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Abstract:The present article aims to examine the heat andmass distribution in
a free convection flow of electrically conducted, generalized Jeffrey nanofluid
in a heated rotatory system. The flow analysis is considered in the presence
of thermal radiation and the transverse magnetic field of strength B0. The
medium is porous accepting generalized Darcy’s law. The motion of the fluid
is due to the cosine oscillations of the plate. Nanofluid has been formed
by the uniform dispersing of the Silver nanoparticles in regular engine oil.
The problem has been modeled in the form of classical partial differential
equations and then generalized by replacing time derivative with Atangana–
Baleanu (AB) time-fractional derivative. Upon taking the Laplace transform
technique (LTT) and using physical boundary conditions, exact expressions
have been obtained for momentum, energy, and concentration distributions.
The impact of a number of parameters on fluid flow is shown graphically.
The numerical tables have been computed for variation in the rate of heat and
mass transfer with respect to rooted parameters. Finally, the classical solution
is recovered by taking the fractional parameter approaching unity. It is worth
noting that by adding silver nanoparticles in regular engine oil, its heat transfer
rate increased by 14.59%, which will improve the life and workability of the
engine.

Keywords: Jeffrey fluid; silver nanoparticles; engine oil; Atangana–Baleanu
fractional derivatives; Laplace transform technique

1 Introduction

Fluids that show non-linear relation between shear stress and shear strain are termed as
non-Newtonian fluids e.g., castor oil, engine oil, colloidal solutions, and blood, etc. The non-
Newtonian fluid has different rheological behavior than Newtonian fluids and has very substantial
uses in the area of engineering, medical sciences, industries, electrochemistry, and mechanics [1].
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Due to the mentioned significance, it gathered great attention from researchers and scientists.
Jeffrey fluid model has two generalized parameters λ1 and λ2. The models of Newtonian and
second-grade fluid can also be recovered from it by neglecting the effects of their generalized
parameters. Due to the above-stated facts, the Jeffrey fluid model has been dealt with by many
researchers [2–5]. After further examination, researchers reported that the thermal transport
properties of the considered regular fluid are low. To boost the heat transport properties of
regular fluids, researchers and scientists used the idea of suspended solid particles in the assumed
conventional base fluid. As solid particles possess high heat transport properties as compared to
regular fluids, it consequently enhances the heat transport properties of the base fluid. Keeping
in view the above-addressed features of the solid particles, Maxwell [6], in 1873, used micro-sized
solid particles in regular fluids. However, the significant blemish of microfluid was smaller scale
estimated particles that typically stuck in the microchannel that block the apparatus. Besides,
microparticles settled quickly in the base liquid and made issues of clogging, pipe disintegration,
and surface wear. To circumvent the flaws of micro-sized solid particles in 1995, Choi et al. [7],
introduced the idea of dispersing of nano-sized solid particles in conventional fluids to augment
the thermal transport features of the conventional fluids. The resultant fluid that is obtained from
the suspension of nanoparticles in the base fluid is referred to as nanofluid. Nanoparticles have
widespread uses in different zones, for example, cooling power, vitality sparing, and medicate
conveyance, and so forth. Different studies have been reported on the uses of nanoparticles [8–10].
From the analysis, the researchers came to the point that nanoparticles are more stable and
increase the conductive properties than micro size particles. Researchers also highlighted that
nanoparticles decreases the problem of sedimentation and increase the stability of the regular
fluid. Ali et al. [11] discussed the impact of silver nanoparticles in regular engine oil. Several
other studies regarding nanoparticles applications can be seen in [12–15]. By keeping in view the
importance of nano-particles.

