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Abstract: In this paper, we study the water-wave flow under a floating body of
an incident wave in a fluid. This model simulates the phenomenon of waves
abording a floating ship in a vast ocean. The same model, also simulates
the phenomenon of fluid-structure interaction of a large ice sheet in waves.
According to this method. We divide the region of the problem into three
subregions. Solutions, satisfying the equation in the fluid mass and a part of
the boundary conditions in each subregion, are given. We obtain such solu-
tions as infinite series including unknown coefficients. We consider a limited
number only of the coefficients by truncating the infinite series and satisfy
the remaining boundary conditions approximately. Numerical experiments
show that the results are acceptable. Tables are given along with the graph
of the system of the resulting streamlines and the dynamical pressure acting
on the obstacle. The drawn system of streamlines shows the correctness of
the solution and the pressure is maximum on the side facing the upstream
extremity of the channel. The same procedure can be adequately applied for
problems with more complicated geometry and other phenomenon can thus
be simulated.

Keywords: Potential flow; linear theory; fixed floating obstacle; fourier
transformation; boundary collocation technique; spectral method

1 Introduction

The problem of the study of water-wave flow under an upper fixed floating obstacle is
very important from theoretical and experimental points of view. This model simulates the phe-
nomenon of waves falling on a floating ship in a vast ocean. The class including this type of
problem is called the class of Cauchy–Poisson Problems (CPP).

This class of problems simulates several phenomena having geophysical interests. These mod-
els simulate the phenomenon of waves abording a floating ship in a vast ocean. The same models,
also simulate the phenomenon of fluid-structure interaction of a large ice sheet in waves. We
can find a discussion of this issue in [1–4]. These problems are non-linear, mixed free boundary
value problems. Certain specified initial conditions may be assumed to these free boundary value
problems [5,6]. Several difficulties envisage the theoretical study of these mathematical models.
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The non-linearity of the model and the fact that the free surface is not known from the outset
are some of these difficulties. Other difficulties are represented in the irregularity of the geometry
of the region of the problem.

To overcome the non-linearity difficulty, the problem is treated following theories of long
waves or the shallow water [7–10]. The linear theory of motion and theories of higher orders
may be adopted [4,11]. Researchers usually use perturbation techniques to concur the difficulties
coming from the irregularity of the region of the problem and approximate analytical solutions
are sought. One may carry out the perturbation around a vertical or a horizontal line [7–9,12–16]
regarding the particular geometry of the studied problem. It is impossible to obtain exact analyti-
cal solutions once the geometry deviates from being simple and other additional conditions are to
be assumed on the geometry in order to obtain approximate analytical solutions. These additional
conditions may include the assumption of thin barriers [7–9], or that of infinite depth [16], or
mild slope and short topographies [11,13–15].

Numerical techniques are other alternatives if the analytical approach is inadequate. For
a review of the numerical methods applied to CPP see [17,18] and references included. How-
ever, numerical procedures have their difficulties. These difficulties are appearing in convergence,
stability, consistency, and error accumulation and need huge computations.

The spectral methods are semi-analytical methods used for the solution. Trefftz method [19,20],
the procedures of perturbation [11,21], the boundary integral techniques [22,23], and the method
of fundamental solutions [24] are examples of the semi-analytical methods. An original method
for the study of flow over topography is given in [25]. This method is classified as a semi-
analytical one.

The phenomenon of scattering of waves by an immersed or floating barrier in deep or in shal-
low water is a subject that attracts the attention of several authors (see for example, for analytical
study [7–9], [25–34], for numerical study [29,35,36] and for experimental study [28,29,37–41]).

We follow here the method introduced by Abou-Dina et al. [25] for the study of water-
wave flow under a fixed floating obstacle and for discovering the behavior of the resulting flow.
Following this technique, the region of the definition of the problem is divided into three sub-
regions. One of these regions contains a fixed floating body. We express the solutions satisfying the
equations and conditions in the semi-infinite sub-domains with a set of unknown coefficients and
elementary harmonic functions. The velocity potential function in the subdomain containing the
obstacle is extended analytically through the boundary of the floating obstacle. We give a general
solution in the enlarged sub-domain by applying the finite cosine Fourier transform. This solution
uses another set of arbitrary constants and satisfies the system of equations and conditions on
the horizontal bottom. We express the solution in the three subregions using one set only of
coefficients by applying the continuity of the remaining physical quantities. This solution satisfies
the system of equations and conditions of the problem except those on the fixed floating obstacle
and probably on a part of the free surface. We satisfy these latter conditions and hence we get
an equation in the form of a series to be fulfilled on the boundary of the obstacle and on the
considered part of the free surface if necessary. The coefficients are obtained as a solution of a
system of linear equations. Acceptable results obeying a certain specified error measure are given
for the particular case of an obstacle with a sinusoidal boundary.

