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Abstract: Breast cancer positions as the most well-known threat and the main
source of malignant growth-related morbidity and mortality throughout the
world. It is apical of all new cancer incidences analyzed among females. Two
features substantially in�uence the classi�cation accuracy of malignancy and
benignity in automated cancer diagnostics. These are the precision of tumor
segmentation and appropriateness of extracted attributes required for the
diagnosis. In this research, the authors have proposed a ResU-Net (Residual
U-Network) model for breast tumor segmentation. The proposed methodol-
ogy renders augmented, and precise identi�cation of tumor regions and pro-
duces accurate breast tumor segmentation in contrast-enhanced MR images.
Furthermore, the proposed framework also encompasses the residual network
technique, which subsequently enhances the performance and displays the
improved training process. Over and above, the performance of ResU-Net
has experimentally been analyzed with conventional U-Net, FCN8, FCN32.
Algorithm performance is evaluated in the form of dice coef�cient and MIoU
(Mean Intersection of Union), accuracy, loss, sensitivity, speci�city, F1score.
Experimental results show that ResU-Net achieved validation accuracy &
dice coef�cient value of 73.22% & 85.32% respectively on the Rider Breast
MRI dataset and outperformed as compared to the other algorithms used
in experimentation.

Keywords: UNet; segmentation; residual network; breast cancer; dice
coef�cient; MRI

1 Introduction

E-health care systems are emerging as the recent trends in the health-care sector. This system
is consistently becoming more effective by providing swift and accurate results with the advance-
ment of technologies. The e-health care system’s application domains are quite pragmatic and
prevalent and are also being implemented for breast cancer disease. Breast cancer is a serious
threat worldwide and can be considered one of the world’s leading causes of mortality. On average,
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one in every four women is suffering from this illness [1]. According to recent data, nearly
2 million new cases are observed per year. There has been a steady increase in breast cancer
cases and mortality rates, largely due to lack of knowledge, lack of understanding, and disease
identi�cation at the last stage. According to reports by the WHO (World Health Organization) and
IARC (International Agency for Research on Cancer), approximately 8.2 million cancer deaths
were reported in 2012, and this is expected to hit 27 million by 2030, a whopping 18% rise
per year [2,3]. If it is detected and diagnosed at an initial stage, then the survival rate can be
improved. There are different diagnostic methods available for identi�cation at an early stage,
such as mammograms or X-rays, breast MRI (Magnetic Resonance Imaging), thermography [4].
MRI is generally used for breast cancer patients with dense breasts [5], and it is extremely
prone to demonstrate parenchymal breast lesions as compared to mammograms [6,7]. However,
breast MRI lesions are already detected by radiologists; therefore, its main aim is to identify
and differentiate between benign and malignant lesions. Moreover, the applicability of MRI is
manifold. It can be used to scan high-risk females for breast cancer and assess the magnitude
of cancer after diagnosis [8]. MRI results can give a baseline for monitor reports to NACT
(Neoadjuvant Chemotherapy) that could predict the pCR (pathological complete response) is
appropriate or not [9]. Further, Dynamic Contrast-Enhanced MRI is also being increasingly used
as a supplementary image for breast tumor evaluation because it is a good tool for diagnosis,
prediction, and treatment of breast cancer patients and it is ef�cient enough to de�ne the severity
of the disease with morphokinetic and pharmacokinetic parameters [10,11].