The study of magnetic properties of those fluids which allow electric current is known as
magneto-hydrodynamic. Saltwater, engine oil, electrolytes, kerosene oil are examples of MHD
fluid. The core work on MHD has given by Alfvén [16], and for this contribution, he got Nobel
Prize in 1970. Magnetohydrodynamic or MHD for short, is the study of these motions in the
case where the fluid can be treated as a continuum. On the basis of the above applications,
Hayat et al. [17] developed a series form solution via the Homotopy analysis method for second-
grade fluid. They considered the fluid in between two porous walls under the consideration of
binary chemical reaction [18] studied the Maxwell fluid flow in a rotatory coordinate system.
Seth et al. [19] also discussed unsteady electrically conducted fluid in a rotating channel and
observed that fluid flow shows acceleration/deceleration when the magnetic field is varied. Abelman
et al. [20] found a numerical solution for the time-independent flow of 3rd-grade fluid. Ali
et al. [21] investigated the effect of the magnetic field on fractionalized Brinkman-type fluid
flowing in a heated system. The authors modeled their mathematical model by inserting relative
constitutive relations, and for their solution, they used the tool of Laplace transformation. For the
interpretations of inserted parameters, they sketched the graphs. In their study, they highlighted
that the magnetic parameter decline the velocity profile due to Lorentz forces occurs in the fluid.
Khan et al. [22] inspected the effect of wall shear stress on conducting fluid flow for Newtonian
fluid with variable ramped temperature.

Due to multidimensional features, the non-integer order calculus is fascinating to the attention
of scientists and researchers [23–25]. Fractional calculus is an important and fruitful tool for
describing many systems, including memory effects. In the last few years, fractional calculus is
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used for many purposes in various fields, such as electrochemistry, transportation of water in
ground level, electromagnetism, elasticity, diffusion, and in conduction of heat process [26]. In
2015, Caputo et al. [27] worked together in the field of non-integer order calculus and presented
a new expression for the fractional non-integer order derivative with the non-singular kernel. So
keeping in sight the importance of the CF operator, many researchers used the CF operator
in their studies such as [28] examined the MHD flow of Walter’s-B fluid by using the non-
singular operator of CF. Several other studies regarding the uses of CF operators can be found
in [29–31]. But despite many properties, the kernel of the CF operator found local, and due to
this deficiency, it was not remain reliable for describing the memory effect. So to fill the gap
and solve this issue occurred in the CF operator, in the year 2016, [32] modified the operator
of CF derivative by utilizing the Mittag–Leffler function and made its kernel non-singular and
non-local. AB fractional operator has the beauty that it gives information about the original
function, and one can also achieve the original function as well by letting the parameter of the
fractional operator tends to zero. So due to the worth mentioned properties and advantages of
AB fractional operator, [33] inspected the influence of thermo-diffusion on Jeffrey nanofluid in a
rotating frame. They formed nanofluid by dispersing the metallic silver nanoparticles in regular
Mobil oil. They have been acquired that velocity boosts up for increasing the magnitude of
the fractional parameter. Jan et al. [34] discussed the impact of molybdenum disulfide nano-size
particles in engine oil using the Atangana–Baleanu fractional model. Saqib et al. [35] acquired an
exact expression for generalize Casson nanofluid, using AB fractional derivative.

Keep in mind the above literature review; we find a gap that no one has investigated Jeffrey
nanofluid flow in a rotating frame with time-dependent temperature and concentration in initial
and boundary conditions. To fill this gap, we considered fractionalized Jeffrey fluid flow in a rotat-
ing system. The governing equations containing the system of PDEs are developed by following
the assumption of Boussinesq’s approximation [36]. The classical model of the considered problem
has been fractionalized via Atangana–Baleanu fractional operator. The mathematical tool of the
Laplace transform technique has been utilized to acquire the solution mathematical model. The
involvement of the constructive parameters on fluid motion, heat distribution, and concentration
profile has been sketched. Change in the rate of heat and mass transfer was found numerically
and computed in tabular form.

2 Mathematical Modeling and Solution

Consider a Cartesian coordinate system for unsteady electrically conducted free convection
flow of an incompressible Jeffrey nanofluid past over an infinite rigid plate saturated in a porous
medium under the effect of transverse magnetic field Bo. The plate is taken vertically upward in
the direction of the x-axis. The rotation with constant angular velocity “�” of the fluid is assumed
about z-axis, which is normal to the plate, as shown in Fig. 1.

