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Abstract: This paper investigates the minimum error entropy based extended
Kalman filter (MEEKF) for multipath parameter estimation of the Global
Positioning System (GPS). The extended Kalman filter (EKF) is designed to
give a preliminary estimation of the state. The scheme is designed by introduc-
ing an additional term, which is tuned according to the higher order moment
of the estimation error. The minimum error entropy criterion is introduced
for updating the entropy of the innovation at each time step. According to
the stochastic information gradient method, an optimal filer gain matrix is
obtained. The mean square error criterion is limited to the assumption of
linearity and Gaussianity. However, non-Gaussian noise is often encountered
in many practical environments and their performances degrade dramatically
in non-Gaussian cases. Most of the existing multipath estimation algorithms
are usually designed for Gaussian noise. The I (in-phase) and Q (quadrature)
accumulator outputs from the GPS correlators are used as the observational
measurements of the EKF to estimate the multipath parameters such as
amplitude, code delay, phase, and carrier Doppler. One reasonable way to
obtain an optimal estimation is based on the minimum error entropy criterion.
The MEEKF algorithm provides better estimation accuracy since the error
entropy involved can characterize all the randomness of the residual. Perfor-
mance assessment is presented to evaluate the effectivity of the system designs
for GPS code tracking loop with multipath parameter estimation using the
minimum error entropy based extended Kalman filter.

Keywords: Entropy; extended Kalman filter; multipath; global positioning
system; tracking loop

1 Introduction

Multipath [1–4] is known as one of the dominant error sources in high accuracy GNSS
(global navigation satellite system) positioning systems, such as the Global Positioning System
(GPS) [1,2]. Multipath effects occur when GPS signals arrive at a receiver site via multiple
paths due to reflections from nearby objects, such as the ground and water surfaces, buildings,
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vehicles, hills, trees, etc. Many estimation algorithms have been studied to eliminate the positioning
error caused by multipath. Since multipath errors are among uncorrelated errors that are not
cancelled out during observation differencing, the performance of high precision GPS receivers
are mostly limited by the multipath induced errors. One of the most important issues in GPS
system performance improvement is the interference suppression techniques.

Traditional GPS receivers track signals from different satellites independently. Each tracking
channel measures the pseudorange and pseudorange rate, respectively, and then sends the mea-
surements to the navigation processor, which solves for the user’s position, velocity, clock bias
and clock drift. Most of the conventional approach for code synchronization process employs
the delay-locked-loop (DLL) structure, which employs a discriminator function constructed with
a specific combination of its early, prompt, and late correlator to detect code tracking error.
Jee et al. [4] proposed the design of GPS receiver tracking loop using the extended Kalman
filter (EKF), extracting and estimates parameters of the direct satellite signal component from
the multipath corrupted signal for the loss lock problem in receiver tracking loop. The EKF
can suitably combine multiple correlator branches for better code tracking as well as the other
signal parameters, so as to estimate the multipath components for mitigating the multipath errors.
Extended work had been carried out using the unscented Kalman filer by Jwo and Chang [5].
The in-phase (I) and quadrature (Q) correlator accumulator outputs are used as measurements in
the filter estimation process [1,2,4,5].

The well-known Kalman filter (KF) [6] provides optimal (minimum mean square error) esti-
mate of the system state vector and has been recognized as one of the most powerful state
estimation techniques. KF is one of the most useful tools to observe linear dynamic systems and
provide the estimation with minimum error variance. The EKF is a nonlinear version of the KF
and has been widely employed as the GPS navigation processor. The fact that EKF highly depends
on a predefined dynamics model forms a major drawback. For achieving good filtering results, the
designers are required to have the complete a priori knowledge on both the dynamic process and
measurement models, in addition to the assumption that both the process and measurement are
corrupted by zero-mean Gaussian white sequences. In addition, the calculation of the Jacobian
matrices makes it difficult to implement, especially for the non-differentiable function. Moreover,
the mean square error criterion is limited to the assumption of linearity and Gaussianity.

