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Abstract: With the advancement in cellular biology, the use of antimicrobial
peptides (AMPs) against many drug-resistant pathogens has increased. AMPs
have a broad range of activity and can work as antibacterial, antifungal, antivi-
ral, and sometimes even as anticancer peptides. The traditional methods of
distinguishing AMPs from non-AMPs are based only on wet-lab experiments.
Such experiments are both time-consuming and expensive. With the recent
development in bioinformatics more and more researchers are contributing
their effort to apply computational models to such problems. This study pro-
poses a prediction algorithm for classifying AMPs and distinguishing between
AMPs and non-AMPs. The proposed methodology uses machine learning
algorithms to predict such sequences. A dataset was formulated based on 1902
samples of AMPs and 3997 samples of non-AMPs. Machine learning algo-
rithms are trained on a �xed number of succinct coef�cients retaining sequence
and composition information of primary structures. The features are extracted
using position relative incidence and statistical moments. System performance
is validated via various validation tests including a 10-fold cross-validation
approach. An overall accuracy of 95.43% was achieved. A comparison of
results with existing methodologies shows that the proposed methodology
outperformed existing methodologies in terms of prediction accuracy.

Keywords: Antimicrobial peptides; multidrug-resistant; antiviral; antibacterial;
cytokine; classi�cation

1 Introduction

Cells are the smallest building blocks among all living beings. The composition of cells forms
tissues and organs. The cells themselves are mainly made up of proteins, further proteins are also
synthesized within cells based on the genetic code stored within the nucleus. To maintain a healthy
balance, living beings require an essential amount of proteins to be present in their body [1].
Proteins or peptides are like chains formed by the composition of simpler amino acids in a certain
sequence. A polypeptide chain is depicted in Fig. 1. Nature diversely makes use of proteins,
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peptides may be used to perform different functions like pathogenic, antimicrobial, antifungal,
amphibian-skin, venom, cancer-anticancer, antiviral, immune-in�ammatory, and many more.

Figure 1: Protein structure

Over the past few years, the use of antibiotics for the cure of infectious diseases has been
greatly increased, this increase has affected a broad range of bacterial strains to mutate gradually
and become immune to currently available antibiotics. Across the board obstruction of bacterial
pathogens to customary antibiotics has incited enthusiasm for the utilization of natural microbial
inhibitors, such as antimicrobial peptides. Antimicrobial peptides (AMPs) are a group of host-
defense peptides, a vast majority of which are gene-encoded and hatched by living beings of
various types. Antimicrobial peptides (AMPs) speak to a huge amount of endogenous compounds
broadly conveyed in nature [2]. Antimicrobial peptides (AMPs) are small atomic weight-bearing
proteins exhibiting a broad range of antimicrobial activity against bacteria, viruses, and fungi.
These peptides seem to have been conserved through the course of evolution. They usually are
positively charged and have both hydrophobic and hydrophilic side that enables the molecule to be
soluble in aqueous environments yet also enter lipid-rich membranes. Antimicrobial peptides have
a broad range of activity and can work as antibacterial, antifungal, antiviral, and sometimes even
as anticancer peptides. Antibacterial peptides work differently by exhibiting various properties like
antibacterial activity, mitogen activity, or by acting as signaling molecules including pathogen-lytic
activities [3]. A lot of work has been done in the �eld of antibacterial peptides, describing their
identi�cation, characterization, and mechanism of action towards understanding their various
biotechnological applications. Extensive work has been done to compile these peptides in the form
of a database.

Antiviral peptides �ght against viruses by preventing viral attachment and providing protec-
tion to the host cell from viral infection. These peptides are usually found in nature but can
also be produced synthetically. Natural sources for extraction of these peptides can be milk,
amphibians such as frog or toad skin, or even multiple types of plants. By studying the behavior
of certain viruses, researchers have developed antiviral drugs that stop them from interacting or
penetrating host cell membranes. A large number of such antiviral drugs are known that stop the
spread of in�uenza viruses [4].

Another important class of peptides that are known to be effective against fungal pathogens
for many years is antifungal peptides [4]. Fungal pathogen has more complex biological structure
from viruses and bacteria thus many fungal infections have been linked to large mortality rates in
many countries [5]. For this purpose, a large number of antifungal peptides have been discovered
or developed to �ght against such complex fungal infections. These peptides disrupt fungi cell
walls as fungal cell membranes are composed of a component called chitin. Antifungal peptides
disrupt the cell wall of fungus as they bear binding capabilities with chitin.