At time t= 0 both the plate and fluid are immobile. At t> 0 the plate is disturbed with cosine
oscillation and transmits the disturbance to the fluid, which causes the fluid motion. Temperature
and concentration of the fluid at time t = 0+ is T∞ + (TW − T∞)At and C∞ + (CW − C∞)At
respectively. Where T∞ and C∞ represent surrounding temperature and concentration, respectively.
TW and Cw represent wall temperature and wall concentration, respectively. Keeping in view,
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the above consideration applying Boussinesq approximation and using Tiwari and Das nanofluid
model, the momentum, energy, and concentration equations are governed by:

ρnf

(
∂F1 (z, t)

∂t
+ 2ΩiF1 (z, t)

)
= μnf

1+λ1

(
1+λ2

∂

∂t

)
∂2F1 (z, t)

∂z2
− σB2

0F1 (z, t)

− μnfφ1

k∗ (1+λ1)

(
1+λ2

∂

∂t

)
F1 (z, t)+ (ρβT)nf g (T (z, t)−T∞)

+ (ρβC)nf g (C (z, t)−C∞) , (1)

where F1 = u+ vi is a complex velocity. Energy and concentration equations are:

(
ρcp
)
nf

∂T (z, t)
∂t

=Knf
∂2T (z, t)

∂z2
− ∂qr

∂z
, (2)

∂C (z, t)
∂t

=Dnf
∂2C (z, t)

∂z2
, (3)

pertinent initial and boundary conditions are:

F1 (z, 0)= 0, T (z, 0)=T∞,, C (z, 0)=C∞,,

F1 (0, t)=U0H (t) cosωt, T (0, t)=Tw+ (Tw−T∞)At, C (0, t)=Cw+ (Cw−C∞)At,

F1 (∞, t)= 0, T (∞, t)=T∞, C (∞, t)=C∞.

⎫⎪⎪⎬
⎪⎪⎭ . (4)

Figure 1: The geometry of the flow
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Nanofluid expressions contained in the mathematical model are given in [35]:

The radiative heat flux is given as:

qr= −4σ ∗∂T4

3k∗1∂z
, (5)

Utilizing the Taylor expansion, the T4 can be written as:

T4 = 4TT3
∞− 3T4

∞ . . . , (6)

substituting Eq. (6) into Eq. (5), and differentiate with respect to “·” we get:

∂qr
∂z

= 16σ ∗T3∞
3k∗1

∂2T (z, t)
∂z2

. (7)

The thermal transport properties of the base fluid and nano particles are given in Tab. 1.

Table 1: The heat transport properties of Engine oil and Silver nanoparticle [11]

Properties ρ cp k βC βT Pr

Engine oil 863 2044 144.4 0.00070 0.00007 6428
AgNps (silver) 10500 235 429 54× 10−6 1.89× 10−5 –

The non-dimensional variables are:

F∗ = F1
U0

, z∗ = zU0

ν
, t∗ = tU2

0

ν
, θ = T −T∞

Tw−T∞
, φ = C−C∞

Cw−C∞

}
, (8)

Incorporating Eqs. (7) and (8), the governing equations will take the form;

∂F1 (z, t)
∂t

+ 2iγF1 (z, t)= a1
1+λ1

(
1+λ

∂

∂t

)
∂2F1 (z, t)

∂z2
− a1
K (1+λ1)

(
1+λ

∂

∂t

)
F1 (z, t)

−
(
Ha
a3

)
F1 (z, t)+Gr1θ (z, t)+Gm1φ (z, t) , (9)

∂θ (z, t)
∂t

= a4
∂2θ (z, t)

∂z2
, (10)

∂φ (z, t)
∂t

= 1
a5

∂2φ (z, t)
∂z2

, (11)

and

F1 (z, 0)= 0, T (z, 0)= 0, C (z, 0)= 0,

F1 (0, t)= cosωt, T (0, t)= t, C (0, t)= t,

F1 (∞, t)= 0, T (∞, t)= 0, C (∞, t)= 0,

⎫⎪⎪⎬
⎪⎪⎭ . (12)
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In dimensinoalization process the constants we get:

γ = �ν

U2
0

, λ= λ2U2
0

ν
,

1
K

= φ1ν

K∗
1U

2
0

, Ha= σ ∗β2
0ν

ρU2
0

, Gr= gβTν (Tw−T∞)

U3
0

,

Gm= gβCν (Cw−C∞)