Most of the existing multipath mitigation algorithms are designed for Gaussian noise.
However, non-Gaussian noise is often encountered in many practical environments and their
performances degrade dramatically in non-Gaussian cases. To solve the performance degradation
problem in heavy-tailed (or impulsive) non-Gaussian noises, some robust Kalman filters have
been developed by using certain non- minimum mean square error (MMSE) principle as the
optimality criterion. As a unified probabilistic measure of uncertainty quantification, entropy has
been widely used in information theory. Some efforts have been made to employ the entropy as
the performance index in the filter design for general non-Gaussian stochastic systems. The min-
imum error entropy (MEE) criterion [7–14] and maximum correntropy criterion (MCC) [15–17]
are information theoretic learning (ITL) [13] approaches, which have been successfully applied
in robust regression, classification, system identification and adaptive filtering. Maximizing the
mutual information between a state and the estimate is equivalent to minimizing the entropy of
the estimation error.

Having been successfully applied to estimation technique, MEE aims to minimize the Renyi’s
entropy of the estimation error information to improve the robustness against impulsive noises.
The corresponding minimum error entropy algorithm can be employed and the probability density
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function (pdf) of estimation error was formulated in terms of the noise pdf and the filter gain
matrix. Using the entropy based performance index, a recursive optimal filtering algorithm was
put forward such that the hybrid entropy of the estimation error was minimized and the local
stability of the error dynamics was guaranteed as well. The EKF assisted by the MEE criterion,
referred to as the minimum error entropy EKF (MEEKF) uses the MEE as the optimality
criterion. The EKF is designed to give a preliminary estimation of the state. The algorithm uses
the propagation equations to obtain the prior estimates of the state and covariance matrix, and
a fixed-point algorithm to update the posterior estimates and covariance matrix, recursively and
online. In this paper, the MEEKF based DLL tracking loop with better multipath mitigation
capability is presented. Simulation work is carried out to verify the feasibility of this method.

The remainder of this paper is organized as follows. In Section 2, preliminary background
on the multipath interference and estimator based code tracking loops of the GPS receiver are
reviewed. The minimum entropy based nonlinear filters are introduced in Section 4. In Section 5,
some related information for estimation of the line-of-sight (LOS) and multipath parameters is
discussed; application of the proposed method into the tracking loop of the GPS navigation filter
design is discussed. Conclusion is given in Section 6.

2 Multipath Interference and the Estimator Based Code Tracking Loop

Multipath interference and non-line-of-sight reception are major error sources for GPS in an
urban environment. Unlike other error sources, multipath cannot be mitigated through differential
processing, since it decorrelates spatially rapidly. It is one of the dominant error sources for high
accuracy positioning systems due to the irrelevancy between different instants and the occurrence
uncertainty along the observation period. These multipath effects on the code phase measurements
are most crucial, and the error can reach up to a few tens of meters, or a couple of hundred. The
pseudorange errors caused by the multipath interference can be significantly mitigated through
carefully designed antenna, such as antenna siting, choke-ring antenna design.

A typical functional diagram of the GPS receiver is shown as in Fig. 1. GPS receivers utilize
an omni-directional antenna to receive the GPS signals. These are passed through a band-pass
filter and low noise amplifier before being down-converted to an intermediate frequency (IF) by
a mixer. Many GPS receivers use two down-conversions to reach baseband, where the analog
signal is sampled and converted into digital in-phase and quadrature channels by multiplication
by sine and cosine versions of the local oscillator (mixing) frequency. Some receivers sample at
an intermediate frequency, before down-converting to baseband.

Figure 1: Global Positioning System (GPS) receiver functional diagram

The purpose of code tracking loop is to estimate the delay time between satellite and user,
commonly referred to as the DLL, which compares the incoming spreading code with three
different phase versions of the code (early, prompt, and late). Most of the conventional approach
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for code synchronization process employs the DLL structure. Receiver-based multipath mitigation
techniques use modified discriminator designs, often with additional correlators, to improve the
resolution of the signal correlation process. The conventional DLL loop uses a discriminator
function constructed with a specific combination of its early, prompt, and late correlator to detect
code tracking error. As a better nonlinear estimation approach, the EKF can suitably combine
multiple correlator branches for better code tracking as well as the other signal parameters, so as
to estimate the multipath components for mitigating the multipath errors.