Similarly, cytokine peptides are the messenger of the molecules of the immune system and
they play a vital role in the interaction between two cells. Cytokine mediates cellular interaction
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among lymphocytes, dendritic cells, macrophages, other in�ammatory cells (neutrophils), and
connective tissue cells.

The knowledge of protein 3D (three-dimensional) structures or their complexes with ligands
is vitally important for rational drug design. Although X-ray crystallography is a powerful tool
in determining these structures, it is time-consuming and expensive, and not all proteins can be
successfully crystallized. Membrane proteins are dif�cult to crystallize and most of them will not
dissolve in normal solvents. Therefore, so far very few membrane protein structures have been
determined. NMR is indeed a very powerful tool in determining the 3D structures of membrane
proteins (see, e.g., [6,7]), but it is also time-consuming and costly. To acquire the structural
information in a timely manner, a series of 3D protein structures have been developed by means
of structural bioinformatics tools (see, e.g., a comprehensive review [8] and the long list of papers
cited therein). Meanwhile, facing the explosive growth of biological sequences discovered in the
post-genomic age, to timely use them for drug development, a lot of important sequence-based
information, such as PTM (posttranslational modi�cation) sites in proteins, have been successfully
predicted. Actually, the rapid development in sequential bioinformatics and structural bioinfor-
matics have driven the medicinal chemistry undergoing an unprecedented revolution, in which the
computational biology has played increasingly important roles in stimulating the development of
�nding novel drugs. In view of this, the computational (or in silico) methods were also utilized in
the current study.

With the explosive growth of biological sequences in the post-genomic era, one of the most
important but also most dif�cult problems in computational biology is how to express a biological
sequence with a discrete model or a vector, yet still keep considerable sequence-order information
or key pattern characteristic. This is because all the existing machine-learning algorithms (such
as “Optimization” algorithm [9], “Covariance Discriminant” or “CD” algorithm [10], “Nearest
Neighbor” or “NN” algorithm, and “Support Vector Machine” or “SVM” algorithm [11]) can
only handle vectors as elaborated in a comprehensive review. However, a vector de�ned in a dis-
crete model may completely lose all the sequence-pattern information. To avoid completely losing
the sequence-pattern information for proteins, the pseudo amino acid composition [11] or PseAAC
was proposed. Ever since the concept of Chou’s PseAAC was proposed, it has been widely used in
nearly all the areas of computational proteomics. Because it has been widely and increasingly used,
four powerful open access soft-wares, called ‘PseAAC’, ‘PseAAC-Builder’, ‘propy’, and ‘PseAAC-
General’ [12], were established: The former three are for generating various modes of Chou’s
special PseAAC [13]; while the 4th one for those of Chou’s general PseAAC [14], including not
only all the special modes of feature vectors for proteins but also the higher level feature vectors
such as “Functional Domain” mode (see Eqs. (9), (10) of [14]), “Gene Ontology” mode (see
Eqs. (11), (12) of [14]), and “Sequential Evolution” or “PSSM” mode (see Eqs. (13), (14) of [14]).
Encouraged by the successes of using PseAAC to deal with protein/peptide sequences, the concept
of PseKNC (Pseudo K-tuple Nucleotide Composition) [15] was developed for generating various
feature vectors for DNA/RNA sequences [16], that have proved very useful as well. Particularly, in
2015 a very powerful web-server called ‘Pse-in-One’ and its updated version ‘Pse-in-One2.0’ have
been established that can be used to generate any desired feature vectors for protein/peptide and
DNA/RNA sequences according to the need of users’ studies

