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Abstract: This paper revisits the characteristics of windowing techniques with
various window functions involved, and successively investigates spectral leak-
age mitigation utilizing the Welch method. The discrete Fourier transform
(DFT) is ubiquitous in digital signal processing (DSP) for the spectrum anal-
ysis and can be ef�ciently realized by the fast Fourier transform (FFT). The
sampling signal will result in distortion and thus may cause unpredictable
spectral leakage in discrete spectrum when the DFT is employed. Windowing
is implemented by multiplying the input signal with a window function and
windowing amplitude modulates the input signal so that the spectral leakage
is evened out. Therefore, windowing processing reduces the amplitude of the
samples at the beginning and end of the window. In addition to selecting
appropriate window functions, a pretreatment method, such as the Welch
method, is effective to mitigate the spectral leakage. Due to the noise caused
by imperfect, �nite data, the noise reduction from Welch’s method is a desired
treatment. The nonparametric Welch method is an improvement on the peri-
odogram spectrum estimation method where the signal-to-noise ratio (SNR)
is high and mitigates noise in the estimated power spectra in exchange for
frequency resolution reduction. The periodogram technique based on Welch
method is capable of providing good resolution if data length samples are
appropriately selected. The design of �nite impulse response (FIR) digital
�lter using the window technique is �rstly addressed. The in�uence of var-
ious window functions on the Fourier transform spectrum of the signals
is discussed. Comparison on spectral resolution based on the traditional
power spectrum estimation and various window-function-based Welch power
spectrum estimations is presented.
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1 Introduction

The method of information extraction depends on the type of signal and the nature of the
information being carried by the signal. A fundamental aspect of digital signal processing (DSP)
is �ltering, which is the process of transformation of input sequence to obtain desired output
sequence. A digital �lter is a system that performs mathematical operations on a sampled, discrete-
time signal to reduce or enhance certain aspects of that signal. Digital �lters are pervasive and
play an important role in DSP, which is an important �eld in the present era of communication
systems, digital computer technology, and consumer devices.

The input and output signals in a digital �lter are discrete time sequence. Digital �lters
are linear time invariant (LTI) systems which are characterized by unit sample response. They
are portable and highly �exible with minimum or negligible interference noise and other effects.
Various methods for �lter designs and analysis have been developed. Digital �lters are categorized
in two types: Finite impulse response (FIR) and in�nite impulse response (IIR). Digital �lters
with in�nite duration impulse response are referred to as IIR �lters. The present output of FIR
type �lters depends on present input and past inputs. In comparison to IIR �lters, the FIR �lters
are non-recursive and have greater �exibility to control the shape of their magnitude response.
FIR digital �lters are widely used than IIR ones since FIR �lters are always stable, and have
an exactly linear phase, and arbitrary amplitude-frequency characteristic, etc. Bandpass �ltering
plays an important role in DSP applications. It can be used to pass the signals according to the
speci�ed frequency passband and reject the frequency other than the passband speci�cation.

Spectrum analysis [1–6] is a critical concern in many military and civilian applications, such
as performance test of electric power systems and communication systems, and detection of
mechanical vibration. Power spectrum estimation (PSE) is important in DSP. In applications of
spectral analysis, a narrow main-lobe width of the window function in frequency domain is
required for increasing the ability to distinguish two closely spaced frequency components. There
are mainly two categories of PSE method: Parametric and nonparametric. The periodogram is an
estimate of the power spectral density (PSD) of a signal in time series analysis for examining the
amplitude versus frequency characteristics of FIR �lters and window functions. It is a method of
estimating the autocorrelation of �nite length of a signal, and is easy to compute and possesses
limited ability to produce accurate PSE. As a non-parametric estimator of the PSD of a random
signal, the periodogram is not consistent due to the fact that its variance does not converge
towards zero even when the length of the random signal is increased towards in�nity.