U3
0

, Gr1 = a2Gr, Gm1 = a6Gm, Pr= νf

αf
,

Rd =
16σ ∗T3

kf k∗1
, Sc= ν

Df
, m1 = (1−ϕ)+ϕ

(
ρcp
)
s(

ρcp
)
f

, m2 =
ks+ 2kf − 2ϕ

(
kf − ks

)
ks+ 2kf +ϕ

(
kf − ks

) ,

a1 =
(

(1−ϕ)2.5
{
(1−ϕ)+ϕ

ρs

ρf

})−1

, a2 = 1
ρnf

(
(1−ϕ)ρf + (βT)s

(βT)f

)
,

a3 = (1−ϕ)+ϕ
ρs

ρf
, a4 = m2 +Rd

m1 Pr
, a5 = Sc

1−ϕ
, a6 = 1

ρnf

(
(1−ϕ)ρf +

(βC)s

(βC)f

)
,

The term γ , λ, K, Ha, Gr, Gm, Pr, Rd , and Pr represent rotation parameter, Jeffrey fluid
parameter, Permeability parameter, Hartman number, thermal Grashoff number, Mass Grashoff
number, radiation, and Prandtl number, respectively.

2.1 Fractional Model
To fractionalized the ordinary model of the considered problem given in Eqs. (9)–(11) to AB

fractional model, we utilized the operator AB℘α
t instead of ∂

∂t (.), and get:

AB℘α
t F1 (z, t)+ 2iγF1 (z, t)= a1

1+λ1

(
1+λAB℘α

t

) ∂2F1 (z, t)
∂z2

+ a1
1+λ1

(
1+λAB℘α

t

)
F1 (z, t)

−
(
Ha
a3

)
F1 (z, t)+Gr1θ (z, t)+Gm1φ (z, t) , (13)

AB℘α
t θ (z, t)= a4

∂2θ (z, t)
∂z2

, (14)

AB℘α
t φ (z, t)= 1

a5

∂2φ (z, t)
∂z2

, (15)

where AB fractional derivative [32] is :

AB℘α
t f (t)= 1

1−α

∫ τ

0
Eα

(−α (τ − t)
1−α

)
f ′ (t)dt; where N (0)=N (1)= 1 and (16)

Eα is Mittag–Leffler function.
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2.2 Solution of the Problem
Using the Laplace transformation on Eqs. (9)–(11) and utilizing the relevant initial conditions

from Eq. (12), we get:

d2F1 (z, t)
dz2

−
(

δ6pα + δ7

δ4pα + δ5

)
−→
F1 (z,p)= −Gr1 (pα + δ1) θ (z,p)

δ4pα + δ5
− −Gm1 (pα + δ1)φ (z,p)

δ4pα + δ5
, (17)

d2θ (z,p)
dz2

−
(

δ2pα

pα + δ1

)
θ (z,p)= 0, (18)

d2φ (z,p)
dz2

−
(

δ3pα

pα + δ1

)
φ (z,p)= 0, (19)

with transformed boundary conditions as:

F1 (0,p)= p
p2+ω2 , θ (0,p)= 1

p2
, φ (0,p)= 1

p2
,

F1 (∞,p)= 0, θ (∞,p)= 0, φ (∞,p)= 0,

⎫⎪⎬
⎪⎭ , (20)

where

δ0 = 1
1−α

, δ1 = αδ0, δ2 = δ0

a4
, δ3 = a5δ0, b1 = 1+ a1λ

k (1+λ1)
,

b2 = a1
1+λ1

, b3 = a1λδ0

1+λ1
, b4 = Ha

a3
+ a1
k (1+λ1)

+ 2iγ , δ4 = b2+ b3,

δ5 = b2δ1, δ6 = b1δ0+ b4, δ7 = δ1b4,

using conditions stated in Eq. (20) the solutions of Eqs. (17)–(19) will be:

θ (z,p)= 1
p2−α

φ∗ (z,p, 0, δ2, 0, δ1) , (21)

φ (z,p)= 1
p2−α

φ∗ (z,p, 0, δ3, 0, δ1) , (22)

and

F1 (z,p)= p
p2+ω2φ∗

1

(
z,p, δ6, δ7, δ21,

√
δ4

)
+ 1
p2−α

[
�1φ

∗
2

(
z,p, 0, δ6, δ7, δ21,

√
δ4

)

