SCSC and CCCF situations (F standing for free side) are identified.

Values of non-dimensional natural frequency
(
� =ωmnL

√
ρ/G12

)
and normalized eigenvalues
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(
kb =L2λcr/π

2Db
11

)
were obtained for CS-FEM, MITC and FEM approaches, considering the

shear factor corrections k shown in Tabs. 1–16. Also, values of � and kb were provided in
those Tables for comparison purposes (analytical or/and numerical solutions). Good agreement
is observed with mixed interpolation of tensorial components (MITC), finite element method
(FEM), analytical solution, and closed form results, which indicate both the validity and accuracy
of the developed approach. Furthermore, carpet plots are shown in Figs. 5–20, to allow perceiv-
ing, respectively, how � and kb evolve within the sheet domain when the used number of elements
is set to 35× 35. Tabs. 13–16, together with Figs. 17–20 reveal that buckling load decreases with
the thickness-to-length ratio (t/L) increase.

(a)

(b)

Figure 7: Mode shape of non-dimensional natural frequency � for a CCCC sheet considering
t/L= 0.1, k= 0.8601, ν = 0.3 and 35× 35 Q4 mesh for (a) 6th and (b) 12th mode shapes
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(a)

(b)

Figure 8: Mode shape of non-dimensional natural frequency � for a SSSS sheet considering t/L=
0.1, k= 0.8333, ν = 0.3 and 35× 35 Q4 mesh for (a) 6th and (b) 12th mode shapes

Figure 9: Mode shapes of non-dimensional natural frequency � for a SSSS sheet considering
t/L= 0.1, k= 0.8333, ν = 0.3 and 35× 35 Q4 mesh
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Figure 10: Mode shapes of non-dimensional natural frequency � for a SSSS sheet considering
t/L= 0.01, k= 0.8333, ν = 0.3 and 35× 35 Q4 mesh

Figure 11: Mode shapes of non-dimensional natural frequency � for a CCCC sheet considering
t/L= 0.1, k= 0.8601, ν = 0.3 and 35× 35 Q4
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Figure 12: Mode shapes of non-dimensional natural frequency � for a CCCC sheet considering
t/L= 0.01, k= 0.8601, ν = 0.3 and 35× 35 Q4

Figure 13: Mode shapes of non-dimensional natural frequency � for a SCSC sheet considering
t/L= 0.1, k= 0.8222, ν = 0.3 and 35× 35 Q4
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Figure 14: Mode shapes of non-dimensional natural frequency � for a SCSC sheet considering
t/L= 0.01, k= 0.8222, ν = 0.3 and 35× 35 Q4

Figure 15: Mode shapes of non-dimensional natural frequency � for a CCCF sheet considering
t/L= 0.1, k= 0.8601, ν = 0.3 and 35× 35 Q4
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Figure 16: Mode shapes of non-dimensional natural frequency � for a CCCF sheet considering
t/L= 0.01, k= 0.8601, ν = 0.3 and 35× 35 Q4

Figure 17: Normalized eigenvalues for buckling (kb =L2λcr/π
2Db

11) considering a SSSS sheet with
t/L= 0.001, k= 0.8333, ν = 0.3 and 35× 35 Q4
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Figure 18: Normalized eigenvalues for buckling (kb =L2λcr/π
2Db

11) considering a SSSS sheet with
t/L= 0.05, k= 0.8333, ν = 0.3 and 35× 35 Q4

Figure 19: Normalized eigenvalues for buckling (kb =L2λcr/π
2Db

11) considering a SSSS sheet with
t/L= 0.1,k= 0.8333, ν = 0.3 and 35× 35 Q4
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Figure 20: Normalized eigenvalues for buckling (kb =L2λcr/π
2Db

11) considering a SSSS sheet with
t/L= 0.2, k= 0.8333, ν = 0.3 and 35× 35 Q4

4 Conclusions

A combination of the 4-node quadrilateral mixed interpolation of tensorial components
(MITC) element (MITC4) and the cell-based smoothed finite element method (CSFEM) was
formulated and implemented to endure free vibration and unidirectional buckling analyses in
a rectangular non-woven fabric. A wide range of values for the thickness-to-length ratio were
considered, together with edge boundary conditions that are characteristic of many fabric applica-
tions. It has been proved that the developed numerical model is able to overcome the shear locking
phenomenon with success, revealing both reduced implementation effort and computational cost
in comparison to the conventional FEM approach. The numerical results were compared with the
ones obtained from a standard finite element computation and analytical solutions for the sake
of validation regarding sub-cell integration schemes.
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