Nowadays, various deep learning techniques have also been used by the researchers for
image segmentation [12–14]. Literature shows that many researchers have worked in areas such
as classi�cation, segmentation, detection, and prediction [15–18]. Ronneberger et al. [19] proposed
that the semantic segmentation can further be improved through the inclusion of hierarchical
analysis during the up-resolution stage. This improvement in the segmentation was achieved using
U-Net and a training strategy, which depends entirely on the augmentation of data. Further,
an innovative method was proposed, which af�rms that a completely pre-trained convolutional
neural network such as Googlenet, Alexnet, and VGGnet can be applied for segmentation. Their
acquired information can subsequently be transferred and upgraded via �ne-tuning [20–22]. It has
also been observed that depth is a critical evaluation criterion for enhancing image classi�cation
accuracy. Thus, a deep convolution network with 19 weighted layers was evaluated for large image
datasets [23]. In [24], a deep learning framework was introduced for 3D image segmentation, which
entails a synergized approach of FCN and RNN. Tseng et al. [25] proposed a deep 3D image
segmentation decoder architecture, which uses a combined approach for sequence learning and
cross-modal convolution. A volumetric segmentation approach was proposed, which suggests that
volumetric images should be segmented through the replacement of 2-dimensional operations by
3-dimensional operations and thus extending the conventional U-Net architecture [26,27].

The research demonstrates the modi�ed segmentation model for the RIDER breast MRI
cancer dataset, which utilizes the ResU-Net architecture. To accomplish the goals the results
have been compared and analysed with the H&E dataset. The research contribution has been
summarized as follows:

1. The ResU-Net model has been introduced for breast MRI image segmentation.
2. Experiments are conducted on two different datasets i.e., RIDER Breast MRI and H&E

breast histopathology image dataset.
3. Accuracy, dice coef�cient, MIoU, speci�city, sensitivity, loss, and F1-Score have been taken

as the evaluation metric for checking the robustness of the proposed methodology.
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4. A comparison of the proposed methodology with existing algorithms shows superior results
with same number of set parameters.

5. Empirical evaluation of the proposed methodology has been conducted with state-of-the-
art methodologies such as conventional UNet, FCN8, FCN32, etc. based on the various
training and testing phases.

The structure of this paper is as follows: Section 2 provides a brief overview of related work
done in this area, Section 3 explains the proposed methodology for tumor segmentation-ResU-
Net, training metrics, data set description. Section 4 discusses the evaluation metric used for the
experimental analysis. Section 5 explains the detailed results, the experimental analysis shows the
proposed method and its comparison with the conventional U-Net, FCN 8, and FCN 32 which
is followed by the conclusion.

2 Related Work

Segmentation in medical image analysis is extracting the lesion from a normal tissue region.
The morphology of the tumor changes with the positions of surrounding tissues. Semantic seg-
mentation is a key issue in the �eld of computer vision, and it is very important in medical
image analysis. Many state-of-the-art segmentation algorithms have been implemented by the
researchers for medical image analysis [28,29]. Segmentation makes the basis of various machine
learning and deep learning algorithms to apply localization and segmentation of tumors [30]. The
ef�ciency and ef�cacy of the algorithm directly affect the diagnosis process. It is explicit that
recent developments in the domain of machine learning have created remarkable improvements
in the ef�cacy of different techniques and generated the use of profound learning methods such
as CNN. An extensive literature survey reveals the fact that early segmentation learning methods
were pragmatically based on patch classi�cation techniques in which each pixel was categorized
individually using a picture patch around it [31]. Furthermore, these segmentation methods are
obtained by considering only local context and are therefore prone to failure, particularly in
challenging modalities such as MR images. Different segmentation approaches have been used in
literature such as pixel, geometrical, atlas, and edge detection-based approaches.

Pixel-based approaches usually start at an image threshold to transform the gray picture into
a binary picture [32,33]. Some tweaks have also been introduced in this approach to enhance
the �nal mask [34,35]. Further, it was observed for breast cancer, no previous knowledge of the
patient records needed. Therefore, the use of generated masks is not optimum. As a result, the
acquired breast mask is frequently over-cut, but it always spans to whole breast parenchyma.

Geometrical-based approaches can be considered as an extension of pixel-based segmenta-
tion. In this technique, geometrical considerations were used to improve the masking capabili-
ties [36–38]. However, there is a trade-off between the improvement and complex and substantial
computational effort to characterize the human body in this approach. It is also pertinent to
mention that due to the low generalization capabilities, the competitive advantage of this technique
has been compromised.