The estimator based code tracking loop is shown as in Fig. 2. The structure of the tracking
loop is comprised of several branches of correlators followed by accumulator, a nonlinear filter,
and a loop filter. These branch outputs are fed into an estimator, which jointly estimates the
various signal parameters: Amplitude, phase and delay for all of the signal components, and the
estimation error is fed back to the loop filter, enabling the loop to accurately track the parameters
of the signal. The outputs of the correlator branches are samples of the autocorrelation function
of the spreading pseudorandom noise sequence and sinc function of Doppler frequency and phase
error. The structure resembles the classical DLL in that it uses various early-late correlators. The
EKF based DLL tracking loop with multipath mitigation capability has been proposed [4], where
the tracking loop using the EKF with multiple correlator structure was involved.

δ δ kδ

δI

δI

k
Iδ

k
Qδ

δQ

δQ

Figure 2: The estimator based code tracking loop with nonlinear filters

To estimate the multipath components multiple samples of C/A code autocorrelation function
are required and multiple correlators are involved. Instead of subtracting the two early-late
branches, several correlator branches are employed. The following assumptions are made: (1) The
received signal is comprised of a single multipath component; (2) The signal parameters are
modeled as a random walk sequence during the sampling time interval; (3) The noise processes
are Gaussian with zero mean and variance to be defined in the sequel; (4) The processing gain
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is high enough so that the autocorrelation function of the CA code can be approximated by a
triangle function. Under these assumptions, the received GPS signal can then be written as:

S (t)=A0D (t)C (t− τ0)cos [(ω0+Δω) t+ϕ0]+A1D (t)C (t− τ0−α) cos [(ω0+Δω) t+ϕ1] (1)

The j-th branch correlator accumulator output can be written by

Iδj =A0R
(
τ0+ δj

)
sin c (fTC) cos (ωTC +ϕ0)+A1R

(
τ0+α+ δj

)
sin c (fTC) cos (ωTC +ϕ1) (2)

Qδj =A0R
(
τ0+ δj

)
sin c (fTC) sin (ωTC +ϕ0)+A1R

(
τ0+α+ δj

)
sin c (fTC) sin (ωTC +ϕ1) (3)

There are mainly seven parameters involved, including four LOS parameters and three mul-
tipath parameters, namely A0: the amplitude, τ0: the code delay, f : the Doppler frequency, ϕ0:
the carrier phase, A1: the amplitude of the multipath affect, α: the multipath parameter, ϕ1: the
carrier phase by multipath affect. Furthermore, R (·) denotes the autocorrelation function of the
PRN sequences with correlator spacing given as

R (ε)=
{
1− |ε|
0

, ε < 1
, ε > 1

chip
chip (4)

The idealized correlation function between local prompt code and the received spreading code
is shown in Fig. 3.

Figure 3: Idealized correlation function

3 The Minimum Error Entropy Based Extended Kalman Filter

The nonlinear filters deal with the case governed by the nonlinear stochastic difference
equations:

xk+1 = f (xk)+wk (5a)

zk = h (xk)+ vk (5b)

where the state vector xk ∈ �n, process noise vector wk ∈ �n, measurement vector zk ∈ �m, and
measurement noise vector vk ∈ �m. Both the vectors wk and vk are zero mean Gaussian white
sequences having zero cross-correlation with each other:

E
[
wkwT

i

]
=
{
Qk, i= k
0, i �= k

; E
[
vkvTi

]
=
{
Rk, i= k
0, i �= k

; E
[
wkvTi

]
= 0 for all i and k (6)

where Qk is the process noise covariance matrix, and Rk is the measurement noise
covariance matrix.
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3.1 The Extended Kalman Filter
The discrete-time EKF algorithm is summarized as follows:

(1) Initialize state vector and state covariance matrix: x̂−0 and P−
0

(2) Compute Kalman gain matrix:

Kk =P−
kH

T
k

[
HkP

−
kH

T
k +Rk

]−1
(7)

(3) Update state vector:

x̂k = x̂−k +Kk
[
zk− h

(
x̂−k
)]

(8)

(4) Update error covariance

Pk = [I−KkHk]P
−
k (9)

(5) Predict new state vector and state covariance matrix

x̂−k+1 = fk
(
x̂−k
)

(10)

P−
k+1 =�kPk�T

k +Qk (11)

where the linear approximation equations for system and measurement matrices are obtained
through the relations

�k ≈
∂f
∂x

∣∣∣∣
x=x̂−k

; Hk ≈
∂h
∂x

∣∣∣∣
x=x̂−k

(12)

Eqs. (7)–(9) are the measurement update equations. These equations incorporate a measure-
ment value into a priori estimation to obtain an improved a posteriori estimation. Eqs. (10), (11)
are the time update equations of the algorithm from k to step k+ 1. In the above equations Pk
is the error covariance matrix defined by E

[(
xk− x̂k

) (
xk− x̂k

)T], in which x̂k is an estimation of

the system state vector xk. Further detailed discussion can be referred to Brown et al. [6].

