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Abstract: Energy efficiency (EE) is a critical design when taking into account
circuit power consumption (CPC) in fifth-generation cellular networks. These
problems arise because of the increasing number of antennas in massive
multiple-input multiple-output (MIMO) systems, attributable to inter-cell
interference for channel state information. Apart from that, a higher number
of radio frequency (RF) chains at the base station and active users consume
more power due to the processing activities in digital-to-analogue converters
and power amplifiers. Therefore, antenna selection, user selection, optimal
transmission power, and pilot reuse power are important aspects in improving
energy efficiency in massive MIMO systems. This work aims to investigate
joint antenna selection, optimal transmit power and joint user selection based
on deriving the closed-form of the maximal EE, with complete knowledge
of large-scale fading with maximum ratio transmission. It also accounts for
channel estimation and eliminating pilot contamination as antennasM→∞.
This formulates the optimization problem of joint optimal antenna selection,
transmits power allocation and joint user selection to mitigate inter-cell-
interference in downlink multi-cell massive MIMO systems under minimized
reuse of pilot sequences based on a novel iterative low-complexity algorithm
(LCA) for Newton’s methods and Lagrange multipliers. To analyze the pre-
cise power consumption, a novel power consumption scheme is proposed for
each individual antenna, based on the transmit power amplifier and CPC.
Simulation results demonstrate that the maximal EE was achieved using the
iterative LCA based on reasonable maximum transmit power, in the case the
noise power is less than the received power pilot. The maximum EE was
achieved with the desired maximum transmit power threshold by minimizing
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pilot reuse, in the case the transmit power allocation ρd = 40 dBm, and the
optimal EE= 71.232Mb/j.

Keywords: Massive MIMO; energy efficiency; base station; active users;
pilot contamination; low-complexity algorithm; radio frequency

1 Introduction

Massive multiple-input multiple-output (MIMO) systems are an increasingly interesting area
of study. They have become an essential technology for fifth-generation (5G) cellular networks
that support big rate traffic. The 5G and beyond-5G based on cognitive radio technologies are
helpful to use the available spectrum to achieve the QoS and increase the overall quality of the
network [1–3]. Furthermore, massive MIMO systems are crucial when investigating power trade-
off pilot sequences for channel estimation to acquire higher energy efficiencies (EEs) for green
communication systems.

One of the major challenges facing massive MIMO systems is pilot contamination (PC),
which arises from a large number of pilot reuse sequences (PRSs) due to non-orthogonal pilot
sequences between neighboring cells. This problem requires a finite number of PRS due to the
limited channel coherence intervals. The interference of active users (UEs) in neighboring cells
is largely determined based on the evaluation of large-scale fading involved in the joint channel
processing [4]. Predicting the mean signal strength decays is highly important in an occupation to
measure the status of the channel due to the raised power created from the distance between the
base station (BS) and UEs based on the large-scale fading. Additionally, the asymptotic signal-
to-interference noise ratio (SINR) only relates to the large-scale fading of UEs that reuse pilot
sequences. Meanwhile, the growth in the number of antenna (NoA) arrays at the BS provides
more power consumption, since every antenna connects with a complex number of radio fre-
quency (RF) chains that consume more power. Massive MIMO systems can achieve higher EE
due to their active interference suppression at reasonable complexities [4,5].

In both the BS and UE, a larger number of RF chains consume more power because of the
processing performance in the digital-to-analogue converter (DAC), power amplifier, multiplexer
and filter. Moreover, all antennas at the BS must connect with the RF chains. It is estimated that
about a third of the total electricity has been consumed, and 30 million tonnes of carbon dioxide
(CO2) is emitted on a yearly basis [6] in multiple cellular systems. Recent studies report that
around 80% of the energy is consumed in the cellular network at the BS. This creates the need to
redesign the BS technology in order to decrease the power consumption, and in turn extend the
battery life at the terminal. One important challenge that arises involves finding a way to reduce
the high hardware complexity due to the consumption of the circuit power at the BS. This depends
on the number of available antennas using the best performing antenna selection, optimal power
allocation, and channel state information (CSI) accuracy for maximal transmission power. There is
also a requirement to reduce the circuit power consumption (CPC) at the BS in order to determine
consumption at the BS by determining the optimal number of RF chains when the NoAs is
increased. BSs are accountable for 80% of the total energy expended in cellular systems. This
significant consumption is a technical challenge that cannot be ignored [7,8]. Achieving maximal
EE is a complex problem. This difficulty is compounded in massive MIMO systems because
designing energy-efficient systems depends on analyzing the growth of the NoAs, distributed users,
and the transmit power in each. Achieving antenna selection and optimal transmission power are
crucial features for increasing EE.
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The EE metric becomes an important design when taking into account CPC. The optimal
transmit power allocation highly depends on selection of the optimal antenna and of flexible
users to improve the EE in the cellular system. More transmit antennas are required to serve
a number of allocated UEs, in which case the RF chains and high CPC are involved in signal
transmission from BS to UEs. Prior work [4,9–12] has investigated a joint PC and transmit data
power allocation with respect to deriving SINR per UEs and the power transmits constraint to
maximize the global EE. Additionally, the EE was maximized using joint pilot optimized power
allocation and an optimal number of activated antennas. The SINR for pilot sequences improved
the channel, making it possible to acquire a closed-form rate of transmitting power allocation,
and a significant NoAs.

In this work, the energy-efficient massive MIMO system focused not only on joint antenna
selection, optimal transmit power, and joint user selection, but also analyzed a CPC to balance
the radiated EE and adjust the length of the pilot sequences to improve channel estimation as
shown in Fig. 1. The new power consumption model for each antenna was proposed based on
transmit power and CPC to obtain the exact power consumption. This algorithm for joint antenna
selection helps in selecting an accurate number of active RF chains to reduce CPC and the PRS,
in order to improve channel estimation and achieve higher data rates and EE. These primary
objectives of this study are as follows:

• To investigate the lower bounds of the achievable downlink (DL) data rate and SINR based
on relative channel estimation with full knowledge of large-scale fading by using PRS and
performance analysis of maximum ratio transmission (MRT) to eliminate different levels
of PC.

• To minimise the consumption circuit power for antenna selection and obtain a high-quality
channel estimate based on correlates of the training signal with the established PRS of
every UE for the linear processing MRT to mitigate interference.

• To analyse the exact power consumption based on a proposed novel power consumption
model for each antenna based on the analysis of the power amplifier and CPC that enable
the use of low-cost RF amplifiers that exploit antenna selection.

• To propose a novel iterative low-complexity algorithm (LCA) for optimal antenna selection,
joint optimal transmit power, and joint user selection under the impact of PRS to achieve
optimal EE.