Simple in operation, window function provides greater �exibility in DSP applications. In fre-
quency resolution problems, a narrow main-lobe width of window function in frequency domain is
usually required. Direct truncation is equivalent to the rectangular window shaping. A rectangular
time window has narrow main lobe and wide side lobe with small main lobe to side lobe ratio,
resulting in serious side lobe leakage. Effort has been made to mitigate the in�uence of spectral
leakage of the Fourier transform spectrum by selecting appropriate window functions [7–14]. Some
alternative windows with narrow side lobe, such as the triangular, Hanning, Hamming, Blackman,
and Kaiser windows, respectively, are usually employed in engineering. Most window functions
afford more in�uence to the data at the center of the set than to data at the edges, which
represents a loss of information.

The spectral leakage suppression algorithms [15,16] for the discrete Fourier transform (DFT)-
based spectrum analysis have been extensively studied to relieve the performance deterioration.
The methods include digital �ltering, high-order spectral analysis, leakage compensation in
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frequency domain and weighting the time samples by a suitable window function. Selection of
suitable window function for different applications requires professional knowledge since the win-
dow functions are varied and have different characteristics. The window is optimized to minimize
the maximum (nearest) side lobe. A good resolution in PSE may be achieved by using optimum
size of data sample. Due to computer capacity and limitations on processing time, only limited
time samples can actually be processed during spectrum analysis and data processing of signals.
The original signals need to be cut off, which induces leakage errors.

In spread spectrum system, the individual data sets are commonly overlapped in time to
mitigate the information loss. The frequency-domain interference suppression algorithms always
use data windows to reduce the spectral leakage associated with truncation, and employ overlap
to mitigate the signal-to-noise ratio (SNR) degradation due to windowing. Known as the method
of averaged periodograms used for estimating power spectra, the Bartlett’s method provides a
way to reduce the variance of the periodogram at the expense of a reduction in resolution.
A �nal estimate of the spectrum at a given frequency is obtained by averaging the estimates from
the periodograms derived from non-overlapping portions of the original series. Bartlett’s method
provides a method to reduce the variance of the periodogram in exchange for a reduction of
resolution in compared to standard ones. The variance of the periodogram is reduced by applying
a window to the autocorrelation estimate to decrease the contribution of unreliable estimates to
the periodogram. As a generalization of Barlett’s method using windowed overlapping segments,
the nonparametric Welch’s method [17,18] is an approach for PSE based on the concept of using
periodogram spectrum estimates and is usually employed to reduce the variance of the estimated
PSD. It is an improvement on the periodogram spectrum estimation method where the SNR is
high and reduces noise in the estimated power spectra.

The remainder of this paper is organized as follows. In Section 2, preliminary background on
the Fourier transform is reviewed, including the discrete Fourier transform, and the fast Fourier
transform. The spectrum leakage is introduced in Section 3. In Section 4, window functions
for spectrum leakage suppression are discussed. The Welch method is introduced in Section 5.
In Section 6, simulation experiments are carried out to evaluate the performance for various
designs. Conclusions are given in Section 7.

2 Discrete Fourier Transform

The Fourier transform is employed to transform signals in time domain to frequency domain
and to do the reverse and has been very important in a broad spectrum of expertise, such as
the engineering, mathematics, and the physical sciences. The discrete counterpart of the Fourier
transform is the DFT for implementation on digital hardware. DFT is can be ef�ciently realized
by fast Fourier transform (FFT). Equivalent to the continuous Fourier transform, the DFT
converts a �nite sequence of equally-spaced samples of a function into a same-length sequence of
equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued
function of frequency.

The DTFT transform pair is symbolically denoted by

X (�)= F {x [n]} =
∞∑

n=−∞

x [n] e−j�n (1)

x [n]= F−1
{X (Ω)} =

1
2π

∫
2π

X (Ω) ejΩn d� (2)
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The DTFT is a continuous and periodic function of frequency, whereas the DFT provides
discrete samples of one cycle. Operation on a �nite N point sequence, x [n] using the DFT is
expressed as

X [k]=
N−1∑
n=0

x [n] e−j 2πkn
N , k= 0, 1, 2, . . . , N− 1 (3)