The application, dealing with this boundary of the fixed floating obstacle, ascertains the
efficiency of applying this procedure for the solution. The drawn system of streamlines shows the
correctness of the solution and the dynamical pressure acting on the witted surface of the fixed
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floating obstacle is exhibited graphically. The pressure is found to be maximum on the side facing
the incident wave and decreases till attaining its minimal values on the other side.

2 Description of the Problem

The problem is described by an infinite channel of finite depth. This channel is occupied by
a fluid layer of constant density. The fluid layer is bounded from above and from below by a free
surface and an impermeable horizontal bottom, respectively. A floating obstacle of arbitrary shape
is partially immersed at the free surface (Fig. 1). The fixed floating barrier partially obstructs a
wave propagating in the fluid. The incident wave is harmonic with frequency denoted by ω. This
situation generates transmitted and reflected waves and local perturbations as well. It is required
to find the coefficients of the transmission and the reflection. The local oscillations are also to
be determined. The problem is studied in two dimensions. The study is carried out following the
first-order theory of motion, the fluid is considered ideal and a velocity potential is assumed. We
use the Cartesian frame, shown in Fig. 1. The origin of the system of coordinates is chosen in
the mean horizontal line of the upper bound of the fluid, the x-axis and the y-axis are taken as
shown in the figure.

Figure 1: Description of the problem

3 System of Equations and Conditions

The horizontal line y= 0, −∞< x< b, c< x<∞ and the boundary of the immersed section
of the floating obstacle y=−K(x), b≤ x≤ c construct higher bound of the region of the study
following the linear theory. The time-independent velocity potential �(x,y) is defined in terms of
the time-dependent one φ(x,y, t) as

φ (x,y, t)=Re
[
�(x,y) e−iωt

]
. (1)

This function satisfies the system [39]:

∂2

∂x2
�+ ∂2

∂y2
�= 0 in the region of the problem (2)

∂

∂y
�+ ω2

g
�= 0, (y= 0,−∞< x< b and c< x<∞) (3)
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∂

∂n
�= 0, (y=−K (x) ,b≤ x≤ c) (4)

∂

∂y
�= 0, (y=−h) (5)

With the obvious condition that the incident wave is the only wave coming from infinity. The
time-dependent functions η∗(x, t) and P∗(x,y, t), are given respectively as,

η∗ (x, t)=Re
[
η (x) e−iωt

]
, −∞< x< b and c< x<∞) (6)

and

P∗ (x,y, t)=−ρgy+Re
[
P (x,y) e−iωt

]
. (7)

η (x) and P (x,y) are given as:

η (x)= iω
g

�(x,y) at y= 0, −∞< x< b and c< x<∞ (8)

and

P (x,y)= iρω�(x,y) (9)

�∗ (x,y, t) is given as

�∗ (x,y, t)=Re
[
� (x,y)e−iωt

]
(10)

�(x,y) and � (x,y) satisfy the relations

grad �=−k× grad � (11)

k is a unit vector parallel to the z-axis.

4 Solution

We follow the method presented by Abou-Dina et al. [6] to get a solution for the above system
of equations and conditions.

The region bounded by x = 0 and x = a contains the floating barrier. The region of the
problem is thus divided into three subregions: V− , V0, and V+ as shown in (Fig. 2).

Figure 2: The three subregions V− , V0, and V+
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We will solve the problem and the solution includes certain unknown coefficients. The equa-
tion in the fluid mass and a part of the boundary conditions are satisfied by this solution.
Applying the continuity of the physical quantities at x= 0 and x= a will relate the solutions in
the neighboring subregions. We determine the unknown coefficients approximately.

4.1 Study in the Semi-Infinite Domains
Applying the method of separation of variables for the solution of the system of equations

and conditions in the regions V− and V+ the solution is obtained in these semi-infinite regions
respectively as [5,6]

�− (x,y)= {
I0e

iλ0x+R0e
−iλ0x}

coshλ0 (y+ h)+
∞∑
p=1

Rp cosλp (y+ h) eλpx (12)

and

�+ (x,y)=T0 coshλ0 (y+ h)eiλ0(x−a) +
∞∑
p=1

Tp cosλp (y+ h)e−λp(x−a) (13)

where λ0 > 0 denotes the root of the equation

λ tanhλh= ω2

g
(14)

and λp > 0 (p= 1, 2, 3, . . .) denote the roots of the equation

λ tanhλh= ω2

g
(15)

I0, R0, and T0 are the amplitudes of the incident, the reflected and the transmitted waves
respectively. Rp and Tp are complex constant coefficients. The obtained solution includes progres-
sive waves going towards the channel extremities and local perturbations decaying in going away
from the obstacle. It is required to calculate the coefficients R0, T0, Rp and Tp.