UE1

Antenna Selection and 
Precoding
Channel 

UE2

UEK

Figure 1: System model for massive multi-cell MIMO
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2 Related Works

The EE metric becomes an important design criterion, because it allows operations to remain
practically affordable through regulated energy consumption levels. The orthogonal pilot sequences
for all UEs in the same cell prevent channel estimation from being affected by the interference of
other UEs. Prior work [13,14] analysed the PC, which impacts the data rate to provide equivalent
channel estimation and reduce inter-cell interference to obtain a suitable performance system
and in turn achieve a high data rate. Furthermore, determining the status of the CSI requires
a comparison of the received pilot from every UE with the recognised pilot signal associated
with that UE. The key requirement for maximising EE is to compute the joint transmission
power and optimal antenna selection under the affected pilot sequences. The number of selected
antennas is crucial, because when the RF chains are connected to the selected antennas, those
antennas consume more power and have a negative impact on EE. Moreover, the increased NoAs
when transmitting pilot sequences to every UE estimate the M channel in the DL. The authors
in [15–21] aimed to enhance the EE by using a novel power consumption model by analysing the
transmit power. They also proposed that the RF chain pattern could be determined by employing
antenna selection schemes to optimise the energy and cost efficiency of the 5G system shown
in Tab. 1. The majority of researchers focused only on reducing RFs at the raised numbers
of antennas to maximise EE, while others investigated the number of RF chains, taking into
account the influence of channel estimation for large PRS when the NoAs increased. However,
the authors in [22–31] investigated the maximum EE by studying the DL massive MIMO system
with optimising the NoAs, a number of UEs, and CPC for transmitting power, by taking into
account the channel estimation and PC. The computational power with a minimum number of
RF chains and the joint antenna selection optimise EE when the transmitter was equipped with
a significant NoA.

Many works have investigated the progress of actual models and efficient algorithms user
selection. Optimal performance EE is achieved by applying lower computational complexity by
employed equal transmit power allocated to every UE. The authors in [32–35] proposed improving
cell capacity by activating a large number of BSs by reducing cost with a limited number of RF
chains. The combinatorial complexity of low-complexity joint antenna selection and user schedul-
ing provide a high cell capacity by mitigating inter-cell interference. The user selection and channel
estimation improved based on mitigating the inter-user interference by using a low-complexity
iterative solution to obtain optimal transmit power control and user selection. Moreover, the
author in [36] proposed the low-complexity iterative solution in multi-cell Non-Orthogonal Mul-
tiple Access-based 5G cellular networks to study the fairness SINR-based exploiting transmit
power allocation for diverse UE. Maximised EE was studied in [37–45] to achieve data rates
with low transmit power by selecting the user’s maximum transmit power and minimum rate
constraints. The maximum EE achieved the minimum required power and rate constraints depends
on analysing the circuit power when the transmitter was equipped with a significant NoA.

In this research, the problem arises due to the increasing NoAs in the massive MIMO system,
due to inter-cell interference for CSI. Moreover, a higher number of RF chains at the BS and
UEs consume more power, due to the processing activities in the DAC and power amplifier.
Therefore, antenna selection, user selection, optimal transmission power, and PRS are vital aspects
in improving EE. In this work, we propose channel estimation with comprehensive knowledge of
large-scale fading to eliminate PC. The channel estimation was evaluated at the received signal
based on the BS correlating the training signal with the recognised PRS of each UE, to achieve
a high-quality channel estimate. This work also investigated the performance of a joint optimal



CMC, 2021, vol.67, no.3 3193

antenna selection, optimal transmit power, and joint user selection with minimum PRS, based on
proposing a novel LCA algorithm by applying Newton’s method and Lagrange multiplier. Whereas
the purpose of using LCA is to improve the joint optimal antenna selection, optimal transmit
power allocation and joint user selection for optimisation problems under the impact of PRS to
maximise EE.

Table 1: The summary of previous related studies on related data rate and EE

Ref. No. Year Problem Features Limitation

[5] 2016 • Large cost of RF
circuits.

• Used energy-efficient
(EEHP-MRFC) algorithm.

• EE Hybrid
Precoding zero
forcing (ZF).• Used the critical NoA

searching (CNAS) to reduce
CPC.

[13] 2015 • Pilot assignment
problem.

• Used joint pilot assignment
and resource allocation.

• Proposed
algorithm

• Number of activated
antennas and power
allocation units.

• Used an iterative algorithm to
solve the transformed problem.

• Conventional
scheme.

[14] 2011 • Problem of pilot
contamination in
multi-cell systems.

• Used training pilot sequences. • ZF and MMSE.
• Achievable data rate by
developing a multi-cell
MMSE.

[17] 2013 • Pilot contamination
effect, the equivalent
system model.

• Used equivalent channel with
pilot.

• Infinite NoA.

• Derived the rate in the lower
bound.

[19] 2013 • More circuit power
dissipated by analogue
devices and a power
amplifier.

• Proposed a practical power
consumption model to
maximise EE.

• Large NoA.
• Proposed CPC.

[22] 2016 • Pilot contamination. • Maximised EE under
optimised NoA, number of
users, and pilot sequences.

• Proposed
(AO-BS)
algorithm.

• Increased CPC.

[34] 2019 • Inter-cell interference. • Maximised EE under optimal
NoA selection, and user
scheduling.

• Adaptive Markov
Chain.• High computational

complexity.

3 System Model

3.1 Received Signal Model
In a DL multi-cell network, every cell contains one BS. Each BS contains several transmit

antennas, M, and users, K, each of which is equipped with one antenna. The BS transmits data
signals simultaneously, where M � K. The assumed channel reciprocities are the same in the
uplink and DL channels, where the channel model hljk ∈ �M×1 is able to assign a different antenna

correlation to every channel between the UEs in BS l and M in BS j. In G ljk ∈ �M , M × 1 is

the small-scale fading channel and Fljk =FljkFH
ljk ∈ �M×M accounts for the corresponding channel



3194 CMC, 2021, vol.67, no.3

correlation matrix for large-scale fading (from BS l to UE k in cell j). The channel between BS l
and the K th user in cell j is given by the following equation:

hljk =
√

FljkG ljk (1)

The DL assumed that the BS is working with an imperfect CSI. The received signal of the
K th user, Yjk inside the jth cell can be expressed as follows:

Yjk =
√
βpρd

K
hHjjkVjkgjk+

√
βpρd

K

K∑
l=j

hHjjkVjigji+
√
βpρd

K

L∑
l=1,l �=j

K∑
i=1

hHljkVlkglk+njk (2)

where hHljk is the Hermitian transpose channel matrix, and the UEs, K, in every cell employ

orthogonal pilot reuse to estimate the channel. The transmit signal vector for the BS ∂lk =Vlkglk ∈
�M , glk ∈ �M×K representing the linear precoding matrix, Vlk ∈ �K ∼ CN (0, IK) is the data symbol
transmitted from the BS in cell l to the UEs, and ρd is the DL transmit power. The channels are
estimated using pilot sequences transmitted by UEs. Through the uplink-training phase, K UEs
in the similar cell transmit an orthogonal pilot sequence, where βp the symbol of the DL is pilot,
and njk ∼ CN (0M×1, IM) is the received noise vector. The massive MIMO worked to acquire
full channel knowledge based on the minimum mean squared error (MMSE) properties employed
in [10]. The distributed channel, hjjk ∼ CN