The corresponding inverse DFT (IDFT) is

x [n]=
1
N

N−1∑
k=0

X [k] ej 2πkn
N , n= 0, 1, 2, . . . , N− 1 (4)

A more simpli�ed formulation for DFT can be represented as

X [k]=
N−1∑
n=0

x [n] W kn
N , k= 0, 1, 2, . . . , N− 1 (5)

with the IDFT given by

x [n]=
1
N

N−1∑
n=0

X [k] W−kn
N , n= 0, 1, 2, . . . , N− 1 (6)

where WN is the N root of unity: WN = e−j 2π
N , referred to as the Twiddle factor. The DFT and

the DTFT are connected by the relationship

X [k]=X (Ω) |Ω=k2π/N =X
(

k2π
N

)
(7)

As the sampled Fourier transform, the DFT does not contain all frequencies forming an
image, while only a set of samples which is large enough to fully describe the spatial domain
image. If the original sequence is one cycle of a periodic function, the DFT provides all the
non-zero values of one DTFT cycle.

Table 1: Comparison of number of complex multiplications required for DFT and FFT

N Standard DFT FFT

2 4 1
4 16 4
8 64 12
16 256 32
32 1024 80
64 4096 192
128 16384 448
...

...
...

N (a power of 2) N2 N/2 · log2 N
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In 1965, Cooley and Tukey proposed an ef�cient calculation algorithm of DFT that reduces
the computational complexity to N log2 N. Various FFT algorithms were developed such as
radix-2, radix-4 and split radix algorithm. The implementations of DFT usually employ ef�cient
FFT algorithms, so that the terms FFT and DFT are often used interchangeably. Tab. 1 provides
comparison of workload for DFT (N2) and FFT, where comparison of number of complex
multiplications required us given. The number of complex multiplications for the FFT is calculated
through N/2 · log2 N [1].

3 Spectral Leakage

Signal truncated by time window results in spectral leakage, which causes the signal levels to
be reduced and redistributed over a broad frequency range, and is important for implementing
DSP properly. The �ow chart of the DFT calculation with various processing techniques involved
is shown as in Fig. 1. The rectangular window has narrow main lobe and wide side lobe with
small main lobe to side lobe ratio, which results in serious side lobe leakage. Fig. 2 shows the
discrete spectrum due to signal windowing truncation.

)(tx
Time domain

(discrete)
Signal cutoff

Xa ( jω) Xa (e
jΩ) Xa (e

jΩ)D(ejΩ) XN (k)

)(nx
Calculation of DFT

(frequency domain,

discrete)

)()( ndnxN

Aliasing

effect

Truncation 

effect

Picket-fence 

effect

Figure 1: The discrete Fourier transform (DFT) calculation with various processing techniques
involved

Figure 2: Discrete spectrum due to signal windowing truncation

3.1 Spectrum Leakage Mitigation-Periodic Truncation
The sampling signal length is not integer multiple of the signal period length. Through

the DFT, the sampling signal will result in larger distortion and cause unpredictable spurious
components and spectral leakage. Assume that the signal period is T0, the sampling period is Ts,
and the sampling point is N. The relationship LT0/Ts =N is expected. The DFT algorithm takes
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the small amount of captured data and repeats it to perform the Fourier transform and produce
the frequency spectrum. In the case that the signal is periodic the resulting frequency spectrum
will have no leakage. Since most measured signals will possess non-periodic signals, the problem
is to minimize leakage. Fig. 3 shows the magnitude (in dB) of the DFT spectrum using a periodic
and a non-periodic truncation, respectively.

(b)(a)

Figure 3: Magnitude of the DFT spectrum using a (a) periodic; (b) non-periodic truncation

3.2 Spectrum Leakage Suppression-Enlarging the Data Length in Window Function
Windowing is implemented by multiplying the input signal with a window function. Win-

dowing amplitude modulates the input signal so that the spectral leakage is evened out. Thus,
windowing reduces the amplitude of the samples at the beginning and end of the window. An
input signal can be of any number of dimensions and can be complex.