3.2 Minimum Entropy Based Extended Kalman Filter
In information theory, entropy is a measure of the uncertainty associated with random vari-

ables. ITL is a framework to non-parametrically adapt systems based on entropy and divergence.
Originally presented by Shannon in 1948, many definitions of entropy have been introduced for
various purposes, such as Shannon entropy and Renyi’s entropy. Renyi’s entropy is usually used
for quantifying the diversity, uncertainty or randomness of a random variable. Renyi’s α-order
entropy of a random variable X is defined by

Hα (X)= 1
1−α

log
∫
f α
X (x)dx α > 0, α �= 1 (13)

The base of the logarithm is not as important since it only contributes to a constant coeffi-
cient and σ the kernel size. When α → 1, the Renyi’s α-order entropy approaches Shannon entropy.
For α = 2 (quadratic entropy), the quadratic Renyi’s entropy can be obtained and has the form

H2 (X)=− log
∫
f 2X (x)dx (14)
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There are numerous methods to estimate the probability density. The kernel density estima-
tion (KDE) has wide applicability and is closely related to the Renyi’s entropy. Kernel density
estimation, also referred to as the Parzen window method, is a nonparametric method to estimate
the pdf of a random process. When the KDE is used to estimate the pdf from the samples, it
can be expressed as

f̂X ;σ (x)= 1
N

N∑
i=1

κσ (x−xi) (15)

where κσ (x−xi) is the Parzen window, and σ represents the bandwidth. The first requirement
ensures that the Parzen window method results in a pdf, while the second one guarantees the
expectation of the process keep unchanged. There are various kernel functions that can be
used. Examples are uniform, triangular, and Gaussian, etc. The most commonly used one is the
Gaussian kernel with the following form

κσ (x−xi)= 1√
2πσ

exp

(
−(x−xi)2

2σ 2

)
(16)

where the Gaussian function is defined as

G∑ (x−xN )= (2π)−
n
2

(
det

∑)− 1
2 · exp

{
−1
2

(x−xi)T
−1∑

(x−xi)

}
(17)

Using the KDE, the Renyi’s quadratic entropy can be formulated with the form

H2 (x)=− log
1
N2

N∑
i=1

N∑
j=1

G√
2
∑ (

xi−xj
)

(18)

From the estimation equation

x̂k+1 = f
(
x̂k
)+Kk

(
zk− ẑk

)
(19)

ẑk = h
(
x̂k
)

(20)

where Kk is the Kalman filter gain matrix to be determined; υk = zk − ẑk is the innovation. The
randomness uncertainty can be remarkably mitigated when employing the minimum error entropy
criterion given by:

min
W

H (υk) (21)

s.t υk = zk− ẑk & E[υk]= 0 (22)

The adaptive filter based on the optimization learning algorithm is shown as in Fig. 4 [14].

The argument of the logarithm in quadratic Renyi’s entropy is called the information potential
expressed as follows

H2 (υk)=− logV (υk) (23)
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Figure 4: Adaptive filter algorithm based on the optimization learning algorithm

V (υk)=
1
N2

⎛
⎝ N∑
i=1

N∑
j=1

G∑√
2

(
υik−υjk

)⎞⎠ (24)

where V (υk) is the informational potential (IP) of υk. The minimization of the entropy can be
replaced with the maximization of the information potential,

H2 (υk)=− logV (υk) (25)

The locally optimal weight Wk can be obtained by

∂H2 (υk)

∂Wk
= ∂V (υk)

∂Wk
= 0 (26)

There are a set of samples {υ1k,υ2k, . . . ,υNk} for epoch k. Using Gaussian kernel method for
non-parametric estimation:

G∑√
2

(
υik−υjk

)= n
Π
l=1

G
σl
√
2

(
υ lik−υ ljk

)
(27)

where

G
σl
√
2

(
υ lik−υ ljk

)
= 1√

2πσj
exp

⎛
⎜⎝−

(
υ lik−υ ljk

)2
2σ 2

j

⎞
⎟⎠ (28)