+�2φ
∗
2

(
z,p, δ12, δ6, δ7, δ21,

√
δ4

)
+�3φ

∗
2

(
z,p, δ13, δ6, δ7, δ21,

√
δ4

)
+�4φ

∗
2

(
z,p, 0, δ6, δ7, δ21,

√
δ4

)
+�5φ

∗
2

(
z,p,�1, δ6, δ7, δ21,

√
δ4

)
+�6φ

∗
2

(
z,p,�2, δ6, δ7, δ21,

√
δ4

)
−�1φ

∗ (z,p, 0, δ2, 0, δ1)−�2φ
∗ (z,p, δ21, δ2, 0, δ1)

−�3φ
∗ (z,p, δ13, δ2, 0, δ1)−�4φ

∗ (z,p, 0, δ3, 0, δ1)−�5φ
∗ (z,p,�4, δ3, 0, δ1)

−�6φ
∗ (z,p,�2, δ3, 0, δ1)

]
(23)
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where

φ∗ (z,p,m1,m2,m3,m4)= 1
pα +m1

exp

(
−z
√
m2pα +m3

pα +m4

)
,

φ∗
1 (z,p,m1,m2,m3,m4)= exp

(
−z
m4

√
m1pα +m2

pα +m3

)
,

φ∗
2 (z,p,m1,m2,m3,m4,m5)= 1

pα +m1
exp

(
−z
m5

√
m2pα +m3

pα +m4

)
,

and

δ8 = δ2δ5− δ1δ6− δ7

δ2δ4− δ6
, δ9 = δ1δ7

δ2δ4− δ6
, δ10 = δ8

2
, δ11 =

√
(δ10)

2+ δ9,

δ12 = δ10+ δ11, δ13 = δ10− δ11, δ14 =
δ21

δ12δ13
, δ15 = (δ1 − δ13)

2

δ12− δ13
, δ16 = (δ1− δ13)

2

δ13 (δ13− δ12)
,

δ17 = δ3δ5 − δ1δ6 − δ7

δ3δ4 − δ6
, δ18 = δ1δ7

δ3δ4− δ6
, δ19 = δ17

2
, δ20 =

√
(δ19)

2+ δ18,

Γ1 = δ19+ δ20, Γ2 = δ19− δ20, Γ3 =
δ21

Γ1Γ2
, Γ4 = (δ1 − Γ1)

2

Γ1 (Γ1− Γ2)
, Γ5 = (δ1 − Γ2)

2

Γ2 (Γ1− Γ2)
,

�1 =Gr1δ14, �2 =Gr1δ15, �3 =Gr1δ16, �4 =Gr1Γ3, �5 =Gr1Γ4, �6 =Gr1Γ5.

Inverting the Laplace transform on Eqs. (21)–(23), we get:

θ (z, t)= d (t) ∗φ∗ (z, t, 0, δ2, 0, δ1) , (24)

φ (z, t)= d (t) ∗φ∗ (z, t, 0, δ3, 0, δ1) , (25)

and

F1 (z, t)= cosωt ∗φ∗
1

(
z, t, δ6, δ7, δ21,

√
δ4

)
+ d (t) ∗

[
�1φ

∗
2

(
z, t, 0, δ6, δ7, δ21,

√
δ4

)
+�2φ

∗
2

(
z, t, δ12, δ6, δ7, δ21,

√
δ4

)
+�3φ

∗
2

(
z, t, δ13, δ6, δ7, δ21,

√
δ4

)
+�4φ

∗
2

(
z, t, 0, δ6, δ7, δ21,

√
δ4

)
+�5φ

∗
2

(
z, t,�1, δ6, δ7, δ21,

√
δ4

)
+�6φ

∗
2

(
z, t,�2, δ6, δ7, δ21,

√
δ4

)
−�1φ

∗ (z, t, 0, δ2, 0, δ1)

−�2φ
∗ (z, t, δ21, δ2, 0, δ1)−�3φ

∗ (z, t, δ13, δ2, 0, δ1)−�4φ
∗ (z,p, 0, δ3, 0, δ1)

−�5φ
∗ (z, t,�4, δ3, 0, δ1)−�6φ

∗ (z, t, Γ2, δ3, 0, δ1)
]

(26)

where

φ∗
1 (z,t,m1,m2,m3,m4)= 1

π

∫ ∞

0

∫ ∞

0
�1(z,u,c1,c2,c3,c4)exp

(
tr1−r2rα1 cosαπ

)
sin
(
r2r

α
1 sinαπ

)
dr1dr2,
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φ∗
2 (z, t,m1,m2,m3,m4,m5)= 1