As data length is increased, the rate of �uctuation in this is also increased. The variance of
the periodogram is reduced by applying a window to the autocorrelation estimate to decrease the
contribution of unreliable estimates to the periodogram. Increasing the width of window function
is equivalent to enlarging the length of segment with large main-lobe-to-side-lobe ratio, which
results in less side-lobe leakage. The spectrum resolution is improved since the main-lobe width
becomes narrower as the length (N) of the data is increased. However, decreasing the main-lobe
width also reduces the suppression capability on spectrum leakage since the energy on the side
lobes is also increased.

4 Window Functions for Spectrum Leakage Suppression

The method of window functions has been very popular in DSP for inhibition of spec-
tral leakage by cutting the signal when the period is delay and two-side is continuous. Many
different window functions have been developed for truncating and shaping a length-N signal
segment for spectral analysis. Frequency domain function in representation of window function is
calculated through

W (Ω)=w (n) e−j�n (8)
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4.1 Rectangular Window
A rectangular window is a function that is constant inside the interval and zero elsewhere,

which provides information about every component of frequency within the range. The simple
direct truncation window has a periodic sinc DTFT, which has the narrowest main-lobe width,
2π/N at the −3 dB level and 4π/N between the two zeros surrounding the main lobe, of the
common window functions, but also the largest side-lobe peak, at about −13 dB. The side-lobes
also taper off relatively slowly. The truncation to a length N − 1 is equivalent to multiplying the
signal by a rectangular window, de�ned as

w (n)=RN (n)=

{
1 0≤ n≤N− 1

0 Otherwise
(9)

The corresponding frequency domain can be expressed as

W (Ω)=w (n) e−j�n
=

1− e−jΩn

1− e−jΩ =
sin
(

ΩN
2

)
sin
(

Ω
2

) e
−jΩ

(
N−1

2

)
(10)

Rectangular window has a narrow main lobe and wide side lobes with small main lobe to side
lobe ratio, resulting in serious side lobe leakage. The minimum stopband attenuation is 21 dB.

4.2 Triangular Window
Triangular windows in time domain are given by either of the followings:

w (n)=


2n

N+ 1
0≤ n<

N+ 1
2

2 (N− n+ 1)
N+ 1

N+ 1
2
≤ n≤N

when N is odd (11a)

or

w (n)=


2n− 1

N
0≤ n<

N
2

2 (N− n+ 1)
N

N+1
2 ≤ n≤N

when N is even (11b)

which can be represented by the uni�ed formulation

w (n)= 1−

∣∣∣∣(n−
N
2

)/
L
2

∣∣∣∣ , 0≤ n≤N (12)

where L can be N, N+ 1, or N+ 2. All three de�nitions converge at large N. The corresponding
transform is given by

W (Ω)=
2

N− 1

sin
(

Ω(N−1)
4

)
sin
(

Ω
2

)
2

e
−jΩ

(
N−1

2

)
(13)
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The main-lobe width for the triangular window is 8π/N, which is twice of the rectangular
one. The maximum side lobe for the triangular window is 25 dB lower than the main lobe, and
the minimum stopband attenuation is 25 dB.

4.3 Hanning Window
As a raised-cosine window, the Hanning window takes the form:

w (n)= 0.5
(

1− cos
(

2πn
N+ 1

))
RN (n) n= 1, 2, . . . , N (14)

with the corresponding frequency domain de�ned as

W (Ω)= 0.58WR (Ω)− 0.25
[

WR

(
Ω−

2π
N− 1

)
+WR

(
Ω+

2π
N− 1

)]
(15)

It has a main-lobe width considerably larger than that of the rectangular window, but with
much lower largest side-lobe peak, at about −31 dB. The side lobes also taper off much faster.
For a given length, it is worse than the boxcar window at separating closely-spaced spectral
components of similar magnitude, but better for identifying smaller-magnitude components at a
greater distance from the larger components. It has a main-lobe width about 3π/N at the −3 dB
level and 8π/N between the two zeros surrounding the main lobe.