Employing the gradient descent method, the adaptive law can be written as

Wk+1 =Wk+α
∂V (υk)

∂Wk
=Wk+α∇WV (υk) (29)

where α is the learning rate, and the potential information of the pseudo-innovation at time step
can be calculated as

V (υk)=
1
N2

k∑
i=k−N+1

k∑
i=k−N+1

G∑√
2

(
υik−υjk

)
(30)
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For further formulations, the gradient of the information potential V (υk) is given as

∇WV (υk)=
∂

∂W

⎛
⎝ 1
N2

k∑
i=k−N+1

k∑
i=k−N+1

G∑ (
υik−υjk

)⎞⎠

= 1
N2

k∑
i,j=k−N+1

∂G∑ (
υik−υjk

)
∂
(
υik−υjk

) ∂
(
υik−υjk

)
∂W

=− 1
N2

−1∑ k∑
i,j=k−N+1

G∑ (
υik−υjk

) · [Φ (i)−Φ (j)]
(
υik−υjk

)T (31)

4 Results and Discussion

Numerical experiments have been carried out to evaluate the estimation performance for
the MEEKF approach in comparison with the EKF approach. The MEEKF based DLL track-
ing loop with multipath parameter estimation and mitigation capability is demonstrated. The
computer codes were developed using the Matlab® software. The commercial software Satellite
Navigation (SATNAV) toolbox by GPSsoft LLC [18] was employed for generating the satellite
constellation and the pseudorange observables. To evaluate the estimation performance using
the MEEKF algorithm in comparison with those of EKF approach, illustrative examples are
presented for demonstrating the effectiveness under two types of noise environments.

The received signal assumed for simulation is a two-path channel model, which consists of a
direct and one multipath signal component. The amplitude, delay and phase of the direct (LOS)
and the reflected (multipath) signals components are estimated by the filter. When the LOS and
multipath components of signals are involved, the state vector is defined as

xk ≡
[
A0 τ0 f ϕ0 A1 α ϕ1

]T
The initial state for the signal is given by xk ≡

[
2 0.5 1 0.5π 2 −0.5 0.5π

]T . The dynamics of
the signal parameters is assumed to take a linear system model, while the correlator accumulator
measurements are nonlinear. Therefore, a nonlinear filter needs to be employed. As was shown
in Fig. 1, the proposed tracking loop consists of multiple correlators and an EKF. The received
signal is multiplied by the I and Q carrier replicas in separate channels. The resulting signals in
each channel are then multiplied by each replica of the code. In this work, since a linear system
equation is used, we have f (xk)=�kxk, with

�k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 2πTC 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 2πTC 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)
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The measurements are the outputs of the I and Q correlator accumulator: Iδ1 , Iδ2 · · · Iδk
and Qδ1 , Qδ2 · · · Qδk , which form the measurement vector: zk =

[
Iδ1Iδ2 · · ·IδkQδ1Qδ2· · ·Qδk

]
T . They

are nonlinear functions of the carrier frequency, carrier phase and code phase. Since I and Q
measurements are outputs of the correlator, the nonlinear functions contain non-smoothing terms.
The function need to be linearized in order to use it in the EKF. The EKF can separate LOS
components from the multipath components by modeling and estimating the parameters of each
signal component, which is employed to estimate both the LOS and multipath signal components.
The Jacobian matrix of the measurement for the EKF is given by

Hk=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Iδ1
∂A0

∂Iδ1
∂τ0

∂Iδ1
∂f

∂Iδ1
∂ϕ0

∂Iδ1
∂A1

∂Iδ1
∂α

∂Iδ1
∂ϕ1

∂Iδ2
∂A0

∂Iδ2
∂τ0

∂Iδ2
∂f

∂Iδ2
∂ϕ0

∂Iδ2
∂A1

∂Iδ2
∂α

∂Iδ2
∂ϕ1

...
...

...
...

...
...

...

∂Iδk
∂A0

∂Iδk
∂τ0

∂Iδk
∂f

∂Iδk
∂ϕ0

∂Iδk
∂A1

∂Iδk
∂α

∂Iδk
∂ϕ1

∂Qδ1

∂A0

∂Qδ1

∂τ0

∂Qδ1

∂f
∂Qδ1

∂ϕ0

∂Qδ1

∂A1

∂Qδ1

∂α

∂Qδ1

∂ϕ1
∂Qδ2

∂A0

∂Qδ2

∂τ0

∂Qδ2

∂f
∂Qδ2

∂ϕ0

∂Qδ2

∂A1

∂Qδ2

∂α

∂Qδ2

∂ϕ1
...