Atlas-based approaches Atlas-based approaches use two features, i.e., image segmentation and
anatomical atlas items [39]. This technique can be effectively used for breast image segmentation.
In general, this sort of strategy works ef�ciently when applied to a disparate volume set. However,
a distribution and acquisition protocol atlas are required, which limits its implementation and
portability. For atlas techniques, the common criticism is that a limited atlas typically cannot
segment all kinds of breast forms properly owing to the broad anatomic variation. Therefore, an
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atlas-based segmentation is often used for the pectoral muscle, while a pixel-based method is more
frequently used to identify the breast-air border [40].

Edge detection approaches are of paramount importance for brain tumor detection [41]. How-
ever, edge connectivity and edge thickness are signi�cant drawbacks of this technique. A robust
edge detection algorithm (B-edge), which uses multiple threshold paradigm, was proposed to
overcome the limitation [42].

Before deep learning, traditional machine learning algorithms have been used for pixel clas-
si�cation. In the past few years, a lot of algorithms have been proposed for better recognition
and segmentation [43]. In the literature, deep convolutional neural networks implementations
have demonstrated outstanding performance for image recognition, edge detection, and semantic
segmentation [44–46]. CNN based segmentation methods like FCN provide good results over
natural image segmentation. Fuzzy C Means is one of the most widely used biomedical image
segmentation methods because of its fuzzy nature [47]. Generally, a pixel of interest belongs to
multiple groups, that enables FCM to perform in a better way in comparison to crisp meth-
ods [48]. However, two types of problems are associated with FCM. These are the identi�cation
of mixed pixels in an image and the extraction of mixed pixels from the phase [49]. It has also
been observed that the conventional FCM performs better in the absence of the two features that
are quite prevalent for MR images noise and intensity inhomogeneity. Several tweaked versions
of FCM have been modeled by using the spatial statistics in the images to overcome these issues.

U-net is the most popular medical image segmentation technique used [19]; its architecture
consists of the two main parts: The convolutional encoding and decoding units. However, U-net
used in the area of medical image segmentation only, but nowadays, it is also used in the �eld of
computer vision [50]. Meanwhile, many variants of U-net have been proposed by the researchers, a
CNN based image segmentation was proposed for hand and brain MRI in [51]. Two modi�cations
have been done to the conventional U-net model, and the proposed model combines the multiple
segmentation maps created at different scales. It uses the element-wise addition to forward feature
maps from one stage to another. However, Zhuang et al. [52] proposed a residual dilated attention
gate U-net to segment the breast ultrasound images. The plain and residual units have been
replaced from the conventional U-net model so that edge information can be increased, and it
minimizes the network degradation problem associated with the deep networks. Chen et al. [53]
proposed VoxResNet for brain segmentation utilizing 3D MR images. The algorithm had 25 layers
and was capable enough to deal with the large variation in brain tissues. The model is integrated
with the multimodal and multilevel contextual information.

3 Research Methodology

The conventional U-net develops from FCN and works well on smaller training datasets.
U-net interconnects the expanding network with the contracting network. It merges the charac-
teristics of connected contractile layers hence accurately determining the edge data as it grows
and extrapolating the missing edge data. Consequently, this paper attempts to improve the existing
U-net network. The authors have proposed a ResU-net model for breast tumor segmentation. The
RIDER dataset has been used for experimentation, which is supplemented with ground-reality
pictures of MRI scans. In the proposed methodology, a breast tumor image has been segmented
as a binary mask from the breast MRI. The proposed methodology diagram is depicted in Fig. 1.
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Figure 1: Proposed methodology

3.1 Dataset Description
RIDER [54] breast MRI dataset has been used for experimentation, which consists of the

MRI images of the breast. The dataset has a mix of both—healthy (without tumor) and unhealthy
(with tumor) MRI scans. Every patient’s MRI image is supplemented with a segmented mask
image to be provided as a label in the dataset. The dataset description has been provided in Tab. 1.
Fig. 2 depicts sample of dataset images. Fig. 2a depicts the MRI scan of the breast tumor; Fig. 2b
depicts the masked tumor. Figs. 2a and 2b corresponds to the training images, whereas Fig. 2c is
the testing image, and Fig. 2d is the segmented image obtained as output.