4.4 Hamming Window
Like the Hanning window, the Hamming window also belongs to a kind of the raised cosine

window, and thus exhibits similar characteristic to the Hanning window, but further suppresses
the �rst side lobe. The Hamming window is de�ned as

w (n)=
(

0.54− 0.46 cos
(

2πn
N+ 1

))
RN (n) n= 1, 2, . . . , N (16)

which has the frequency domain

W (Ω)= 0.54WR (Ω)+ 0.23
[

WR

(
Ω−

2π
N− 1

)
+WR

(
Ω+

2π
N− 1

)]
(17)

where WR (Ω) is the magnitude spectrum of the rectangular window. For the Hamming window,
99.96% of the energy is in the main lobe. The maximum side lobe is 41 dB lower than the main
lobe, and the minimum stopband attenuation is 53 dB.

4.5 Blackman Window
The Blackman method is used to reduce variance of the estimator, thus presents improvement

in stopband attenuation. As compared to other windows, the Blackman window possesses good
characteristics for audio processing, which has the time domain de�ned as

w (n)=
(

0.42− 0.5 cos
(

2πn
N− 1

)
+ 0.08 cos

(
4πn

N− 1

))
RN (n) (18)
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It has the frequency domain given as

W (Ω)= 0.42WR (Ω)− 0.25
[

WR

(
Ω−

2π
N− 1

)
+WR

(
Ω+

2π
N− 1

)]
+ 0.04

[
WR

(
ω−

4π
N− 1

)
+WR

(
ω+

4π
N− 1

)]
(19)

The maximum side lobe for the Blackman window is 57 dB lower than the main lobe, which
is three times as that of rectangular window, and the minimum stopband attenuation is 74 dB.

4.6 Kaiser Window
Discovered by James Kaiser, the Kaiser window is a simple approximation of the DPSS

(digital prolate spheroidal sequence) window using Bessel functions. The Kaiser window function
is given by

w (n)=

I0

[
β

√
1−

(
1− 2n

N−1

)2
]

I0 (β)
0≤ n≤N− 1 (20)

where I0 (β) is the zeroth-order modi�ed Bessel function of the �rst kind

I0 (x)=
∞∑

k=1

[
1
k!

(x
2

)k
]2

(21)

As a kind of adjustable window function, the Kaiser window provides independent control
of the main-lobe width and ripple ratio. The variable parameter β = πα controls both width and
tapping off, where α is a non-negative real number that determines the shape of the window and
therefore determines the tradeoff between main-lobe width and side lobe labels of the spectral
leakage pattern. As β increases, the main-lobe width becomes larger while the side lobe amplitudes

becomes smaller. The main-lobe width, in between the nulls, is given by 2
√

1+α2, in units of
DFT bins, and a typical value of α is 3. The other selection of variable parameter β is

β =


0.1102 (α− 8.7) α > 50

0.5482 (α− 21)0.4
+ 0.07886 (α− 21) 21≤ α ≤ 50

0 α < 21

(22)

The zero-phase version of Kaiser Window function is given by

w (n)=

I0

[
β

√
1−

(
2n

N−1

)2
]

I0 (β)
(23)
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Fig. 4 presents the time domain amplitudes for various window functions; Fig. 5 shows the
magnitude spectra for various window functions. Performance comparison for various window
functions is summarized in Tab. 2. Higher computational complexity is required due to the use
of Bessel functions. The side lobe of Blackman window outperforms the other windows except
for the Kaiser window, which possesses adjustable parameters and thus provides �exibility.

Figure 4: Time domain amplitude for various window functions

Figure 5: Magnitude spectrum for various window functions
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Table 2: Performance comparison for various window functions

Window used Main-lobe width Maximum side
lobe relative to
main lobe (dB)

Minimum
stopband
attenuation (dB)

Exact Approximate

Rectangular 1.8 π/N 4 π/N −13 21
Triangular 6.1 π/N 8 π/N −25 25
Hanning 6.2 π/N 8 π/N −31 44
Hamming 6.6 π/N 8 π/N −41 53
Blackman 11 π/N 12 π/N −57 74
Kaiser Adjustable Adjustable Adjustable Adjustable