In 2013 a predictor namely iAMP-2L was proposed. It used Pseudo Amino Acid Composition
(PseAAC) along with a k-Nearest Neighbor technique for feature extraction and classi�cation
respectively. This technique was noteworthy as it was the �rst one that made use of sequence and
combination information of amino acid residues. Subsequently, a predictor named AMPScanner
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was developed for which the author de�ned a set of descriptive features speci�c to antimicrobial
peptides. Another researcher used the PseAAC methodology along with SVM for the prediction of
the antimicrobial peptides. The author used the CD-HIT approach for the clustering of sequences.
Zare, Mohabatkar, & Faramarzi, in 2015 also applied Chou’s approaches for the prediction of
antiviral peptides. The predictor was only limited to the identi�cation of antiviral peptides. In
2016 Wei et al. [17] proposed a technique called iACP, this sequence-based technique is developed
for the prediction and identi�cation of anticancer peptides. Authors also compare their results
with other researchers. The accuracy was 95.06% and the MCC was 0.897. Meher et al. in 2017
attempted another technique for the prediction of AMPs, in this approach the authors used a
support vector machine (SVM) for classi�cation. Barrett, Jiang, & White in 2018 used a Bayesian
network model for the prediction of antimicrobial peptides activities yielding an accuracy of
94%. Moreover, an in-silico technique based on the SVM classi�er along with PaDEL based
features was devised that provided a peak accuracy of 91.82%. Further work was established on
the AMPScanner model through the incorporation of convolution and recurrent neural networks
proposing an improved iAMPPred model.

As demonstrated by a series of recent publications and summarized in three comprehensive
review papers [14–18], to develop a really useful predictor for a biological system, one needs
to follow “Chou’s 5-steps rule” to go through the following �ve steps: (1) select or construct
a valid benchmark dataset to train and test the predictor; (2) represent the samples with an
effective formulation that can truly re�ect their intrinsic correlation with the target to be predicted;
(3) introduce or develop a powerful algorithm to conduct the prediction; (4) properly perform
cross-validation tests to objectively evaluate the anticipated prediction accuracy; (5) establish a
user-friendly web-server for the predictor that is accessible to the public. Papers presented for
developing a new sequence-analyzing method or statistical predictor by observing the guidelines
of Chou’s 5-step rules have the following notable merits: (1) crystal clear in logic development, (2)
completely transparent in operation, (3) easily to repeat the reported results by other investigators,
(4) with high potential in stimulating other sequence-analyzing methods, and (5) very convenient
to be used by the majority of experimental scientists. The signi�cance of 5-step rule in proteomic
and genomic analysis for drug discovery is further elaborated in [6,18–25].

2 Materials and Methods

This section discusses the proposed methodology articulated for building a robust predictor
for the identi�cation of antimicrobial peptides. Fig. 2 illustrates the �ow of methodology. The
initial step is the collection of experimentally proven robust data from the UNIPROT database. In
the next step, the data is further re�ned to reduce homology using the CD-HIT tool. This re�ned
data is transformed into �xed-sized vectors of coef�cients using the proposed feature extraction
methodology. Machine learning models are trained using these feature vectors. After substantial
training, the model is validated using well-de�ned validation techniques to quantify the accuracy
indexes of the proposed predictor,

2.1 Benchmark Dataset
A major part of the dataset was extracted from the Uniprot database. Uniprot is a freely

accessible and comprehensive resource for proteins and peptides related information and its expla-
nation. The Uniprot protein database consists of a large amount of protein knowledge known as
the Uniprot knowledge base [26,27].
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Figure 2: Flow chart of proposed methodology

A positive data set is mainly composed of AMPs including Antibiotic, Antiviral, Antimi-
crobial, fungicides, and cytokines. Uniprot uses all these terms as keywords for the annotation
of proteins. All the records were queried using the advanced search tool of Uniprot, those
protein sequences were searched annotated with any of the above given Uniprot keywords. Also,
ambiguous and small sequences were excluded that were annotated with words like probably,
fragment, potential, etc. Subsequently, a negative dataset is also obtained from Uniprot and
consists of only non-AMPs. The advanced query options are set such that only those proteins
are extracted which are reviewed and whose annotated properties are experimentally proven
while uncategorized data is left out. The dataset is further uploaded to CD-HIT servers for
redundancy removal and homology reduction. CD-HIT stands for Cluster Database at High
Identity with Tolerance. CD-HIT is an algorithm used for clustering peptides sequences and
is widely used by many researchers. Clusters were obtained from CD-HIT by applying a 60
percent sequence identity cut-off �lter. The CD-HIT server used is available on the website
http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=cd-hit. All the sequences were pro-
vided in FASTA format. The sequence identity parameter was set at 0.6 for 60% sequence
homology. The CD-HIT server returned �les containing numerous clusters within the positive as
well as negative datasets. Only a single representative sequence within each cluster is selected to
reduce homology bias. Thus, a dataset of a total of 1902 AMPs and 3997 non-AMPS are �nalized
for feature extraction after this process.