Table 1: Dataset description

Statistics Description

Modalities MR
No. of patients 5
No. of studies 10
No. of series 40
No. of images 1,500

(a) (b) (c) (d)

Figure 2: Breast tumor samples from RIDER dataset (a) MRI scan 1, (b) masked tumor 1,
(c) MRI scan 2, (d) masked tumor 2
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3.2 Data Preprocessing
The main drawback of MRI is the absence of regular and quanti�able picture intensity.MR

pictures do not have a standard scale. MRIs of the same person may vary with the intensity of
the same scanner at separate moments, i.e., the tissue intensities of MRI pictures in various MR
scanners are incompatible with one another. Therefore, the performance of the algorithm can be
very signi�cant considering the impact of changes from the scanner rather than the biological
attributes. This issue in the MRI pictures was eliminated in the pre-processing phase with the
intensity standardization method before posting to the training model. The pre-processing has
been done using intensity normalization and z score normalization [55] which uses the breast
image mask to determine the mean (µ) and standard deviation (σ ) of the intensities.

z=
value−µ

σ
(1)

If the intensity value is equal to the mean of intensities, it will be normalized to 0. If
it is below the mean, it will be a negative number, and if it is above the mean it will be a
positive number. The magnitude of the normalized values is governed by the standard deviation
of the intensities.

3.3 Data Augmentation
Data augmentation is an essential step for the introduction of invariance to the model so that

it can scale better rather than amassing the size of the dataset of images. A total of 2200 images
with image augmentation were selected to train the model. Data augmentation has been performed
to increase the diversity of data for training the models [56,57]. It has been implemented using
state-of-the-art techniques such as cropping, padding, and horizontal �ipping to train neural
networks. The data size has been augmented from 1500 to 2200 images. The models use the
following augmentations-rotation range of 0.2; �ll mode = ‘nearest; width shift range of 0.05;
height shift range of 0.05; shear range of 0.05; zoom range of 0.05; horizontal shift.

3.4 ResU-Net Architecture
The architecture comprises two paths—the contraction and the expansion paths that form a

U-shaped path. The contraction path follows a typical neural network architecture to capture the
essential information from the image. It consists of the repeated setting of contraction modules,
each of which takes an input and applies three 3× 3 2D convolutions layers (unpadded, stride
1× 1) followed by ReLu, batch normalization, and residual network. The output from the con-
traction module is then passed through a 2×2 max-pooling layer. After each contraction module,
the size of the image is halved, and the density of kernels or features doubles so that architecture
can ef�ciently understand the intricate structures well. The bottom-most layer acts as the base of
the U-Shaped architecture and joins the contraction path with the expansion path. It performed
the function of a contraction module and followed by a 2× 2 up-convolution layer.

The expansion layer constitutes of several expansive modules, similar and symmetrical to
the contraction layer. This layer has a pivotal role to perform in the architecture as it enables
precise localization intending to increase the image size using transposed convolution layers. Each
expansive module passes the input to two 3×3 convolution layers, followed by a 2×2 up-sampling
layer. To reconstruct the image back to its original size and for better predictions, learned features
from the corresponding contraction modules are appended with the expansive module’s output.
To maintain symmetry with the contraction layer, the number of features used by CNN layers
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gets halved after each expansive module. The resultant image of the expansion layer is, at last,
passed through the last layer, which is a 1×1 convolution layer with 1 �lter to reshape the image.
The ResU-net architecture has been visualized in Fig. 3.