(
0,ϕjk

)
, can be estimated as follows:

ϕjk =Fllk

(
IM
ρ

+
L∑
n=1

Flnk

)−1

Fljk (3)

3.2 Suppressed Pilot Contamination in Downlink Transmission
Based on the correlated received pilot sequences and channel estimation, the interference is

reduced to achieve low-complexity in channel estimation, which is expressed as follows:

hjjk =Fjjkϕjk

K∑
l �=j

hljk+
njk
ρ1/2

(4)

where ϕjk is the variance channel and Fjjk is the equivalent channel correlation matrix for large-
scale fading. Channel estimation requires a limited number of PRS for channel coherence, so
the received training signal is used for the same PRS to adjacent cells, and can also be used to
estimate the channel as follows:

ωljk =
√
βpρd

K

L∑
j=1

hljk+nlk (5)

The MMSE estimate of the channel depends on ωljk and matrix inversion, where FFH = 1.

According to the received training signal for large-scale fading, FHωljk, the estimation channel
proportional to MMSE is given as follows:

hHljk/
∥∥hljk∥∥= G H

ljkωljk∥∥G H
ljkωljk

∥∥ (6)
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By substituting Eqs. (4)–(6), the channel response is estimated based on the mitigated PC
using a correlated channel matrix. According to [33], the received signal is decomposed as follows:

Yjk =
√
βpρd

K
E

{
hHjjkgjk

}
Vjk+

√
βpρd

K

K∑
i=1,i �=k

(
hHjjkgjk−E

{
hHjjkgjk

})
Vjk

+
√
βpρd

K

L∑
l=1,l �=j

K∑
i=1

hHljkVlkglk+njk (7)

3.3 Achievable Data Rate in Downlink Transmission
The achievable data rate for transmission from BS l is obtained by considering Gaussian noise

as the worst case in the uncorrelated noise channel, which can be represented as follows:

Rtot=KB log2

(
1+ E |Desired signal|2

E |Uncorrelated noise|2
)

(8)

According to several studies [4,9,10,13–17,33–35], PRS is used in the average channel gain of

E

[
hHljkglk

]
. Many antennas employ an orthogonal pilot sequence to evaluate the channel according

to the number of transmit antennas, where the PRS are correlated between the channel, hHljk
and the precoding, glk in a neighbouring cell. The correlation occurred between a signal’s spatial
direction and the regular received signal gain hHljkglk. Obtaining a high-quality channel estimation

depends on when the BS correlates the training signal by the conventional PRS of every UE, and
based on the training received signal for large-scale fading FHξljk. The SINR was derived at the
kth UEs. The conventional user selection is established according to SINR, and the desired signal
for the SINR [36] can be written as follows:

E |Desired signal|2 = βpρd

K

∣∣∣E [hHjjkgjk]∣∣∣2 (9)

The uncorrelated noise power can be written as follows:

E |Uncorrelated noise|2 = βpρd

K
E

{∣∣∣hHjjkgjk−E

[
hHjjkgjk

]∣∣∣2}+
L∑
i=l

βpρd

K
E

{∣∣∣hHjjkgjk∣∣∣2
}

+ βpρd

K

L∑
l=1,l �=j

K∑
i=1

E

{∣∣∣hHljkglk−E

[
hHljkglk

]∣∣∣2}+ σ 2 (10)

E |Uncorrelated noise|2 = βpρd

K

L∑
l=1,l �=j

K∑
i=1

E

[∣∣∣hHljkglk∣∣∣2
]
+

L∑
i=l

βpρd

K

∣∣∣E [hHjjkgjk]∣∣∣2+ σ 2 (11)
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The SINR of UEs is calculated in Eq. (12) as

	dljk =
ρdβp
K

∣∣∣E [[hHjjkgjk]]∣∣∣2∑L
i=l

βpρd
K

∣∣∣E [[hHjjkgjk]]∣∣∣2+ βpρd
K

∑L
l=1,l �=j

∑K
i=1 E

[∣∣∣hHljkglk∣∣∣2
]
+ σ 2

(12)

From the received signal in Eq. (12), the average channel is estimated and interference power
in the closed-form for MRT precoding, which can be expressed as follows:

ρd

∣∣∣E [hHljkglk]∣∣∣2 = d

Mvar
(
hljk

) ∣∣∣{E
∥∥hljk∥∥2}∣∣∣2 (13)

The noise variance was obtained from the large fading. The properties of the variance

channels were used from [26,33]: ρd
∣∣∣E [hHljkglk]∣∣∣2 =Mvar

(
hljk

)
. Using Eq. (4), the row vector of

the channel response estimated, hljk between UEs in the jth cell and the BS in the lth cell, where

var(hljk) = (ρdβpFjjk/(1+ ρdβp
∑L

i=1 Fljk)). The channel CSI was obtained for the MMSE when
the covariance channel interference was small and the pilot power was reasonable. The achievable
data rate in closed-form is expressed as.

RMRT
jk =KB log2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1+

ρdβpM
K

⎛
⎝ Fjjk

1
ρdβp

+∑L
i=1 Fljk

⎞
⎠

︸ ︷︷ ︸
δ

ρdβp
M
K

⎛
⎝ Fljk

1
ρdβp

+∑L
i=1 Fljk

⎞
⎠

︸ ︷︷ ︸
IQ

+ ρdβp
K

L∑
l=1

K∑
i=1

⎛
⎝ Fjjk

1
ρdβp

+∑L
i=1 Fljk

⎞
⎠

︸ ︷︷ ︸
InQ

+ σ 2

Kρd︸︷︷︸
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(14)

Following the asymptotic analysis by [17,26,33–36], based on Eq. (14), the estimated channel
accuracy was obtained based on the received average signal power for the desired signal in
the numerator,

δ= Fjjk(
1

ρdβp
+∑L

i=1 Fljk

) (14a)

According to Eq. (14), the first term in the denominator represents the inter-cell interference
power affected by PC, which is limited in MRT at increased power for the coherence channel,
impacted with a pilot at an increasing number of M.

IQ = M
K

⎛
⎝ Fljk

1
ρdβp

+∑L
i=1 Fljk

⎞
⎠ (14b)
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The second term Eq. (14) in the denominator represents the non-coherence inter-cell interfer-
ence power created by signals from the interfering BSs, and was independent of the NoAs, M.
Meanwhile, an increase in the NoA arrays at BS resulted in more power consumption at a
higher number of RF chains, and increased the amount of the inter-cell interference for channels,
as follows:

InQ = 1
K

L∑
l=1

K∑
i=1

⎛
⎝ Fjjk

( 1
ρdβp

+∑L
i=1 Flik

⎞
⎠ (14c)

The third term Eq. (14) in the denominator, where N represents additive Gaussian noise.