As in most machine learning (ML) approaches, a dataset is usually divided into two subsets.
One for training and the other for validation. The training dataset usually contains a higher
percentage of data than the validation dataset. In supervised ML approaches the training data
is labeled according to the category to which it belongs. Thus, ML classi�ers train on this data
and alter its parameters accordingly to the target class. Once the model is trained its classi�cation
accuracy is tested on the validation dataset. Classi�cation accuracy can be determined using many
available approaches. The use of jackknife or cross-validation techniques such as 5-fold or 10-fold
to determine accuracy is considered to be the most rigorous and generalized benchmark to analyze
the performance of a predictor. All these techniques compute classi�cation accuracy based on

http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=cd-hit
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multiple independent data subsets. Subsequently, in this paper, the dataset is formulated according
to the following expression:

S= [A∪N] (1)

where ‘A’ represents the positive data containing AMP and ‘N’ represents the negative data
containing non-AMPS. Hence, a total of 1902+ 3997= 5899 data samples are used.

2.2 Feature Extraction
Expressing a biological sequence in a �xed sized vector form may result in losing its important

sequence-based characteristics. Thus, to solve this issue many computational models have been
proposed. These models preserve the basic characteristics of sequences and provide an opportunity
to apply computational models to analyze biological studies.

Thus, to resolve such complex bio-computational problems Kuo-Chen Chou proposed a
sequential protein sampling model “pseudo amino acid composition (PseAAC).” Since then this
model has been used by a large number of researchers [26–28]. The main idea behind PseAAC is
to completely preserve the sequence order characteristics of amino acids. As PseAAC is the succes-
sor of AAC (Amino Acid Composition). AAC consists of 20 components, where each component
is represented from one of the 20 native amino acids based on the occurrence frequency. While
PseAAC contains more than 20 components, the �rst 20 factors belong to the native amino acid
compositions while the remaining components contain the sequence order information. Further,
the components of PseAAC were subsequently enhanced in [29,30] by incorporating numerous
position relative matrices and the introduction of statistical moments. These components along
with position and composition relative coef�cients are explained further.

2.3 Statistical Moments
Multiple types of moments based on speci�c polynomials or distribution functions have been

developed by mathematicians and statisticians. The proposed work uses raw, central, and Hahn
moments to translate previously extracted information into a reduced set of moments.

To calculate the mean, asymmetry, and variance of a probability distribution, raw moments
are used. These moments are scale and location variant. While raw moments are both scale and
location variant, the central moments are location invariant. These moments are calculated along
the centroid of data. Thus, making central moment’s location invariant [7,31]. Additionally, Hahn
moments exhibit both location and scale variant traits. The calculation of these three moments is
important because of their correlation to sequence order information [32,33].

The proposed approach uses a two-dimensional version of these moments. Thus, to
apply these moments, the single-dimensional protein sequences is �rstly transformed into two-
dimensional notation. A matrix P′ is used which transforms all the protein components into an
n× n 2D matrix.

P′ =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 (2)
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After transforming protein sequences, initially, raw moments are computed. The following
equation is used to compute raw moments up to 3 degrees.

Mij =

n∑
p=1

n∑
q=1

piqjPpq (3)

where i+ j corresponds to the degree of raw moments. This equation outputs third ordered raw
moments as M00, M01, M10, M11, M12, M21, M30, and M03.

After the computation of raw moments, we calculate the centroid moments. A centroid is
analogous to the center of gravity which represents the central point of data along which all the
data samples are evenly distributed in all directions. Central moments are calculated using the
following equation:

ηij =

n∑
p=1

n∑
q=1

(p− x)i(q− y)jβpq (4)

where (x, y) is the centroid. Hahn moments requires an evenly dimensioned data organization.
The protein primary sequence has already been transformed into matrix P′. The Hahn moments
of order n are computed using the following equation:

hu,v
n (r, N)= (N+V − 1)n(N− 1)n×

n∑
i=0

(−1)k
(−n)k(−r)k(2N+ u+ v− n− 1)k

(N+ v− 1)k(N− k)k

1
k!