Figure 3: ResU-Net architecture

The U-Net architecture is similar to an encoder-decoder design framework. It has a deep-
learning core based on FCNs and comprises of two parts:

I. An encoder-like contracting path to understand the context through a dense feature map.
It consists of a typical convergence network architecture, which entails a ReLu (Recti�ed
Linear Unit) and a max-pooling operation acting repeatedly.

II. Asymmetrical expansion path similar to a decoder, enabling precise localization. This step
is performed to preserve the border (spatial information) information despite the sampling
and maximum pooling in the encoder stage. The extended path combines the characteristics
and spatial information through a series of upward trends and concatenates with high-
resolution trajectory features.

The two main aspects of improvements as suggested by the authors in the conventional
U-Net are:

a) Residual Network

The residual network is designed to address the issues pertaining to deep network
training [44]. One of the most important unit used in residual networks is the residual mod-
ule. The residual network combines the output of different convolution layers with the residual
module as input to extract the image features, which reduces the training parameters. The resid-
ual network speeds up the training process, solves the network degradation problem in diverse
conditions to some extent, and solves the vanishing gradients problems by reusing activations
from the previous layer until the adjacent layer learns to adapt to its weights during the training
weights. Fig. 4 depicts the residual network. It consists of the convolution layer, followed by
the batch normalization and the ReLu activation. This combination is repeated three times, and
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a skip connection is connected at the end, which passes through the convolution and batch
normalization layer.

Figure 4: Residual network

2) Batch Normalization

Batch normalization technique is used to normalize the data [58]. The activation function will
be evaluated for normalization while using stochastic gradient descent for training. It helps to
use higher learning rates because it ensures there is no extreme high or extreme low activation.
Moreover, it reduces over�tting by adding some noise to each hidden layer’s activation function to
enable the model to use less dropout. Besides, it produces lesser information loss. The normalizing
expression is exhibited in Eq. (2)

x∧(k) =
x(k)−E[x(k)]√

Var[x(k)]
(2)

where x∧(k) represents the new value of a single component, E[x(k)] is its mean within a batch
and var[x(k)] is its variance within the batch.

3.5 Training
The model is compiled using ‘adam optimizer’ and cross-entropy loss function for training

the MRI images. Further, a ground truth map is supplied to the model. Adam optimization is
an extension to SGD, and it has been used to minimize the loss function with the following
parameters β1= 0.9, β2= 0.999, and learning rate= 0.001 with an inverse time decay strategy [59].
The learning rate parameters of adam are adapted based on the average of �rst and second
moments of gradients. Adam optimizer is computed for the training purposes using the Eq. (3).

E[vt]=E[g2
t ] · (1−βt

2)+ ζ (3)

where E [vt] is the expected value of the exponential moving average at time step t, E
[
g2

t
]

relates
to the true second moment, β2 is the decay rate, ζ is a constant whose value is 0 if the true
second moment is stationary; otherwise, it can be kept small. Furthermore, ‘cross-entropy’ loss or
log loss measures the classi�cation model whose probability is in the range 0 to 1. The probability
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distribution is represented by an output vector and the distance between actual and expected
network distribution is represented by cross-entropy. It is more helpful in situations where the
targets are 0 and 1. Cross-entropy tends to allow the errors to alter weights even when nodes are
saturated, which implies that their derivatives are asymptotically near to 0.