N = σ 2

Kρd
(14d)

From δ in the numerator,
(

1
ρdβp

+∑L
i=1 Fljk

)
, the interference becomes limited in the DL,

while
∑L

i=1 Fljk represents the sum of the square of the propagation transmitted from the BS in
the jth cell to every user inside the lth cell. Each BS provided ab asymptotic data rate with MRT.
Based on these substitutions from Eq. (14a) to Eqs. (14d) and (15) can be simplified as follows:

Rtot=KB log2

⎛
⎝1+

ρdβpM
K δ

ρdβpIQ+ρdβpInQ+ σ 2

Kρd

⎞
⎠ (15)

where B represents the bandwidth of the baseband signal. From Eq. (15), the inter-cell interference

in the denominator can be simplified as

[
ρdβp

(
IQ+ InQ

)+ σ 2

Kρd

]
by substituting

(
IQ+ InQ

)= I . By

using a correlated received pilot matrix, the conventional (low-complexity) channel estimation is
obtained by mitigating the impact of the correlation property of the pilots according to Eq. (9), to
Eq. (14). The interference is limited for imperfect channel estimation with MRT in multi-cell when
the I > 0 and ρd →∞. This allows many orders of EE gains, because a large multiplexing gain is
achieved with small power consumption. The aim is to obtain exact expressions by achieving the
interesting effect of physical insights on the achievable rate of the massive MIMO system, due to
inter-cell interference for CSI, CPC with the number of BS antennas, and the number of users.
Furthermore, it is shown that the exact expression of (14) has remained elusive because it involves
exponential integral functions and becomes more sophisticated and complicated. Therefore, it is
hard to offer intuitive physical insight. To handle these disadvantages, a tractable approximate
expression that could let us have intuitive insights is derived. These insights establish a compelling
rationale for the massive MIMO system. According to the random matrix theory [37,40], the
closed-form of the achievable data rate can be expressed as follows:

Rtot=KB log2

(
1+ ρdβpMδ(

ρdβpI +N
)
K

)
(16)

The improved EE based on the proposed methods for the joint antenna selection, trans-
mit power allocation and joint user selection by utilizing LCA to reduce the CPC and
power consumption.
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3.4 Power Model
The power consumed for DL transmission comprises the power consumed by the circuit and

the power used for pilot transmission. Due to a reduction in energy consumption, a large numbers
of antennas, M allow the use of low-cost RF amplifiers that exploit antenna selection for each
subcarrier, including the pilot sequences and data transmission.

QPA =VQ
(
M∗) (17)

The peak-to-average power ratio (PAPR) followed V= 3× ((M − 2 (M)
1
2 + 1)/ (M − 1)). The

coherence interval for channel estimation involved a finite number of orthogonal pilot sequences
and desired pilot signals, which provide high data power to minimise the power consumption
requirements for antenna selection [38,39]. The transmit RF chain chose the performing antenna
selection in the case an equal power allocation included UEs from Eq. (18). The transmit power
for pilot and data transmission can be expressed as follows:

Q
(
M∗)=

(
� − 1∣∣hljkglk∣∣2

)T
=
(
� − τ 2

α2k

)T
=
(
ρd +

∑M
m=1 βp

)
K

(18)

where � , τ , and  represent the path loss exponent satisfying the constraint power, noise power
at receiver, and the propagation loss respectively. The diagonal matrix in data rate α, contains
singular values αk. The dynamic power consumption Qc consists of transmitting power, a propor-
tional to the number of transmission antennas, and the circuit power of the RF chains QRF . CPC
increases proportionally to the NoA, M. From the practical view of power consumption, CPC
cannot be ignored when the NoA increases. Additionally, CPC Qc, represents baseband processing
power, QBB, due to conversion from analogue to digital or digital-to-analogue (ADC/DAC), and
QRF is the power consumption for each antenna in the RF chains, due to the noise amplifier.
The possibility for RF chains to have limited functionality such as much lower transmit power,
limited PAPR of the power amplifier, and low-resolution ADCs having only a few bits, potentially
reduces the cost per RF frontend, where Qc = QBB + QRF . The total power consumed by the
power amplifier � related to transmission power, ρd , according to [32,39]. To analyse the precise
power consumption, two primary components proposed at the BS: power consumed by the
power amplifier � and power consumed by the circuit, where the CPC accounts for the energy
consumption to the number of RF chains. In order to give physical insights about the radiation of
RF power in massive MIMO system. It is shown that the exact expression of (19) has remained
elusive because the field around an RF transmitter antenna is an energy harvesting system. Also,
from the practical view of power consumption, CPC cannot be ignored when the NoA increases.
The transmitted power might be increased up to the maximum power level according to NoAs,
which can be expressed as follows:

Qmax = V
�K

(
ρd +

M∑
m=1

βp

)
+MQC (19)

4 Low Complexity Algorithm and Problem Formulation

In this process, it is complicated to design the joint antenna selection, joint power allocation
and joint user selection that maximises EE if only using the ratio of achievable data rates to
overall consumed power at the BS for a significant number of transmit antennas.
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4.1 Maximising Energy Efficiency
The maximum of EE depends on calculating the optimisation PRS, βp and data rate used

as the index to compute system output and total power consumption. The aim is to obtain
exact expressions by achieving the interesting effect of physical insights on the maximal EE of
the massive MIMO system. Designing energy-efficient systems depend on analyzing the growth
a higher number of RF chains at the BS and UEs consume more power, due to the processing
activities in the DAC and power amplifier. Furthermore, it is shown that the exact expression
of (20) has remained elusive because EE becomes a quasi-concave function with respect to the
number of antennas in order to give physical insights about the radiation of RF power in massive
MIMO system. To handle these disadvantages, a tractable approximated expression that could let
us have intuitive insights is derived. The new model was used to perform EE by reducing the
consumption power, and this had slightly affected the data rate. The maximised EE based on the
channel condition achieved both high data rates and low power consumption, according Eqs. (16)
and (19), as

EE = Rtot
Qmax

=
KB log2

(
1+ ρdβpMδ

(ρdβpI+N )K

)
V
�K

(
ρd +

∑M
m=1 βp

)
+MQC

(20)

Energy-efficient power allocations maximise the EE by evaluating the transmit power, CPC
and minimum rate constrained with imperfect channel estimation. The EE depends on distributed
users in multi-cell by using a LCA for joint user selection that generates low-complexity at
the BS, and improves the system performance. The conception of the data rate for joint user
selection is denoted by the sum of the products between the binary association and data rate
R=∑

m
∑

k Sm,kRm,k. In order to denote the transmit power allocation and joint user selection,
the user selection Sj,k ∈ {0, 1} determines whether the UEs is connected with BS to UEs. If the
user k is connected with BS, the Sj,k = 1; otherwise, Sj,k = 0. From Eq. (20), the EE increased
jointly and became quasi-concave with the increasing NoA, M, and distributed UEs in every
cell K.