(5)

where the Pochhammer and the gamma symbols values are elaborated in [25]. Further to calculate
the orthogonal moments of 2D data the following equation is used:

Hij =

n−1∑
q=0

n−1∑
p=0

βijh
ũ,v
i (q, N)hũ,v

j (p, N) , (6)

2.4 Position Relative Incident Matrix (PRIM)
The proposed model presents a Position Relative Incident Matrix (PRIM) to quantize the

relative positioning of amino acids in an arbitrary polypeptide chain. This matrix succinctly
represents the relative positioning of all the component residues within a polypeptide chain. PRIM
matrix has a 20× 20 dimension and is represented as:

SRPRIM =



K1→1 K1→2 · · · K1→j · · · K1→20
K2→1 K2→2 · · · K2→j · · · K2→20
...

...
...

...
Ki→1 Ki→2 · · · Ki→j · · · Ki→j
...

...
...

...
KN→1 KN→2 · · · KN→j · · · KN→20


(7)

Ki→j Represents the sum of jth entry position concerning the occurrence of �rst ith entry.
This matrix gives a total of 400 coef�cients which are further reduced to 24 elements by applying
moments on PRIM as input moments.
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2.5 Reverse Position Relative Incidence Matrix
To uncover hidden patterns that reside in datasets, data is thoroughly analyzed from varying

perspectives. Feature extraction approaches help in expanding dataset characteristics in such a
way that it extracts all the valuable data features that are needed for a Machine Learning
(ML) classi�er to improve its accuracy. As stated above the PRIM matrix analyzes the relative
positioning of amino acid residues present in a polypeptide chain. The reverse PRIM (RPRIM)
provides the same information for the reversed primary structure. The following matrix describes
RPRIM in a 20 ∗ 20-dimensional matrix. Each dimension is set at 20 because the number of
natively occurring amino acids is 20. The primary structure of proteins is combinational sequences
of these native amino acids.

SRPRIM =



K1→1 K1→2 · · · K1→j · · · K1→20
K2→1 K2→2 · · · K2→j · · · K2→20
...

...
...

...
Ki→1 Ki→2 · · · Ki→j · · · Ki→j
...

...
...

...
KN→1 KN→2 · · · KN→j · · · KN→20


(8)

Similar to PRIM, this matrix also gives a total of 400 coef�cients which are further reduced
to 24 elements by applying moments with RPRIM as input which constitutes 8 coef�cients each
for raw, central, and Hahn.

2.6 Frequency Matrix Determination
Another common feature extraction approach that is used by multiple researchers [7,29–33]

is the frequency distribution matrix. This matrix annotates the occurrences of amino acids in a
single peptide. The frequency matrix shows the number of times any amino acid is repeated in a
given peptides samples.

Pf = [f1,f2,f3 . . . , f20] (9)

where fi shows the occurrence frequency of ith the amino acid in the polypeptide chain. This
vector-only accounts for compositional information while the sequence order information is
completely lost.

2.7 Accumulative Absolute Position Incidence Vector
As stated above, the frequency matrix shows the number of times each amino acid is repeated

in a given polypeptide sample chain. While doing this frequency matrix completely disregards the
protein sequence information. Accumulative absolute position incidence vector (AAPIV) describes
the absolute position of every amino acid present in a polypeptide chain. AAPIV works by
forming a vector containing 20 elements that contain the sum of all the positions at which
the corresponding native amino acids exist in a given polypeptide chain concerning the starting
position. AAPIV is expressed as follows:

k= u1, u2, u3 . . .u20 (10)
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From the above expression an arbitrary position of the ith the element of AAPIV vector is
calculated as:

µ1 =

n∑
k=0

pk (11)

2.8 Reverse Accumulative Absolute Position Incidence Vector (RAAPIV) Generation
As previously discussed, the feature extraction approaches help in expanding dataset charac-

teristics in such a way that it extracts all the valuable data features that are needed for a machine
learning classi�er to improve its accuracy. Applying the same approach on the reverse input also
improves data characteristics. Similarly, RAAPIV is calculated by reversing a peptide sequence
and then applying AAPIV on this reversed order sequence. RAAPIV is expressed as:

∧= n1, n2, n3 . . . , n20 (12)

The feature set has been derived from the previous work illustrated in [29]. The set of feature
vector coef�cients have been optimally curated such that they provide the most accurate results at
the lowest computational cost.