4 Evaluation Metrics

In this research accuracy, speci�city, sensitivity, F1 Score, dice coef�cient, MIoU (Mean
Intersection of Union), loss have been taken as evaluation metric to measure the quality of
segmentation results. The different evaluation metric can be computed as:

Dice Coef�cient [60]: The dice coef�cient is numerically equal to twice the area of overlap
divided by the total number of pixels in both the images. A large value for dice coef�cient will
be observed if the similarity index is more between two input sets. Therefore, the greater the dice
coef�cient, the more comparable two pictures are, and more precise is the respective segmentation.
The dice coef�cient is calculated as:

Dice=
2 · |mask∩ prediction|
|mask|U|prediction|

(4)

MIoU [61]: It is de�ned as the average ratio of intersection and union of target mask and
segmented output of the model. IoU metric calculates the common number of pixels between
target and prediction divided by the total number of pixels present across the image and the mask.
If the coincidence value is high MIoU value also increased and better the segmented output. IoU
and MIoU metric is computed as:

IoU =
|mask∩ prediction|
|mask|U|prediction|

(5)

M − IoU =

∑N
i=1 IoUi

N
(6)

The loss function is used predominantly to determine the incoherence between the pre-
dicted value and the actual value. The corresponding model is better if the loss function is
relatively small.

Accuracy, sensitivity, speci�city, and F1 score have been used to evaluate the performance of
ResU-Net with different models. These are associated with true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) of the confusion matrix. These are quali�ers that
de�ne the correctness of the output. The �rst part (True/False) tells about the correctness of the
output, while the second part is the label of the pixel classi�cation, positive if the classi�ed pixel
is a part of the ground truth mask, negative if otherwise. TP, FP, FN, and TN are the numbers
of pixels corresponding to the four categories.

Accuracy: A ratio of the number of correctly predicted tumor pixels to the total number of
pixels in the image.

Accuracy=
TP+TN

TP+FP+FN+TN
(7)
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Speci�city: A ratio of the number of correctly predicted non-tumor pixels to the total number
of actual non-tumor pixels.

Speci�city=
TN

FP+TN
(8)

Sensitivity: A ratio of the number of correctly predicted tumor pixels to the total number of
actual tumor pixels

Sensitivity=
TP

TP+FN
(9)

F1 Score: A measure to evaluate the performance of the model’s classi�cation ability

F1 Score= 2×
Precision×Sensitivity
Precision+Sensitivity

(10)

5 Results & Analysis

The learning curves are commonly used as a diagnostic tool in machine learning algorithms
that incrementally learn from a training dataset. The model can be assessed on the training dataset
and a holdout validation dataset after each update during training, and measured results plots
can be developed to demonstrate learning curves. The loss curve is plotted concerning the number
of epochs of training and validation data. It shows that the current loss is decreasing with the
increase in the number of epochs as the model is training. In addition, it also illustrates that the
training loss is less than the validation loss for the same number of epochs. It provides a method
to evaluate how an algorithm models the data. For instance, if the predictions are off, the loss
function will output a high number, whereas if they are right—it will output a lower number.
The loss function used is the cross-entropy in which a higher value of entropy for a probability
distribution represents more considerable uncertainty in distribution, and a smaller value indicates
a more certain distribution. Thus, during training, given an input under the maximum likelihood
estimation, a loss function determines how close the distribution of predictions made by a model
matches the distribution of target variables in the training data. In the cross-entropy function, the
penalty is logarithmic hence offering a small score for small differences (near 0) and an enormous
score for a signi�cant difference (near 1). Fig. 5a shows the loss curve for the ResU-net model
without data augmentation and Fig. 5b represents the loss curve for the ResU-net model with
data augmentation for RIDER dataset and Fig. 5c shows the loss curve for the ResU-net model
without data augmentation and Fig. 5d represents the loss curve for the ResU-net model with
data augmentation for H&E dataset.

The loss curve is plotted concerning the number of epochs of training and validation data. It
shows that loss is decreasing with the increase in the number of epochs as the model is training. It
also exhibits that the training loss is less than the validation loss for the same number of epochs.
However, in both instances, the loss function value is decreasing. The average value of the loss
function is high in the former due to the initial shoot up of loss value in validation data. One
of the main reasons for this can be over�tting caused by data insuf�ciency. Over�tting negatively
impacts the performance of the model by learning every detail and the noise present in the data
due to which the model fails to generalize the concepts on the new unseen data. However, in
the second instance, the data augmentation algorithm has been used to increase the number of
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samples, and it has been observed that the loss function follows a general curve for both training
and validation.