5 The Welch Method

Shown in Fig. 6, a classical periodogram approach is an estimate of the spectral density of
a signal, which can be of any number of dimensions and can be complex. The periodogram is
obtained by performing the DFT calculation, followed by computing the squared magnitude of
the result, as follows

Pxx

(
ejΩ
)
= F {Rxx (m)} =

1
N

F {x (n) ∗ x (−n)} =
1
N
|X
(

ejΩ
)
|
2 (24)

where X
(
ejΩ
)
=

N−1∑
n=0

x (n) e−jnΩ, therefore

Pxx (k)=Pxx (�) |�=2πk/N =
1
N
|X (k) |2, k= 0, 1, 2, . . . , N− 1 (25)

where X (k) =
N−1∑
n=0

x (n) e−j 2π
N kn. The data segment can be expressed as x (n) = x (n+ iD), where

n = 0, 1, 2, . . . , M − 1; i = 0, 1, 2, . . . , L− 1, iD is the starting point for the i-th sequence. If D =
M, the segment do not overlap and the L of data sequence is identical to the data segment of
Bartlett method.

Signal input
DFT/FFT

X (k)
2

1/N

IN(k)X (k)

Figure 6: Flow chart of the classical periodogram approach

In Welch’s method, the original data segment is split up into several data segments where
there might be overlapping points. A time domain window is applied to the individual data
segments after the data is split up into overlapping segments. It is an improvement on the standard
periodogram spectrum estimating method and on the Bartlett’s method, for which the following
procedures are involved: (1) Split up the original data segment into several non-overlapping
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segments; (2) Estimate the PSD/Compute the periodogram by computing the DFT for each
segment, and then compute the squared magnitude of the result, followed by dividing this by the
length; (3) Average over these local estimates for the non-overlapping data segments. The Welch
method is carried out by dividing the time signal into successive overlapping segments, forming the
periodogram for each block, and averaging, which reduces the variance of the individual power
measurements. Fig. 7 provides the �owchart of Welch method with windowing, where the modulo
inside the dotted-line block indicates the area of interest in this research.

Signal input Windowing

DFT/FFT

2

Split the 
signal 
into 
segments

1/N

IN(k)

(Welch method)

X (k) X (k)

Figure 7: Flow chart of the Welch method with windowing

The Welch method is to window the data segments prior to compute the periodogram.

^

P
i

xx (�)=
1

MU

∣∣∣∣∣
M−1∑
n=0

x (n)w (n) e−j�n

∣∣∣∣∣
2

, i= 0, 1, 2, . . . , L− 1 (26)

where w (n) is the window used and U (Ω) is a normalization factor for the power

U (Ω)=
1

M

M−1∑
n=0

w2 (n) (27)

The Welch PSE is the average of modi�ed periodogram

^

P
W

xx (Ω)=
1
L

L−1∑
i=0

^

P
i

xx (Ω) (28)

with the mean value given by

E
[
^

P
W

xx (Ω)

]
=

1
L

L−1∑
i=0

E
[
^

P
i

xx (Ω)

]
(29)

The resolution of PSE is determined by the spectral resolution of each segment which is of
length L, which is window independent.

Var
[
^

P
W

xx (Ω)

]
≈

 1
N

M∑
m=−M

w2 (m)

P2
xi
(Ω) (30)

The windowing processing of the segments is what makes the Welch method a modi-
�ed periodogram.
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6 Performance Illustration and Discussion

To investigate the capability for inhibition of spectral leakage, the power spectra are illustrated
using various window functions before and also after the Welch method is incorporated. Simula-
tion experiments are conducted to evaluate the performance for various designs. Computer codes
were developed using the Matlab® software for testing and veri�cation of the PSE performance.