4.2 Proposed Low-Complexity Algorithm for Antenna Selection
According to the optimisation theory [36–39], joint transmit power is less than maximum

transmit power, Qmax. Thus, following Eq. (20), the EE is formulated for the optimisation problem
as follows.

s.t. K ≤M ≤N (20a)

V
�K

(
ρd +

M∑
m=1

βp

)
+MQC ≤Qmax (20b)

ρd ≥ 0 (20c)

βp ≥ 0, m= 1, 2, . . . ,M (20d)

where N is the NoA available. Constraints Eq. (20b) and Eq. (20d) are linear, while the EE

is affected when transmitting ρd and βp based on
(
ρd +

∑M
m=1 βp

)
and becomes quasi-concave

with respect to ρd or
∑M

m=1 βp. The optimisation problem will be solved if ρd +
∑M

m=1 βp is less
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than Qmax. From Eq. (20), the EE decreases with circuit power, Qc when ρd and
∑M

m=1 βp are
fixed due to unavoidable interference from distributed users in the imperfect channel. The Newton
method was adopted to solve the optimisation problem Eqs. (20)–(20d). A general nonlinear
fractional programme can be expressed as

max
MεT

ε̃ (M)= f1 (M)

f2 (M)
(21)

where T ⊆̇U, f1, f2 : T → U, f1 (M) ≥ 0, and f2 (M) ≥ 0. The fractional programme in Eq. (21)
was accomplished under concave-convex conditions, where f1 (M) is concave and f2 (M) is convex
on T [40]; the maximum EE constraint can be expressed as:

max
MεT,ε∈ψ

ε̃

s.t
f1 (M)

f2 (M)
− ε̃ ≥ 0 (22)

where ψ as the antenna set of the cell. However, after the calculated derivative was zero, the
Newton method delays. For small values of the derivative, the Newton iteration off shoots away
from the current point of repetition and can converge to a root far away from the intended
domain. Obtaining the solution of the optimisation problem depends on rewriting Eq. (22) based
on using the fractional programme, as follows

ξ (ε̃)=max
M

f1 (M)− ε̃f2 (M)= 0 (23)

where f1 and f2 represent the concave, ε̃f2 (M)is the fixed value with the concave, and ε̃ is the
peak value of the objective function in Eq. (21). Following Eq. (20), the problem of joint optimal
antenna selection can be expressed as

M∗ = argmax
M

KB log2
(
1+ ρdβpMδ

(ρdβpI+N)K
)

V
�K

(
ρd +

∑M
m=1 βp

)
+MQC

(24)

Eq. (24) shows that the numerator of EE(M∗) is concave, whereas the denominator is convex.
A low-complexity iterative algorithm is employed to compute the optimal antenna by informing
the iteration for every UE, to obtain the root of ξ (εn), which is estimated using Newton’s method
to solve the root of ξ (εn).

εn+1 = ε̃n− ξ (εn)

ξ ′ (εn)
= f1 (M∗)
f2 (M∗)

(25)

where M∗ is the optimal value of ξ (εn); the function can also be represented as f1 (M∗) =

log2(1+
(
ρdβpMδ/(ρdβpI +N)K

)
) and as f2 (M∗)= V

�K

(
ρd +

M∑
m=1

βp

)
+MQC . Our objective is to

obtain a LCA for an optimal antenna using the constrained transmit power in Eqs. (20b)–(20d).
From Eq. (24), the NoA is inversely proportional Qc at a significant NoA, which in turn creates
the interference for a significant number of PRS, and consumes more power in the denominator.
To achieve the maximal EE, the PRS βp needs to be minimised when the number of βp is smaller
than the optimal number of available antennas. Every antenna M must transmit its pilot sequences
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using maximum transmit power ρd . According to Eq. (24), the near-optimal antenna selection M∗
was proved, which is proportional to the distributed number of users K. Moreover, the optimal
antenna M∗ updates the iteration for every UE to obtain the optimal value of ξ (εn), which can
be obtained using Eq. (26) when the value of Qc is small, which does not affect the value of Qc.

M∗ =
[

�B
Qcεn ln 2

−
(
ρdβpI +N

)
δρdβp

]
K (26)

εn converges to optimal values when the constraint conditions are achieved according to
Eqs. (20a), (20b).

Algorithm 1: The proposed low-complexity algorithm for antenna selection
1: Input M, K, βp, T, ρd , I , f1 (M) and f2 (M)

2: Initialization: compute Rtot, Qmax according Eqs. (16) and (19) respectively
3: for m= 1→M
4: for k= 1→K
5: Apply the Newton’s methods for antenna selection ξ (ε)=max

M
f1 (M)− εf2 (M)= 0

6: Obtain the optimal NoA selection M∗ according to Eq. (26)
7: Apply constraint NoA and transmission of power according Eq. (20b)
8: Estimated Newton’s method to solve the root of ξ (εn)
9: Obtain the optimal antennas M∗
10: end for
11: end for
12: Obtain maximal EE by updates iteration for Newton’s methods according Eq. (25).

4.3 Proposed Low-Complexity Algorithm for Transmission Power
In this process, the problem in Eq. (20) concerns the quasi-concavity of the system EE

function using the achievable data rates to total power for pilot transmission. The maximum EE
is evaluated based on the transmit power with PRS, max

ρd
= ε s.t. βpρd ≥ 0 from the BS to the

UE. The issue of power consumption between the UEs and BSs arising from the activity of
UEs association with the BS needs to be considered. The joint optimal transmit power with a
LCA is proposed to solve the optimisation problem. A maximum EE was achieved by applying
the constraint user selection for data rate and transmission power, under the impact of PRS,
βp. The maximum EE was evaluated based on transmit power with PRS, βpρd from the BS
to UEs. The EE varies based on the accuracy of channel estimation for the transmitting rate,
user selection and power consumption. To address this problem, these variables were relaxed and
replaced Eqs. (20b)–(20d) with the following:

ε∗ = R∗
tot (ρd)

V
�K

(
ρd +

∑M
m=1 βp

)
+MQC

(27)
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From [12,18,42] the relaxed problem Eqs. (27)–(27i) for transmission power can be expressed
as follows:

s.t. C1 : log2

(
1+ ρdβpMδ(

ρdβpI +N
)
K

)
≥Rmin (27a)

REEK =
K∑
k=1

log2

(
1+ ρdβpMδ(

ρdβpI +N
)
K

)
≥Rmin (27b)

ρd > 0, Sm,k ∈ {0, 1} , ∀m,k (27c)

C2 : Sm,k
V
�K

(
ρd +

M∑
m=1

βp

)
+MQC ≤Qmax (27d)

max
ρd

rtot (ρd)− ε̃
(

V
�K

(
ρd +

M∑
m=1

βp

)
+MQC

)
(27e)