4.2 Solution in the Area V0

�0(x,y) is the potential in the area V0. This function satisfies Laplace’s equation in V0 and

is continuous on V0. The function �0(x,y) is constant on the boundary of the floating barrier.
Therefore, the function �0(x,y) can be extended on the area OABC of Fig. 3. The extended
function is harmonic on the extended region and is denoted by V . If the domain of the problem
is multi connected, i.e., it contains holes then this holes are removed and replaced by suitable
sources (logarithmic sources) and this has been studied in [27]. Also if there is an external pressure
acting on the free surface [22] or a finite part the bottom of the channel is set in motion, the
same procedure is applied but the control region V is enlarged to include the parts of the external
pressure or the moving bottom.
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Figure 3: The extended domain

The extended function will also be denoted by �0(x,y). The system of equations and
conditions satisfied by function �0(x,y) is given as:

∂2

∂x2
�0+ ∂2

∂y2
�0 = 0, 0≤ x≤ a, −h≤ y≤ 0. (16)

�0 (0,y)= {I0+R0} coshλ0 (y+ h)+
∞∑
p=1

Rp cosλp (y+ h) , x= 0, −h≤ y≤ 0 (17)

∂�0

∂x
(0,y)= iλ0 {I0−R0} coshλ0 (y+ h)+

∞∑
p=1

Rpcosλp (y+ h) , x= 0, −h≤ y≤ 0 (18)

�0 (a,y)=T0 coshλ0 (y+ h)+
∞∑
p=1

Tp cosλp (y+ h) , x= 0, −h≤ y≤ 0 (19)

∂�0

∂x
(a,y)= iλ0T0 coshλ0 (y+ h)−

∞∑
p=1

λpTp cosλp (y+ h) , x= 0, −h≤ y≤ 0 (20)

and

∂�0

∂y
(x, y)= 0, 0≤ x≤ a, y=−h. (21)

We use the transform �̃0
m(y) of �0 (x,y) defined as [42]:

�̃0
m (y)=

∫ +a

0
�0 (x,y)cos

(
m

π

a
x
)
dx, m= 0, 1, 2, 3, . . . (22)

Applying this transformation to Eqs. (16), (18) and (20)–(22), the functions �̃0
m (y), m =

0, 1, 2, 3, . . . are obtained after some manipulation in terms of constant coefficients am as
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�̃0
m (y)= aI0

2− δ0m

[
am cosh

mπ

a
(y+ h)

]
− i

[
(R0− I0)+ (−1)m T0

] λ0

λ20−
(
mπ

a

)2 coshλ0 (y+ h)

−
∞∑
p=1

[
Rp+ (−1)mTp

] λp

λ2p−
(
mπ

a

)2 cosλp (y+ h) (23)

The finite Fourier transform (23) has the following inversion expression [42]:

�0 (x,y)=
∞∑
m=0

2− δ0m

a
�̃0
m (y)cos

(
m

π

a
x
)

(24)

Using (23) and (24) together with the expressions

∞∑
m=0

(
2− δ0m

)
a

(−1)m λ0

λ20−
(mπ
a

)2 cos(mπ

a
x
)
= 1

sin (λ0 a)
cos (λ0x) (25)

and
∞∑
m=0

(
2− δ0m

)
a

(−1)m λp

λ2p−
(mπ
a

)2 cos(mπ

a
x
)
= 1

sinh
(
λpa

) cosh (
λpx

)
, (26)

the velocity potential in the domain V0 is obtained as

�0 (x,y)= I0
∞∑
m=0

am cosh
mπ

a
(y+ h) cos

(
m

π

a
x
)
− i [(R0− I0) cosλ0 (x− a)

+ T0 cosλ0x]
coshλ0 (y+ h)

sin (λ0 a)
−

∞∑
p=1

[
Rp coshλp (x− a)+Tp cosh

(
λpx

)] cosλp (y+ h)

sinh
(
λpa

) (27)

Substituting expression (27) of �0 (x,y) into conditions (17) and (19), we get the
following relations

{I0 +R0} coshλ0 (y+ h)+
∞∑
p=1

Rp cosλp (y+ h)

= I0
∞∑
m=0

amcosh
mπ

a
(y+ h)− i [(R0− I0) cosλ0 a+T0]

coshλ0 (y+ h)
sin (λ0 a)

−
∞∑
p=1

[
Rpcoshλpa+Tp

] cosλp (y+ h)

sinh
(
λpa

) (28)
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and

T0 coshλ0 (y+ h)+
∞∑
p=1

Tp cosλp (y+ h)

= I0
∞∑
m=0

(−1)m amcosh
mπ

a
(y+ h)− i [(R0− I0)+T0 cosλ0 a]

coshλ0 (y+ h)
sin (λ0 a)