6.1 Spectra of a Sine Wave Due to Windowing
In the �rst example, the continuous signal x (t) = sin [2π · (10.4) t] + sin [2π · (31.2) t] is

employed, where two frequencies f = 10.4 Hz and f = 31.2 Hz, respectively are involved. The
sampling frequency is fs = 100 Hz, truncated to data length N = 64. The rectangular window
has good resolution characteristics for sinusoids of comparable strength. The original sinusoid
signal in time domain and its magnitude spectrum are shown as in Fig. 8. Fig. 9 provides the
time domain signal with various window functions with N = 64. For each of the subplots, the
original and windowed signals are provided for better illustration. Fig. 10 provides comparison of
magnitude spectra for various window functions, using N= 16, 32, 64 and 128, respectively. The
graphs illustrate the variation based on various window functions. As the length is increased, the
rate of �uctuation in this is also increased.

Figure 8: Original time domain sinusoidal signal and its magnitude spectrum

There are two requirements for the window functions: (1) The main-lobe width should be
as narrow as possible for better resolution; (2) The side lobes should be as smaller as possible,
so as to increase energy on the main lobe, and increase the stopband attenuation. Resolution
represents the ability to discriminate spectral feature and is a key concept on the analysis of
spectral estimator performance. Estimation with low spectrum resolution causes the signal easily
disturbed by the noise, leading to the failure of detection.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Time domain signals with various window functions (a) rectangular, (b) triangular, (c)
Hanning, (d) Hamming, (e) Blackman, (f) Kaiser
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(a) (b)

(c) (d)

Figure 10: Comparison of magnitude spectra for various window functions (a) N= 128, (b) N=
64, (c) N= 32, (d) N= 16

It can be seen that, the rectangular window, with minimum stopband attenuation, has the
clear peaks showing in the graph of the power spectrum estimation and has admirable resolution
characteristics for sinusoids of comparable strength. Ripples in pass band are more in rectangular
as compared to the other windows. Therefore, the rectangular window is generally not recom-
mended due to high side lobes. Both the rectangular and Kaiser windows possess clear peaks
showing in the graph of the PSE, and they have narrower main-lobe width in frequency domain.
As can be seen, the spectral resolution based on the rectangular window and Kaiser windows is
relatively higher, whereas the noise level near the fundamental frequency of the signal is higher.
It is considered that both the rectangular and Kaiser windows are suitable for high precision
spectrum estimation of signals with high SNR among others. As compared to the other ones the
Kaiser window is known as the optimal window since it has maximum attenuation according to
the given width of the main lobe.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: In�uence of data length to the PSE resolution (a) rectangular, (b) triangular, (c) Han-
ning, (d) Hamming, (e) Blackman, (f) Kaiser
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The advantage of using Hanning window method is that it reduces the side lobes and
possesses good frequency resolution over the rectangular window. The Hanning window possesses
better suppression capability on spectrum leakage, while the frequency resolution is relatively
lower, hence suitable for general frequency estimation of signals with low SNR. The Hamming
window is a modi�cation over Hanning window and both present similar characteristics. The
difference between the two is that, at the edges the Hamming window does not get as close to
zero as does Hanning window. The Hamming window is employed to minimize the maximum
nearest side lobes, which possesses a form similar to the Hanning window but with slightly
different constants. It has a similar main-lobe width, but with a much lower largest side-lobe
peak. However, the side-lobes also taper off much more slowly than that with the Hanning
window. For a given length, the Hamming window outperforms the Hanning at separating a small
component relatively near to a large component, but worse than the Hanning for identifying very
small components at considerable frequency separation.

Hamming and Blackman, and possibly Kaiser (with appropriate selection of adjustable
parameters) have larger stopband attenuation. The PSE based on rectangular window has nar-
rowest main-lobe width, meaning that it has best resolution. However, its side lobes are higher
than those of others, with larger leakage induced. Additionally, it has larger deviation between
side lobes and thus has largest variance. On the other hand, the other windows (such as the
Hamming and Blackman, and Kaiser windows, etc.) have wider main-lobe widths, thus possess
decreased resolution. However, they have smaller side lobes, with improved suppression capability
on spectrum leakage. Comparing other methods, the Blackman has the smallest side lobes but the
main-lobe width is the largest. The spectrum resolution of the estimate is improved as the length
N of the data increases in exchange for a reduction of suppression capability. In�uence of data
length to the PSE resolution is shown in Fig. 11, where N = 16, 32, 64, and 128, respectively,
are illustrated.