ρd (Rmin)≤ ρd ≤Qmax ∀m∈ {1, . . . ,M} (27f)∑
m∈M

Sm,k ≤Xm ∀m∈ {1, . . . ,M} (27g)

∑
m∈M

km =K (27h)

∑
m∈M

Sm,k = 1, ∀k ∈ {1, . . . ,K} (27i)

where S is an M ×K matrix with every element, Sm,k representing the allocation of distributed
users, ε∗ represents the maximum EE, and Rmin represents the minimum data rate transmitted
to K. According to Eq. (27), the precise value of R∗

tot (ρd) could not be achieved until the relaxed
problem is solved, and the optimal ρd∗ is obtained. The convergence condition for EE is achieved
by updating the transmit power, ρd . The Eqs. (27a) and (27b) achieved the minimum data rate
requirement of all users km to satisfy and guarantee the quality-of-service (QoS), a transmit signal
from BS to UE. The constraints power allocation Eqs. (27c)–(27f) guarantee the upper and lower
transmit power to every selection user. The Eq. (27i) shows that every UE is associated with
only one BS by assigning the channel to one UE. Eqs. (27g) and (27h) represent km, the load
of BS m in the cellular network, and the number of users selection with the BS. The relaxed
problem shows that the EE was still quasi-concave when the total transmit power was used for

the pilot, ρd +
∑M

m=1 βp, when the transmit power is larger than the circuit power in Eqs. (27d)
and (27e). Ebq. (27b) guarantees the minimal rate for every UE k th channel, which involves
guaranteeing the transfer of the minimal rate constraint as achieved by the optimal transmit power
ρd

∗ allocation. From [42,43], the objective function for fractional programming was equivalent to

rtot (ρd) − ε̃
(

V
�K

(
ρd +βp

)+MQC

)
, and was used to obtain the optimal value of ρd∗. The DL
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transmit power allocation is applied to achieve suitable performance in the LCA by using the
Lagrange dual-decomposition method to solve the relaxed problem Eqs. (27)–(27d) as follows:

L (
ρd

∗, 3-1, 3-2
)= KB log2

(
1+ ρdβpMδ

(ρdβpI+N)K
)

∂ρd
−
(
ε̃

(
V
�K

(
ρd +βp

)+MQC

))

+ 3-1 (R−Rmin)− 3-2

(
V
�K

(
ρd +βp

)−Qmax

)
(28)

The maximum EE depends on the updated value of EE, ε̃=max
ρd

rtot(ρd)
V
�K

(
ρd+

∑M
m=1 βp

)
+MQC

which

was obtained by updating the transmit powerρd . From Eqs. (27a) and (27d), it shows that
∂2rtot
∂2ρd

<

0, and the problem formulated in Eq. (27d) became a convex optimisation of transmission power
to all UEs. Furthermore, the affected EE was due to a high pilot, which required optimisation
of the PRS in the high SINR regime. The Lagrange multipliers 3-1 > 0 and 3-2 > 0 corresponded
to the constraints of a data rate, which impacted interference for PRS and transmission power,
which can be seen in Eqs. (27a) and (27d).

The relaxed problem Eqs. (27)–(27d) formulated in Eq. (28) was achieved for a given optimum
value ε̃, when the relaxed problem is converted into a convex problem of distributed power
allocation. The optimisation power allocation in Eq. (28) is solved by using the Karush-Kuhn-
Tucker conditions to obtain the optimal value of the transmission power, ρd , according to [32,39]:

∂L (ρd∗, 3-1, 3-2)
∂ρd

= ∂rtot (ρd)
∂ρd

+ 3-1
∂r
∂ρd

− ε̃ V
�K

(
ρd +βp

)− 3-2
K

≥ 0 (29)

where 3-1 is the Lagrange multiplier vector corresponding to the data rate constraints with element,
ρd ≥ 0, and 3-2 is the Lagrange multiplier corresponding to the transmit power constraint. From
the Lagrange multiplier, the dual-decomposition method can be expressed as

min
3-1,3-2

max
ρd

L (
ρd

∗, 3-1, 3-2
)≥ 0 (30)

The transmit power should be allocated to every user by using a high-channel gain. From
Eq. (30), the optimal transmit power obtained based on fixed and iterative Lagrange multipliers,
where 3-1, 3-2 ≥ 0:

ρd
∗ =

[(
�K (B+ 3-1)
(Vε̃+ 3-2) ln2

−
(
βpI +N

)
βpMδK

)
K

]+
(31)

where [2]+ = max (0,2), ε̃ is the maximal value of Eq. (21). Greater transmit power should be
allocated to pilots to obtain reasonable channel estimation with large PRS, βp when the NoA
is fixed. The optimal power allocation, ρd∗ for every UE in the DL increases with the desired
pilot signals, the power to minimise the power consumption. Furthermore, when ε̃ converges to
optimal values, the optimal transmit power, ρd∗ is obtained based on the power constraints in
Eqs. (27a) and (27i). The EE increases initially, and then decreases due to the increased CPC for
everyM, and impacted the interference for the pilot sequence when the transmitted power was
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increased. The optimal transmission power ρd∗ was derived according to the Lagrange multiplier.
Consequently, the Lagrange multiplier could be updated using the gradient method.

3-1 (ς + 1)= [3-1 (ς)− σ (R−Rmin)]� (32)

3-2 (ς + 1)=
[
3-2 (ς)− θ

(
Qmax− V

�K

(
ρd +βp

))]�
(33)

where σ and θ are step sizes, and ς is the iteration index.

Algorithm 2: The proposed low-complexity algorithm for transmission power allocation
1: Initialize: ε̃, K, βp, M, ς = 1, and N
2: Set output ρd∗

3: While 3-2 = 0, do 3-1 = �K (B+ 3-1)
(Vε̃) ln 2

−
(
βpI +N

)
βpMδK

4: If 3-2 >0 , and 3-1 = �K (B)
(Vε̃+ 3-2) ln2

−
(
βpI +N

)
βpMδK

5: Compute the 3-1, 3-2 according the Eqs. (32) and (33)
6: set ς = ς + 1

7: Comparison If rtot (ρd)− ε̃
(

V
�K

(
ρd +βp

)+MQC

)
> 0.01

8: Return 3-2 and go to step 5

9: Set ρd∗ =
[(

�K (B+ 3-1)
(Vε̃+ 3-2) ln 2

−
(
βpI +N

)
βpMδK

)
K

]+
10: Stop this simulation when the obtain the optimal transmit power.
11: end if
12: end