π

∫ ∞

0

∫ ∞

0
�2 (z,u, c1, c2, c3, c4, c5)exp

(
tr1− r2rα1 cosαπ

)
× sin

(
r2rα1 sinαπ

)
dr1dr2,

φ∗(z,t,m1,m2,m3,m4)= 1
π

∫ ∞

0

∫ ∞

0
�1(z,u,c1,c2,c3,c4)exp

(
tr1−r2rα1 cosαπ

)
sin
(
r2rα1 sinαπ

)
dr1dr2,

in which

�1 (z, t, c1, c2, c3, c4)= e

−z
c4

√
c1 − z

√
c2− c1c3
2c4

√
π t

∫ ∞

0

1
r2

exp

(
−z2
4c24r2

− c1r2

)
· I1
(
2
√

(c2− c1c3) r2t
)
dr2.

�2 (z, t, c1, c2, c3, c4, c5)= e
−c1t−

−z
c5

√
c1 − z

√
c3− c2c4
2c5

√
π

∫ ∞

0

∫ t

0

e−c1t√
t
exp

(
c1t− c4t− −z2

4c5r2
− c2r2

)

× I1
(
2
√

(c3− c2c4) r2t
)
dtdr2.

�3 (z, t, c1, c2, c3, c4)= e−c1t−z
√
c2 − z

√
c3− c2c4
2c5

√
π

∫ ∞

0

∫ t

0

e−c1t√
t
exp

(
c1t− c4t− −z2

4r2
− c2r2

)

× I1
(
2
√

(c3− c2c4) r2t
)
dtdr2.

And

£−1
[

1
p2−α

]
= d (t)= 1

� (2−α)
t 1−α

2.3 Classical Exact Expression
For α → 1 and using the following property,

AB
lim
α→1

℘α
t F1 (z, t)= lim

α→1
L−1

[
L
{
AB℘α

t F1 (z, t)
}]

=L−1

{
lim
α→1

pαF1 (z,p)−F1 (z, 0)
(1−α)pα +α

}
=L−1 {pF1 (z,p)−F1 (z, 0)

}
=L−1 [L {F1/ (z, t)

}]= F1
/ (z, t) ,

the exact expression for velocity distribution obtained in Eq. (24) reduced to

F1(z,t)=cosωt∗e−z
√
L2+ 1

2

√
L3

π

∫ t

0

∫ ∞

0

zcosω(t−l)
2
√
s

e
−z2
4h −L1s−hL2 ·I1

(
2
√
L3hs

)
dhdsdl

+ d1
d3

∫ t

0
e−d2(t−I)−z

√
L2 sinh(d3(t−I))dI+ d1

2d3

√
L3

π

∫ t

0

∫ I

0

∫ ∞

0

z

h
√
t−se

−d2(t−I)− z2
4h−L1(t−s)−hL2
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×sinh(d3(t−I))·I1
(
2
√
L3h(t−s)

)
dhdsdl− d1

d3

∫ t

0
e−d2(t−I)−z

√
L2 sinh(d3(t−I))dI

×
[(

t+ z2

2a4

)
erfc
(

z
2
√
a4t

)
− z

√
t√

a4π
e

−z
4t
√
a4

]
+ d6
d5

∫ t

0
e−d4(t−I)−z

√
L2 sinh(d5(t−I))dI

+ d6
2d5

√
L3

π

∫ t

0

∫ I

0

∫ ∞

0

z

h
√
t−se

−d4(t−I)− z2
4h−L1(t−s)−hL2 ·sinh(d5(t−I)) ·I1

(
2
√
L3h(t−s)

)
dhdsdl

× d6
d5

∫ t

0
e−d4(t−I)−z

√
L2 sinh(d5(t−I))dI ·

[(
t+ z2a5

2

)
erfc
(
z
2

√
a5
t

)
− z

√
a5t√
π

e
−za5
4t

]
,

(27)

where

b5 = b3a5, d4 = a5b2− b1
2b5

, d5 =
√

(b2a5− b1)
2+ 4b4b5

2b5
, d6 = Gm1

b5
.