2.9 Training Algorithm
Many machine learning algorithms have been developed to solve decision problems. Each

algorithm has its pros and cons. A trend in the use of arti�cial neural networks is seen as multiple
researchers have used ANN in many bio-computational decision problems. In this study, ANN
with backpropagation technique is applied for peptides prediction. ANN has been inspired by the
working of the human brain. The human brain consists of neurons that work together to process
and receive information and learn skills from experience. ANN algorithm also works similarly,
it consists of multiple nodes that are linked with each other as shown in Fig. 3. The �rst layer
of nodes in the input layer, the second layer is called the hidden layer while the third layer is
the output layer. Data that needs to be modeled is passed onto the input layer while the hidden
layer(s) are used for processing. Subsequently, the output layer shows the resultant outcome. In
backpropagation, the output of the output layer is again fed into the hidden layer for improving
its classi�cation accuracy upon each iteration to reduce or minimize the error rate in classi�cation.

To obtain an input matrix for ANN, each sequence in the dataset is processed to extract
all the above-described features. Each row in the input matrix corresponds to a single peptide
sequence containing extracted features such as PRIM, RPRIM, FM, AAPIV, and RAAPIV along
with the statistical moments of the two-dimensional transformed sequence [33–38].

One of the most commonly used training functions for ANN is the gradient descent function.
The primary purpose of using this approach is to minimize the error. The gradient descent
algorithm works iteratively to �nd a set of parameters that helps to minimize the primary
function [36]. Gradient function can be expressed as:

θ = θ − γ∇θP (θ) (13)

where the objective function P (θ) is parameterized by θ ∈Rd and ∇θP (θ) represent the gradient
function followed by the learning rate (γ ) .

Similarly, other classi�ers are also trained and evaluated on the same data to evaluate which
classi�er performs best for the described problem. Probabilistic neural networks are governed by
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non-parametric functions to describe the probability density function of each class. Data from
each class is used to derive a probability density function while the probability of new input data
belonging to a certain class is calculated by Bayes’ rule. Support Vector Machine (SVM) is also
another binary classi�er that is �ne-tuned to construct a hyperplane that optimally partitions the
data of both classes. Another classi�er used as a benchmark is the k-nearest neighbor which is
a multiclass classi�er. It forms clusters for each class and computes its centroid. The Euclidean
distance of any new input with all the centroids is computed. The input is assigned to the
class corresponding to the centroid having the least Euclidean distance. Random forest is another
popular classi�er that works as an association of decision trees. Each tree decides the class
based on a subset of feature vectors. A voting algorithm decides the most likely outcome. The
Scikit-Learn library for Python 3.7 provides support for all of these classi�ers.

Input N

Input 4

Input 3

Input 2

Input 1

Error

Error Back Propagation

Input Layer

Hidden 
Layer

Output 
Layer

Figure 3: Architecture of multilayer arti�cial neural network

3 Results and Discussion

Each method shows the model performance in a new unique way. Henceforth, it is imperative
to select which metrics should be used to quantize and explain the classi�cation model more
precisely. Subsequently, the benchmark testing mechanism also needs to be set to score the model’s
classi�cation metrics. Consistently, the Scikit-Learn library for Python 3.7 was used to compute
feature vectors, train models, and draw results through validation techniques.

3.1 Metrics Formulation
The performance of each ML classi�er can only be represented in terms of some evaluation

metrics. The proposed methodology is evaluated using four well-known metric formulations. These
metrics are “Acc” which describes the overall accuracy of the system, “MCC” for �nding the
overall stability of the proposed algorithm, “Sn” and “Sp” for describing the overall sensitivity
and speci�city of the proposed methodology. The conventional formulation for MCC described
by many researchers is dif�cult to understand. But fortunately using symbols introduced in
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converted these metrics formulation expressions in such a way that it was easier to understand
and implement.