...
...

...
...

...
...

∂Qδk

∂A0

∂Qδk

∂τ0

∂Qδk

∂f
∂Qδk

∂ϕ0

∂Qδk

∂A1

∂Qδk

∂α

∂Qδk

∂ϕ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

The complete derivatives for the measurement Jacobian matrix are shown in Appendix A.

In the first scenario, it is assumed that the observation errors possess the Gaussian distribu-
tion, while the Gaussian mixture errors in the observation are assumed for the second scenario.
For the first scenario, the noise pdf of the Gaussian noise is given as X∼N (μ,σ 2), representing
the Gaussian random variable with mean μ and standard deviation σ , where the parameter set-
tings are given as: μ= 0 and σ = 100(in unit of meter), respectively. Comparison of the estimation
results for the LOS signal components A0, τ0, f and ϕ0, using the MEEKF as compared to those
of EKF is shown in Figs. 5, 6; comparison of the estimation results for the multipath components
A1, α and ϕ1, is shown in Figs. 7, 8. The MEEKF demonstrate overall improved estimation
accuracy as compared to the EKF method, with more impact on the multipath parameters than
the LOS parameters.

As for the second scenario, it is assumed that the multipath errors follow the Gaussian
mixture distribution, defined by the pdf of the form

fX (x)=
(

1− ε

σ1
√
2π

)
exp

[
−
(
x2

2σ 2
1

)]
+
(

ε

σ2
√
2π

)
exp

[
−
(
x2

2σ 2
2

)]
(34)

where σ1 and σ2 are the standard deviations of the individual Gaussian distributions, and
ε is a perturbing parameter that represents error model contamination. The noise pdf for the
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Gaussian mixture noise can be represented as X∼ (1− ε)N
(
0,σ 2

1

) + εN
(
0,σ 2

2

)
, or equivalently

by X∼λ1N
(
μ1,σ 2

1

)+ λ2N
(
μ2,σ 2

2

)
. In this scenario, the parameter settings are given as λ1 = 0.7,

μ1 = 0, σ1 = 1, λ2 = 0.3, μ2 = 0, σ2 = 100, respectively. Namely, the perturbed conditions
ε = 0.3 (i.e., with 30% contamination due to multipath effects), and σ2 = 100σ1 = 100×1 (m) were
assumed. Fig. 9 shows the pdf’s and the corresponding cumulative distribution functions, for the
individual Gaussian and the resulting Gaussian mixture model employed to generate the multipath
errors. Comparison of the estimation results for the LOS signal components A0, τ0, f and ϕ0,
using the MEEKF as compared to those of EKF is shown in Figs. 10, 11; Comparison of the
estimation results for the multipath components A1, α and ϕ1, is shown in Figs. 12, 13. It can
be seen that MEEKF based tracking loop demonstrates improved performance as compared to
those of EKF based tracking loop. The MEEKF has more impact on the estimation accuracy
improvement on the multipath parameters, for both scenarios.

Figure 5: Tracking performance for LOS amplitude A0 and code τ0-Gaussian multipath errors

Figure 6: Tracking performance for LOS frequency f and phase ϕ0-Gaussian multipath errors
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Figure 7: Tracking performance for multipath parameters, A1 and α-Gaussian multipath errors

Figure 8: Tracking performance for multipath parameter ϕ1-Gaussian multipath errors

Figure 9: Probability density functions and the corresponding cumulative distribution functions,
for the individual Gaussian and the resulting Gaussian mixture model
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Figure 10: Tracking performance for LOS amplitude A0 and code τ0-Gaussian mixture errors

Figure 11: Tracking performance for LOS frequency f and phase ϕ0-Gaussian mixture errors

Figure 12: Tracking performance for multipath parameters, A1 and α-Gaussian mixture errors
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Figure 13: Tracking performance for multipath parameter ϕ1-Gaussian mixture errors

5 Conclusions

Multipath parameter estimation is crucial for multipath mitigation and subsequently accuracy
improvement for the GPS positioning. Conventional DLL tracking loop in GPS receiver suffers
from performance degradation due to multipath errors. The estimation-based approach for multi-
path mitigation utilizes the nonlinear filter to estimate multipath component and extract the direct
signal component. However, the conventional EKF does not possess sufficiently good capability
to monitor the change of parameters due to changes in measurement model.