4.4 Proposed Low-Complexity Algorithm for Joint User Selection
In this section, the proposed low-complexity algorithm jointly realises a determined scheduled

user selection. The network EE is maximised based on an investigation of the relaxed problem
of transmit power allocation and joint user selection. The nonlinear problem in Eqs. (27a)–(27h)
is a very challenging one, which is converted into convex optimisation by satisfying both the
minimum rate and power constraints maxS =∑

m
∑

k Sm,k logRm,k (X,p). The joint optimal user
selection depends on good signal strength transmitted from BS to UE, to mitigate interference.
Low-complexity transmit power and user scheduling was obtained by designing the user selection
and power allocation, S = Sm,k and p = ρd respectively. Notice that the BS transmits a signal
to every UE if ρd �=0, where every UE is able to connect with multi-cell BS. Based on the
relaxed problem in Eqs. (27c), (27g), (27f) and (27i), applying the joint user selection in DL
transmit power allocation achieves a good performance in the LCA by using the Lagrange dual-
decomposition method to solve the relaxed problem Eqs. (27)–(27i) [37–45]. According to the

relaxed problem, the study initiates auxiliary variables Zm =∑K
k=1 Sm,k and defines z= {Zm}. Based
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on the log utility function presentation of the user rate, the relaxed problem was converted into
convex optimisation as follows:

ρk : max
s,p,4

∑
k∈K

∑
m∈M

Sm,k logRm,k−
∑
m∈M

Zm logZm (34)

s.t. Zm =
∑
k∈K

Sm,k ∀m (35)

Eqs. (27)–(27i) (36)

The relaxed problem was converted into a convex optimisation one by using the non-negative
Lagrange dual-decomposition method for joint selection users can be expressed as follows:

L (S,4,ϒ ,0)=
∑
k

∑
m

Sm,k logRm,k−
∑
m∈M

Zm log (Zm)+
∑
m

ϒm

(
Zm−

∑
k

Sm,k

)

+0m
∑
m

(
km−

∑
k

Sj,k

)
(37)

=
∑
k∈K

∑
m∈M

Sm,k
[
log

(
Rm,k

)−ϒm]+∑
m

Zm(ϒm− log (Zm))

+
∑
m

Zm (0m− log (Zm))) (38)

where ϒm, 0m are non-negative Lagrangian multipliers. User selection sets or assigns user direction
to antenna arrays at the BS in multi-cell. In order to denote user selection, the convex optimi-
sation problem with the benefit of the Lagrangian multipliers method is represented as follows:

1= (ϒ)=
∑
k

1=k (ϒ)+1=Z (ϒ,0) (39)

The LCA is improved by assigning the user direction to antennas arrays at the BS. Every user
must achieve a data rate with the smallest transmit power allocation by satisfying the minimum
rate requirement, and adopting user selection

∑
m∈M Sm,k ≤Xm∀m ∈ {1, . . . ,M}. The first term in

Eq. (39), can be expressed as follows:

1=k (ϒ)= sup
S

∑
k∈K

Sm,k
[
log

(
Rm,k

)−Zm
]

(40)

s.t. Sm,k ∈ {0, 1} ∀m,k (41)∑
m∈M

Sm,k = 1, Eqs. (27h)–(27i) (42)
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The Eq. (27i) represents that every user selected with only one BS in order to reduce
interference. The second term in Eq. (39) can be written as follows:

1=Z (ϒ)= sup
Z

∑
m∈M

Zm (ϒm− log (Zm)) (43)

s.t. Zm ≤Xm (44)

where Xm represents the users’ selection with different spatial multiplexing gain of BS antennaM
in the multi-cell. The dual problem 1=ϒ (ϒ) and 1=k (ϒ) can be written as follows:

min
ϒ

=
∑
k

1=k (ϒ)+1=Z (ϒ) (45)

Energy-efficient user selection is enhanced to decrease the total power consumption. In order
to denote the joint user selection, the user selection employs Sm,k = 1 for a LCA that guarantees

the optimal joint selection users k�
k to the BS in multi-cell when k= k�

m. Therefore, the equivalent
transmit power mitigated the influence inter-cell interference to provide the required data rate
Rm,k and selecting the optimal of joint UEs. The optimal solution is obtained by applying the
Karush-Kuhn-Tucker (KKT) conditions to solve a nonlinear problem to be optimal and set the
partial derivative ∂1=Z (ϒ) /∂Zm = 1, when the user selection Sm,k = 1, as follows:

k�
m = argmax

m

(
logRm,k−ϒm

)
(46)

The dual problem is guaranteed with respect to conventional user selection if Sm,k = 0. To find
joint user selection, the KKT conditions apply by deriving ∂1=Z (ϒ) /∂Zm = 0 [30], which has
exponential complexity order to produce

Zm =min
m

(
exp(ϒm+0m−1),Xm

)
(47)

5 Results and Discussions

In this section, we apply a series of Monte Carlo simulations to evaluate the maximal EE
performance of the proposed LCA. The performance presents the proposed channel model that
accounts for imperfect channel estimation using MMSE. The proposed LCA are evaluated as
shown in Tab. 2.

Antenna selection in a massive MIMO system was investigated from the large-scale fading
for channel estimation under PRS. More antennas are equipped for relative channel estimation
with complete knowledge of large-scale fading by using PRS to eliminate PC. In terms of the
relationship between EE and the number of transmitting antennas from the proposed LCA, the
EE values increased when the NoA increased. According to Fig. 2, the number of UEs was
set as K = 20 in every cell, and the number of PRS as βp = K. The EE showed an increasing
trend with low-complexity for optimal antenna selection under minimal PRS. At low transmission
powers (ρd = 12 dBm), and with βp=K = 15, the proposed LCA provided lower EE as compared
to the transmission power of ρd = 12 dBm, and number of users, βp = K = 20. Consequently,
improvement in EE depends on the transmission of M antennas with fixed transmission power.
Furthermore, optimal antenna selection occurs when the transmission power is reasonable, as
demonstrated by Eqs. (20a) and (20b).
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Table 2: The summary aspects LCA design

Terms Remark Number
of UEs K

Number
of M

Value of
EE Mb/j

Value of
ρd dBm

EE with
User

LCA offer optimal users by
employing a training signal with
the established of every UE to
obtain a high-quality channel
estimate, and support high
transmit data channels.

80 100 44.776 42.5

EE with
Antenna

The LCA provide joint optimal
antenna with uniformly good
services, this is because LCA clips
the transmit power at the BS to
maximize the system EE.

20 100 88 12

EE with
Power

The LCA algorithm offers good
tradeoff a constant power
consumption, and tends to use the
minimum NoAs based on (27a)
and (27h) since further increasing
the transmit power does not
activate more antennas to provide
more energy-efficient.
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K = 10, d = 12dBm, proposed low- complexity algorithm

K = 15, d = 12dBm, proposed low- complexity algorithm

K = 20, d = 12dBm, proposed low- complexity algorithm

Figure 2: Performance of the proposed LCA withM under the effect of pilot sequences user
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According Fig. 2, the maximal EE depends on the number of antennas that can be selected.
When the number of multipath increased at number RF= 100, the EE started to decrease because
the switches of RF did not achieve a sufficient resolution, which limited transmission and led
to exploding costs and power consumption. Consequently, to become more energy-efficient, the
number of RF chains needed to be connected to only a subset of the BS antennas. Only a few RF
transmissions needed to be highly promising in achieving a balance between the rate enhancement
and power saving.