Figure 12: Power spectrum estimation based on the periodogram approach
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Power spectrum magnitude using Welch method with various window functions (a) rect-
angular, (b) triangular, (c) Hanning, (d) Hamming, (e) Blackman, (f) Kaiser
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6.2 Power Spectrum Estimation Using Welch Method with Various Window Functions
In this subsection, results on PSE utilizing the Welch method with various windows are pre-

sented. The simulation employed an input signal composed of three sine waves, with frequencies
250 Hz, 600 Hz, and 1000 Hz, respectively. A Gaussian-white sequence is added into the signal,
which has the SNR 10 dB. The sampling frequency is 3000 Hz with the number of sampling
points 3000. The data length of FFT is 512. The characteristics of window function are analyzed
from spectrum resolution and noise level. Simulation based on the classical periodogram method
was carried out and thereafter incorporation of the Welch method into various windows, all with
length 512, was performed for PSE. Power spectrum estimation based on the classical periodogram
approach is shown as in Fig. 12. Fig. 13 provides the power spectrum magnitude using the
Welch method. Tab. 3 summarizes the performance comparison on PSE using various windowing
approaches. It can be seen that the Welch’s method reduces noise in the estimated power spectra
at the expense of frequency resolution reduction. The periodogram technique based on the Welch
method is capable of providing good resolution if data length samples are appropriately selected.

Table 3: Comparison of power spectral estimation using various windowing approaches

Window used Average noise
power (dB)

Spectral leakage
mean power (dB)

Improvement based on
Welch’s method (dB)

Rectangular −26.8947 −17.8459 3.9867
Triangular −28.6105 −24.2959 3.0495
Hanning −28.2051 −24.3721 3.1629
Hamming −28.5355 −24.9049 3.2261
Blackman −27.6137 −23.1110 3.1939
Kaiser −27.0262 −18.1267 3.9376

7 Conclusions

This paper deals with the design of FIR digital �lter using various window techniques to
extract the unwanted noise from the signal. Profound insight has been provided in the statistical
properties of the Welch power spectrum estimator. The effect of data length on power spectral
density by the assistant of Welch method in various window functions is shown. Different param-
eters can be adjusted to meet the speci�c engineering requirements in the FIR �lter design process
on the basis of the desired �lter characteristics. According to the kind of signal being analyzed
a speci�c window function should be selected. How the spectral leakage is reduced using various
window techniques is also involved. The effect of leakage and the role of windowing techniques
to show the frequency domain measurements are interpreted. The various windows involved aim
at satisfying two con�icting requirements: simplicity of implementation, comparable to that of
window-based design methods and accuracy in the ful�llment of design requirements. The ideal
window is expected to minimize the maximum nearest side lobes. The quality of the estimate is
increased as the length N of the data is increased. A good resolution in PSE may be achieved
by using appropriate size of data sample. The rectangular window has the narrower main-lobe
width in frequency domain. Various window techniques are employed in this paper, including the
rectangular, triangular, Hanning, Hamming, Blackman and Kaiser windows. Each window has its
own unique advantages and disadvantages.
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Investigation of the spectrum leakage suppression had also been carried out. The performance
of DFT method inherently suffers from the spectral leakage, which is caused by the non-coherent
sampling in the practical acquisition system. Estimation of the power spectrum was performed
using various window functions with the Welch method involved. The superiority on spectrum
leakage suppression algorithm was veri�ed by comparing with the traditional spectrum analysis
based on the DFT with windowing processing. The Welch algorithm splits the random signal
into segments before DFT to reduce the spectral leakage, which uses a modi�ed version of
Bartlett method in which the portion of the series contributing to each periodogram are allowed
to overlap. The PSE has been performed for variable data length using various windows with
the Welch method, which enhances the performance in terms of both resolution and variance.
The Welch method is used to �nd the PSD of a signal with reducing the effect of noise where it
can be seen that the clear peak shows in the graph of the PSE. The Welch method enables the
performance enhancement on PSE of the power spectral density for signals with less distortion
caused by noise.
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