Sp = 1−
P±

P−
0≤ SP≤ 1 (14)

Sn= 1−
P∓

P+
0≤ Sn≤ 1 (15)

Acc= 1−
P+−+P−+
P++P−

0≤Acc≤ 1 (16)

MCC =
1−

(
P±
P+ +

P∓
P−

)
√(

1+ P∓−P±
P+

)(
1+ P±−P∓

P−

) (17)

where P+ represents the number of true AMPs sequences. P± represents the total number
of AMPs sequences incorrectly identi�ed as non-AMPs. P− represents the total number of
non-AMPs sequences and P∓ shows the total number of non-AMPs incorrectly predicted
as AMPs.

To further elaborate these equations let assumes some scenarios for example when the value of
P± = 0, it indicates that no AMP sequence was incorrectly predicted as non-AMPs. Thus, giving
the sensitivity value of 1. When P± =P+, it shows that all the AMPs are incorrectly predicted as
non-AMPs, hence the value of sensitivity will be 0. Similarly, when P∓ = 0 indicates none of the
non-AMPs sequenced have been identi�ed as AMPs giving a total speci�city of 1. When P∓ =P−,
then all the non-AMPs sequences are incorrectly predicted as AMPs sequences and the speci�city
value equals 0. When P± = P∓ shows that none of the AMPs in the positive dataset and no
non-AMP sequence in the negative dataset have been correctly predicted. A value of P± = P+

and P∓ = P− shows the worst case and indicates that all of the AMPs sequences and all of the
non-AMPs sequences were incorrectly predicted. In this case, the overall accuracy of the system
will be 0 and MCC=−1.

3.2 Validation Testing
Several validation tests were established to demonstrate the effectiveness of the proposed

technique. Many researchers have used this type of testing approach across all �elds of science.
The simplest of these tests is the self-consistency test. The self-consistency test establishes that
how well the model has responded to the training process. Typically, all the available data is used
to train the model. Once the training converges that model is tested using the same training data.
All the metrics are computed to gather a depiction of how well the model has been trained.
The results of the self-consistency test graphically illustrated with the help of a receiver operating
characteristics (ROC) curve. The curve plots the true positive rate against the false-positive rate.
The area encompassed under the curve is representative of the accuracy of the model. Fig. 4
shows the ROC curve plotted using the results of the self-consistency test. The enormous area
spanning under the curve signi�es that the accuracy of the model. The �gure illustrates that the
best accuracy is exhibited by the arti�cial neural network in the self-consistency test as compared
with SVM, KNN, PNN, and random forest. Tab. 1 depicts the metrics obtained from this test.
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Figure 4: ROC obtained after performing the self-consistency test

Table 1: Self-consistency results

TP FP TN FN Acc Sp Sn MCC

1896 6 3997 0 99.9 99.8 100 0.997

The self-consistency test helps to investigate how well a model has adapted to the train-
ing data. However, it does not verify the ability of the model to respond to unknown data.
Subsequently, this test helps to identify the most suitable classi�er for the benchmark dataset. In
this case it’s quite evident that multilayer ANN performs best.

A basic test for evaluating the performance of the model for unknown data when new data
is not readily available is the independent set test. The available dataset is randomly partitioned
into two unequal size partitions. The larger partition is used to train the model while the smaller
partition is usually used to test the accuracy of the model. The test data works as an independent
data set as it has not been used in any way to train the model. An independent set test was
performed by partitioning the dataset into two partitions. The larger partition contained 70% of
the data while the smaller partition contained the left out 30% data.

The test yields an overall accuracy of 96.1% and an MCC of 0.9102. Fig. 5 shows the
ROC curve illustrating the test results of Independent set testing while Tab. 2 shows the metrics
obtained from the test.

Since there can be several permutations for partitioning data therefore independent set testing
is not considered a rigorous test. However, a more rigorous test is the cross-validation test. In
k-fold cross-validation testing, data is divided into k number of equal but disjoint partitions such
each data element is selected randomly. The value of k remains constant throughout the test.
The testing is repeated k times such that the output for each partition is testing while the rest
of the partitions are used for training. The average is of the metrics yielded for each partition is
considered to be the overall result. The proposed model was rigorously tested using 10-fold and
5-fold cross-validation. The metrics obtained for each fold in 10-fold cross-validation is depicted
in Fig. 6.
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Figure 5: ROC depicting the results of Independent set testing

Table 2: Results of Independent set testing

TP FP TN FN Acc Sp Sn MCC

527 43 1174 26 96.1 96.4 95.3 0.910

60

80

100

1 2 3 4 5 6 7 8 9 10

10-Fold Cross-Validation
Metrics

Accuracy Specificity

Sensitivity MCC

Figure 6: Metrics for each fold in the 10-fold cross-validation

Further, Fig. 7 depicts the ROC curve obtained for the 10-fold cross-validation test. The curve
in bold illustrates the mean of the test.