(a) (b)

(c) (d)

Figure 5: (a) Loss curve for RIDER dataset without data augmentation, (b) loss curve for RIDER
dataset with data augmentation, (c) loss curve for H&E dataset without data augmentation,
(d) loss curve for H&E dataset with data augmentation

The segmentation results of the proposed methodology have been compared with Hematoxylin
and Eosin (H&E) dataset [62]. UCSB bio-segmentation benchmark dataset has been used for
comparison analysis, it constitutes mount slides of H&E breast cancer images with binary class
malignant and benign. The dataset consists of the 116 stained normalized images. The results of
the proposed algorithm have been compared with existing algorithms like conventional U-Net,
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FCN-8, and FCN-32. The model loss and model accuracy for RIDER and H&E datasets have
been shown in Figs. 6–9, respectively.

(a) (b)

(c) (d)

Figure 6: Loss and accuracy curves for RIDER and H&E dataset using ResU-Net (a) loss curve
for RIDER dataset, (b) accuracy curve for RIDER dataset, (c) loss curve for H&E dataset,
(d) accuracy curve for H&E dataset

A detailed comparison of the ResU-Net model with the existing models Unet, FCN8, FCN32
using the RIDER dataset has been done. These models have been compared using evaluation
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metrics such as accuracy, loss, dice coef�cient, MIoU, speci�city, sensitivity, and F1 score. Tab. 2
discusses the comparison of various models and their achieved outcomes using the RIDER
dataset. The model introduced in this research ResU-Net achieved training accuracy of 73.71%
and validation accuracy of 73.22%. The dice coef�cient value for ResU-Net is 86.28% at train-
ing and 85.32 at validation. The value for speci�city & MIoU at training time is 84.51%, 67.12%
and 82.24%, 65.40% at validation time. The detailed comparison and its graphical analysis of all
results have been shown in Tab. 2 and Fig. 10, respectively.

(a) (b)

(c) (d)

Figure 7: Loss and accuracy curves for RIDER and H&E dataset using UNet algorithm (a) loss
curve for RIDER dataset, (b) accuracy curve for RIDER dataset, (c) loss curve for H&E dataset,
(d) accuracy curve for H&E dataset
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(a) (b)

(c) (d)

Figure 8: Loss and accuracy curves for RIDER and H&E dataset using FCN8 algorithm (a) loss
curve for RIDER dataset, (b) accuracy curve for RIDER dataset, (c) loss curve for H&E dataset,
(d) accuracy curve for H&E dataset

The proposed methodology has been compared with existing models U-Net, FCN8, FCN32
using H&E dataset also. Tab. 3 discusses the comparison of various models and their achieved
outcomes using H&E dataset. The ResU-Net achieved training accuracy of 92.12% and validation
accuracy of 86.40%. The value for speci�city at training time is 94.23% and 88.44% at validation
time. Tab. 2 and Fig. 11 depicts the detailed comparison of all statistical measures for the various
algorithms used in the analysis for the H&E dataset.
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(a) (b)

(c) (d)

Figure 9: Loss and accuracy curves for RIDER and H&E dataset using FCN32 algorithm (a) loss
curve for RIDER dataset, (b) accuracy curve for RIDER dataset, (c) loss curve for H&E dataset,
(d) accuracy curve for H&E dataset

The quantitative comparison presents the following conclusions from Tabs. 2 and 3:

1. The segmentation performance of traditional U-Net is better than FCN8, FCN32 with
RIDER dataset, but FCN8 outperforms U-Net when applied on H&E dataset.
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Table 2: Comparative analysis of various models using RIDER dataset