Fig. 3 shows the EE versus the minimum data rate Rmin. The maximum EE was achieved
with a minimum rate according to Eqs. (27a) and (27b). The minimum rate constraint depends
on the guarantee minimum rate constraint for every UE. From Eq. (27b), the minimum rate was
achieved with the minimum transmit power. In the scenario ρd

∗ = Qmax, the minimum Rmin is
not achieved, since the channel gains and Rmin requirement affected every UE, and the optimal
solution is to transmit power greater than the CPC. A significant number of UEs increase with
large transmit power, but decreases with the a minimum rate Rmin. The EE increases depending on
the optimal transmit power ρd∗ to several of the distributed UEs K. After that, the EE decreases
with increasing high data rate, because of large transmit power to UEs according to Eq. (27b).
The EE decreases with an increase in a high data rate and a weak channel, as well as the effect
of PRS. According to Fig. 3, when the number of UEs βp = K = 20 and ρd = 12 dBm, the
maximal EE= 37 Mbits/J, and the minimum rate Rmin = 3 (bits/s). However, when the number of
UEs is decreased K = 15 and ρd = 12 dBm the maximal EE= 28 Mbits/J and the minimum rate
Rmin = 5 (bits/s). Meanwhile, when the number of users K = 10 and ρd = 12 dBm, the maximal
EE= 22.5 Mbits/J, and the minimum rate Rmin = 8 (bits/s). However, the proposed low-complexity
algorithm offers a large value of EE when the transmission power is high (ρd = 12 dBm) and the
number of distributed UEs is large (βp =K = 20). The EE improved with optimal transmit power
and better channel gains to provide minimum rate requirements.
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Figure 3: Performance of the proposed low-complexity algorithm with minimum rate Rmin
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From Fig. 4, the proposed LCA results in improved EE based on the transmit power with
PRS. Fig. 4 shows that, after obtaining a high maximum value, the EE starts to decrease due
to an increase in the transmission power and the number of distributed users inside the cells,
which depends on the transmission power and power of the PRS. The EE was quasi-concave
when the transmission power exceeded the CPC, as well as under optimal transmit powers that
satisfied the constraint in the relaxed problem Eqs. (27)–(27d). From Fig. 4, when the maximal
EE = 71.232 Mbits/J, the transmit power, ρd = 40 dBm with (K,M) = (20, 100). However, when
the NoA is small (K,M) = (15, 60), the transmit power, ρd = 35 dBm, and the maximal EE =
64.7015 Mbits/J. Furthermore, in the case the NoA decreases to (K,M) = (10, 30), the transmit
power, ρd = 30 dBm, and the maximum EE= 58.6404 Mbits/J. This shows that the maximum EE
was achieved with the desired maximum transmit power and minimum PRS. The reason for this
is because more antennas must be activated for satisfying the data rate requirement. However,
as the maximum transmit power allowance ρd increases, the proposed LCA gradually approaches
a constant power consumption, since further increasing the transmit power does not activate
more antennas.
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Figure 4: Performance of the proposed LCA with transmission power

According to Fig. 4, note the EE for all curves changes in a nonlinear manner to the transmit
power. Hence, it requires selecting the optimal transmit power according to Eq. (31). It can be
observed that the maximum EE of the proposed LCA starts to decreases in the high transmit
power regime. This is because the proposed LCA clips the transmit power at the BS, in order to
maximize the system EE according to Eqs. (27a) and (27f). In the high transmit power regime, the
data rate requirement is satisfied because of the high transmit power and because the LCA tends
to use the minimum number of antennas based on Eqs. (27a) and (27h). This demonstrates the
effectiveness of the proposed power allocation, especially in the larger power constraint region.
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Fig. 5 shows the EE versus the number of RF chains. The maximal EE decreases faster
with the NoA, M, taking into account the non-coherence inter-cell interference power, InQ =
1
K

L∑
l=1

K∑
i=1

(
Fjjk/(

1
ρdβp

+
L∑
i=1

Flik)

)
in the denominator in the second term in Eq. (14). Based on

the estimation channel, the non-coherence inter-cell interference with the optimal transmit power
increases with more antennas. The optimal number of transmit antennas maximises EE with MRT.
The proposed LCA results in a maximum EE by choosing the optimal activated antenna for RF
chains with sufficient power allocation. The optimal number of RF chains could be selected when
the NoA selection is K ≤ M ≤ N, comparable with all available transmit antennas, and based
on the knowledge of good CSI for every UE according to Eq. (20a). From Fig. 5, the maximal
EE = (22.2, 20, 16) Mbits/J, when the number of RF chains = 5. However, when the number of
RF chains increases= 80, the EE faster decreases EE= (10.8, 11.8, 12.8) Mbits/J.
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Figure 5: Effect of the proposed LCA with the number of RF chains

Fig. 6 shows optimal values for the EE versus the number of UEs. The power is consumed
in the circuit at the BS, primarily due to transmitting signals to every UE. The low-complexity
for user scheduling shows that the EE first increases when the number of UEs is small, and
then decreases when the increase in the number of UEs in every cell depends on the number of
propagation channels. It also minimises PRS due to the limitation of coherence length interval
for channels which require mitigating inter-cell interference. Consequently, a fixed number of UEs
in every cell provides the maximal EE, depending on the NoA and the optimal number of UEs
in every cell. The EE increased monotonically, and started to decrease due to the high transmit
power that employed more RF chains. The maximal EE provided (37.552, 40.384, 44.776) Mbits/J.
The maximal EE is obtained for the corresponding number of users, K = 70, 78, and 80, when the
NoA, M = 30, 60 and 100 respectively. The proposed LCA aims to offer maximum EE, depending
on the movement of UEs, but random users cannot guarantee energy-efficient performance.
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Figure 6: Maximal EE with a distributed number of users

6 Conclusions

In this work, to maximise the EE, a novel iterative low complexity algorithm was proposed for
joint optimal antenna selection, optimal transmit power allocation and joint user selection under
minimised PRS. Our simulation results demonstrate that the proposed iterative low complexity
algorithm was used to maximise the EE based on a reasonable maximum transmit power in
the case the noise power is less than the power of the received pilot sequence. The optimal
antenna selection occurs when the transmission power is practical. The EE is affected by the
use of minimised PRS at high SINRs. The proposed LCA prevented repeated searching for
joint optimal antenna selection, optimal transmission power and joint user selection, in order to
reduce the complexity caused by the increasing NoA. The hybrid precoding technique meets the
anticipate emerging as key solutions and growth of traffic demands for high-data-rate multimedia
of millimetre wave frequency-based for 5G and beyond-5G. This technique of hybrid precoding
equipped with fully-connected and partially-connected structures that are able to reduce hardware
complexity and energy consumption for high-frequency designs.
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