The 10-fold cross-validation test revealed an overall accuracy of 95.43% and an MCC of 0.90.

3.3 Comparative Analysis
In silico techniques for the treatment of proteomic characteristics are vastly bene�cial to

researchers as it readily provides answers to question which require excruciating time through
in-vivo or in-vitro techniques. The research community has a great appetite for updated, robust,
and accurate prediction models for this purpose. To corroborate that a model is industrious
and can prove bene�cial for the research community, it has to be analyzed in comparison with
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other existing competing models. An independent set test was formulated to form a comparison
of the proposed methodology with the existing state of art methodologies. The performance
of the proposed model was evaluated along with other such models namely AMPScanner, CS-
AMPPred, AntiMPmod, iAMPPred, and iAMP-2L models. Fig. 8 shows a bar chart depicting
the accuracy of each of the described existing techniques in comparison with the proposed
iAMP-NNPred model.

Figure 7: ROC for 10-fold cross-validation

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96

Figure 8: Accuracy of proposed and existing predictors

Also, Fig. 9 represents the ROC curve for the results obtained from each predictor.

The curves show that the area encompassed by the curve of the proposed technique is fairly
greater than the other state of art antimicrobial peptide predictors.
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Figure 9: ROC based comparison of proposed and existing predictors

4 Conclusion

The study focuses on the design and development of a prediction algorithm for identifying
AMPs and non-APMS. With the recent development in bioinformatics more and more researchers
are contributing their effort to apply computational models for classifying multiple types of
sequences. Many existing models exist which address the discussed problem. A comparison of
the proposed technique with other existing ones has been provided in the study. Experiments
demonstrate that the proposed techniques perform fairly well than the existing ones. The exist-
ing techniques use a different methodology for the extraction of features from the benchmark
dataset. Some techniques use PseAAC methodology while others derive feature vectors using
the physicochemical properties of amino acid residues. iAMPPred is an extension of previous
AMPScanner techniques, the novelty of the technique is the use of convolution neural networks
for extraction of feature vectors. The proposed technique uses an extended methodology for
extraction composition and sequence-related information of the proteomic sequence. The strength
of the methodology lies in its ability to inscribe position correlation among amino acid residues
throughout the sequence. Moreover, it provides signi�cant constructs for accounting for the com-
positional factors of the sequence. Another dividend provided by the technique is the use of
a multilayer neural network which has numerous parameters. The parameters can be �ne-tuned
through probing and feedback such that the best results are produced. The proposed system
unveils an accuracy of 96.1% via 10-fold cross-validation. The rigorous testing of the proposed
methodology using the benchmark dataset provides convincing evidence that the predictor can be
con�dently used by the research community for identi�cation antimicrobial peptides.

Furthermore, use of graphical approaches to study biological and medical systems can pro-
vide an intuitive vision and useful insights for helping analyze complicated relations therein as
shown by the eight master pieces of pioneering papers from the then Chairman of Nobel Prize
Committee Sture Forsen [39–44], and many follow-up papers (see, e.g., [45–47]). They are very
useful for in-depth investigation into the topic of the current paper, and we will use them in our
future efforts.
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5 Webserver

As shown in a series of recent publications (see, e.g., [48–50]) in demonstrating new �ndings
or approaches, user-friendly and publicly accessible web-servers will signi�cantly enhance their
impacts, driving medicinal chemistry into an unprecedented revolution, we shall make efforts in
our future work to provide a web-server to display the �ndings that can be manipulated by users
according to their need.

Supplementary Data: Supplementary File 1 contains Uniprot accession numbers of all the antimi-
crobial peptides within the dataset while Supplementary File 2 contains accession numbers for the
non-antimicrobial peptides.
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