Algorithm Loss Accuracy Dice Coef�cient MIoU Speci�city Sensitivity F1-score

Training ResU-Net 0.0026 0.7371 0.8628 0.6712 0.8451 0.4610 0.5716
U-Net 0.0002 0.6819 0.7125 0.6538 0.5721 0.5013 0.5618
FCN8 0.0009 0.6656 0.6924 0.6782 0.6840 0.3482 0.4867
FCN32 0.0239 0.6671 0.6724 0.5937 0.5781 0.3880 0.4156

Validation ResU-Net 0.0026 0.7322 0.8532 0.6540 0.8224 0.4132 0.5514
U-Net 0.0002 0.6702 0.7150 0.6526 0.5120 0.4789 0.5512
FCN8 0.0008 0.6302 0.6728 0.6712 0.6814 0.3491 0.4754
FCN32 0.0242 0.6371 0.6720 0.5914 0.5782 0.3781 0.4125

(a)

(b)

Figure 10: A comparative analysis of statistical measure for various algorithms tested and vali-
dated on RIDER dataset (a) training—RIDER Dataset, (b) validation—RIDER dataset
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Table 3: Comparative analysis of various models using H&E dataset

Algorithm Loss Accuracy Dice coef�cient MIoU Speci�city Sensitivity F1-score

Training ResU-Net 0.3763 0.9212 0.0273 0.4647 0.9423 0.0390 0.0153
U-Net 0.8812 0.2161 0.0272 0.3632 0.2187 0.6170 0.0211
FCN8 0.7274 0.5063 0.0311 0.4155 0.5211 0.2732 0.0179
FCN32 15.1299 0.0009 0.0262 0.0008 0.0000 1.0000 0.0259

Validation ResU-Net 0.4950 0.8640 0.0288 0.4648 0.8844 0.0645 0.0153
U-Net 0.8564 0.1995 0.0302 0.3632 0.2125 0.5592 0.0212
FCN8 0.7098 0.4820 0.0327 0.4155 0.4929 0.2771 0.0182
FCN32 14.9915 0.0019 0.0341 0.0008 0.0000 1.0000 0.0342

(a)

(b)

Figure 11: A comparative analysis of statistical measure for various algorithms tested and vali-
dated on H&E dataset (a) training—H&E Dataset, (b) validation—H&E dataset
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2. The performance of FCN32 has been on the lower side compared to all the other models
in consideration especially for H&E dataset.

In all the evaluation parameters, the proposed ResU-Net outperforms other models, and thus
combing the two modules (residual net, batch normalization) has provided a more sophisticated
segmentation of breast tumor.

The authors have proposed ResU-Net model for MRI images for breast tumor segmenta-
tion and tested on H&E breast histopathology images. The empirical evaluation of the pro-
posed methodology with the existing methodology & H&E dataset shows the robustness of
the ResU-Net.

6 Conclusion

ResU-Net model is proposed for breast tumor segmentation whereas RIDER dataset has
been used for experimentation, which is supplemented with ground-reality pictures of MRI scans.
In the proposed methodology, a breast tumor image has been segmented as a binary mask
from the breast MRI. The performance of the segmentation outputs was evaluated using the six
evaluation indices: accuracy, dice coef�cient, MIoU, sensitivity, speci�city, and F1score. Based on
the experimental results, ResU-Net has shown exceptional improvement in breast cancer tumor
detection over all the other models into comparison. The accuracy observed for ResU-net is more
than the other models. The ResU-net has been able to perform better than the conventional U-net
mainly because of the addition of residual networks. The residual network was able to reduce the
vanishing gradient problem and help obtain higher accuracy. ResU-net performs better than the
FCN’s segmentation model because of three main reasons. First, as it has multiple up-sampling
layers, second, as it uses skip connections and concatenates them instead of adding and third, it
being its symmetric structure. Finally, it is noteworthy that the approach proposed in this work
advances the result towards a more sophisticated tumor segmentation, which is a highly desired
result in the diagnostic domain.
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