This paper has presented a potentially useful approach for GPS multipath parameter estima-
tion in the code tracking loop, where the minimum error entropy based extended Kalman filter
was used as the GPS code tracking loop, in which the multipath parameter estimation was carried
out. A multipath estimation algorithm was based on kernel minimum error entropy filter, where
the MEE optimality criterion was employed. The proposed filter uses the propagation equations
to obtain the prior estimates of the state and covariance matrix, and a fixed-point algorithm
to update the posterior estimates and covariance matrix, recursively and online. The estimation
performance has been remarkably improved once the MEE criterion is incorporated into the EKF,
which leads to the MEEKF.

To assess the estimation performance, numerical experiments were conducted for evaluation.
Two scenarios of observation noise environments, including Gaussian and non-Gaussian cases,
respectively, are presented for demonstrating the effectiveness. Simulation results show that the
MEEKF algorithm possesses noticeable improvement on tracking accuracy as compared to that
of conventional EKF method and thus demonstrates good potential as the alternative as the GPS
code tracking loop with multipath parameter estimation, especially in the case of nonlinear and/or
non-Gaussian observables.
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Appendix A. Derivatives in the Measurement Matrix

(1) Derivatives that related to the j-th branch of I correlator accumulator outputs:

∂Iδj
∂A0

=R
(
τ0+ δj

)
sin c (fTC) cos (ωTC +ϕ0)

∂Iδj
∂τ0

=A0
d
dτ0

R
(
τ0+ δj

)
sin c (fTC) cos (ωTC +ϕ0)+A1

d
dτ0

R
(
τ0+α+ δj

)
sin c (fTC) cos (ωTC +ϕ1)
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∂Iδj
∂f

=A0R
(
τ0+ δj

)[ d
df

sin c (fTC) cos (ωTC +ϕ0)− 2πTC sin c (fTC) sin (ωTC +ϕ0)

]

+A1R
(
τ0+α + δj

)[ d
df

sin c (fTC)cos (ωTC +ϕ1)− 2πTC sin c (fTC) sin (ωTC +ϕ1)

]

∂Iδj
∂ϕ0

=−A0R
(
τ0+ δj

)
sin c (fTC) sin (ωTC +ϕ0)

∂Iδj
∂A1

=R
(
τ0+α+ δj

)
sin c (fTC) cos (ωTC +ϕ1)

∂Iδj
∂α

=A1
d
dα

R
(
τ0+α+ δj

)
sin c (fTC) cos (ωTC +ϕ1)

∂Iδj
∂ϕ1

=−A1R
(
τ0+α + δj

)
sin c (fTC) sin (ωTC +ϕ1)

(2) Derivatives that related to the j-th branch of Q correlator accumulator outputs:

∂Qδj

∂A0
=R

(
τ0+ δj

)
sin c (fTC) sin (ωTC +ϕ0)

∂Qδj

∂τ0
=A0

d
dτ0

R
(
τ0+ δj

)
sin c (fTC) sin (ωTC +ϕ0)+A1

d
dτ0

R
(
τ0+α + δj

)
sin c (fTC) sin (ωTC +ϕ1)

∂Qδj

∂f
=A0R

(
τ0+ δj

)[ d
df

sin c (fTC) sin (ωTC +ϕ0)+ 2πTC sin c (fTC) cos (ωTC +ϕ0)

]

+A1R
(
τ0+α + δj

)[ d
df

sin c (fTC) sin (ωTC +ϕ1)+ 2πTC sin c (fTC) cos (ωTC +ϕ1)

]

∂Qδj

∂ϕ0
=A0R

(
τ0+ δj

)
sin c (fTC) cos (ωTC +ϕ0)

∂Qδj

∂A1
=R

(
τ0+α + δj

)
sin c (fTC) sin (ωTC +ϕ1)

∂Qδj

∂α
=A1

d
dα

R
(
τ0+α + δj

)
sin c (fTC) sin (ωTC +ϕ1)

∂Qδj

∂ϕ1
=A1R

(
τ0+α+ δj

)
sin c (fTC) cos (ωTC +ϕ1)