3 Nusselt Number and Sherwood Number

In the non-dimensional form, the Nusselt number and Sherwood number are presented as:

Nu=−knf
kf

∂θ

∂z

∣∣∣∣
z=0

(28)

Sh=−Dnf

(
∂φ

∂z

)
z=0

. (29)

4 Results and Discussion

This portion of the article devote to the physical arguments and detailed descriptions of
the outcomes. Using relative constitutive equations, the governing system of PDEs is formulated.
Nano-liquid has been made by the distribution of nano-silver in Mobil oil. The classical model of
electrically conducted, incompressible Jeffrey nano-liquid is transformed into AB fractional model.
Exact solutions have been gotten for the governing equations. To check the impact of inserted
parameters on fluid motion, various sketches are portrayed.

The impact of Gr and Gm has been sketched in Figs. 2 and 3. Both the sketches show
enchantment in the velocity profile for larger values. This happened due to a decrease in the
density and increase in the bouncy forces which leads to speed up the velocity. The effect of Jeffrey
fluid parameter λ and volume fraction ϕ can be reported from Figs. 4 and 5. When the values
of the material parameter λ and volume fraction of nanoparticles ϕ rise, the viscous forces in the
fluid increase; as a result, the friction force between the fluid particles increases, which leads to
slow down the velocity of the fluid. It is concluded from Fig. 6 that for larger values of magnetic
parameter Ha, the momentum of the fluid decelerates. A rise in the magnitude of Ha tends to
increase the Lorentz forces which works as a drag force and retards the fluid motion. Moreover,
the effect of angular rotation γ is drawn in Fig. 7. It can be noted from the sketch that velocity
decreases for a large value of γ . From the mathematical relation of γ it can be seen that γ it has
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a direct variation with viscous forces of the fluid so larger the magnitude of γ the fluid motion
decrease.

Figure 2: Effect of thermal Grashof number Gr on the velocity profile
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Figure 3: Effect of mass Grashoff number Gm on the velocity profile

Figure 4: Effect of retardation time parameter λ on the velocity profile
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Figure 5: Effect of volume fraction ϕ on the velocity profile
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Figure 6: Effect of magnetic parameter Ha on the velocity profile

Figure 7: Effect of rotation parameter γ on the velocity profile
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Variation in the Sherwood numbers has been discussed in Tab. 2. As the volume fraction ϕ

increases, the rate of mass distribution decrease. By introducing nano-silver in the mobile oil bring
enhancement in the density; as a result, the fluid becomes denser, which leads to slow down the
rate of mass distribution.

Table 2: Variations in Sherwood number

ϕ Sc α t Sh %

0.00 5 0.2 1 0.048 —
0.01 5 0.2 1 0.045 6.6
0.02 5 0.2 1 0.040 17.77
0.03 5 0.2 1 0.037 24.44
0.04 5 0.2 1 0.035 28.88

Tab. 3 shows a change in the rate of heat transfer of Engine oil with Silver nanoparticles.
It can be seen from the table that by increasing the volume fraction of Ag nanoparticles, the
heat transfer rate has been increased by 14.59%. It is physically true that by adding silver
nanoparticles in regular engine oil, its mechanical properties e.g., improving the load-carrying
capacity, adsorption and deposition, and minimization of skin friction which will consequently
improve the workability of the engine.

Table 3: Variation in Nusselt number

ϕ Rd α t Nu %

0.00 2 0.2 1 0.185 −
0.01 2 0.2 1 0.191 3.24
0.02 2 0.2 1 0.198 7.02
0.03 2 0.2 1 0.205 10.81
0.04 2 0.2 1 0.212 14.59

5 Concluding Remarks

In the present work, the role of nano-silver on the life span and mechanical properties of
engine oil has been investigated. For the mentioned analysis, Jeffrey nanofluid model has been
assumed in a rotating frame. The Laplace transform technique has been used to gain the solution
of the governing equations. The key and worthy features that are observed from the study analysis
are presented below:

• Enhancing the order of the fractional parameter α slows down the flow motion.
• Both the parameters Gr and Gm boost up the fluid motion.
• For higher values of λ, γ , Sc and ϕ motion of the fluid slow down.
• The opposite behavior is noticed for MHD and Permeability.
• As the volume fraction increase from 0.00 to 0.04, an efficiency of 14.59% in the heat
transfer rate and 28.8% efficiency was reported for the mass transfer rate.
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