−
∞∑
p=1

[
Rp+Tp cosh

(
λpa

)] cosλp (y+ h)

sinh
(
λpa

) . (29)

The orthogonality of the functions {coshλ0 (y+ h) , cosλp(y+ h),p ≥ 1}, over −h ≤ y ≤ 0, is
used. The coefficients R0, T0, Rp and Tp, p≥ 1 are obtained by the use of relations (28) and (29),
in the form:

R0 = I0
∞∑
m=0

{
1− (−1)m eiλ0a

}
α0,m am, (30)

T0 = I0

[
eiλ0a+

∞∑
m=0

{
(−1)m− eiλ0a

}
α0,m am,

]
(31)

Rp= I0
∞∑
m=0

{
1− (−1)m e−λpa

}
αp,m am, (32)

and

Tp= I0
∞∑
m=0

{
(−1)m− e−λpa

}
αp,m am, (33)

where α0,m and αp,m are given for p≥ 1. and m≥ 0. as

α0,m =
λ0 cosh (λ0h)

[
mπ
a sinh

(mπ
a h

)− ω2

g cosh
(mπ
a h

)][(mπ
a

)2−λ20

]
[λ0h+ sinh (λ0h) cosh (λ0h)]

(34)

and

αp,m =
λp cos

(
λph

) [
mπ
a sinh

(mπ
a h

)− ω2

g cosh
(mπ
a h

)][
λ2p+

(mπ
a

)2] [
λph+ sin

(
λph

)
cos

(
λph

)] . (35)

The function �0(x,y) given by (27) is written using (30)–(33) in terms of am, m≥ 0 as

�0 (x,y)= I0

[
eiλ0x coshλ0 (y+ h)+

∞∑
m=0

am�0
m (x,y)

]
(36)
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where �0
m (x,y), m≥ 0 are given as:

�0
m (x,y)= cosh

mπ

a
(y+ h) cos

(mπ

a
x
)
−α0,m

(
eiλ0x+ (−1)m eiλ0(x−a)

)
coshλ0 (y+ h)

−
∞∑
p=1

αp,m

(
e−λpx+ (−1)m e−λp(x−a)

)
cosλp (y+ h) . (37)

The functions �−(x,y), �0(x,y) and �+(x,y) are obtained from relations (11), (14), (15),
(36) and (37) as

�− (x,y)= i
{
I0eiλ0x−R0e−iλ0x

}
sinhλ0 (y+ h)+

∞∑
p=1

Rp sinλp (y+ h) eλpx, (38)

�0 (x,y)= I0

[
eiλ0x sinhλ0 (y+ h)−

∞∑
m=0

am�0
m (x,y)

]
, (39)

and

�+ (x,y)= iT0 sinhλ0 (y+ h) eiλ0(x−a) −
∞∑
p=1

Tp sinλp (y+ h) e−λp(x−a), (40)

The functions �0
m(x,y), m= 1, 2, 3, . . . are defined as

�0
m (x,y)= sinh

mπ

a
(y+ h) sin

(mπ

a
x
)
+ iα0,m

(
eiλ0x− (−1)m e−iλ0(x−a)

)
sinhλ0 (y+ h)

−
∞∑
p=1

αp,m

(
e−λpx− (−1)m eλp(x−a)

)
sinλp (y+ h) . (41)

It can be shown using expressions (14) and (15) together with the boundary conditions on
the upper and lower bounds of the control region V0 that

|T0|2+ |R0|2 = |I0|2 (42)

Eq. (42) translates the conservation of energy. The conservation of mass is satisfied if

T0+R0 = I0 (43)

which becomes an identity, if we set

a= 2kπ/λ0, (44)

where k > 0 is an integer. k> 0 is taken as the smallest integer (k0) making the sub-domain V0

enclose the fixed floating obstacle.
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4.3 The Approximate Solution
To get the functions �(x,y) and � (x,y), in the whole region of the problem, in terms of

am, m ≥0, we collect relations (14), (15) and (36) for �(x,y) and (38)–(40) for � (x,y). These
functions satisfy the equations of the problem except the condtion on the higher bound of V0

(see Fig. 2). We satisfy this condition approximately to determine am, m= 0, 1, 2, 3, . . .

As shown in Fig. 2, the upper bound of the sub-domain V0 consists of two parts of the
free surface lying on both sides of the floating obstacle, precisely at 0≤ x < b and c< x ≤ a, in
addition to a third part represented by the lower boundary of the obstacle with equation y =
−K(x), b≤ x≤ c. In the frame of the linear theory of motion adopted here, the condition on the
free surface, at 0≤ x< b and c< x≤ a, reduces to

∂

∂y
�0 (x,y)− ω2

g
�0 (x,y)= 0 at y= 0, 0≤ x< b and c< x≤ a, (45)

which together with expression (36) lead to the following constraints posed on am, m= 0, 1, 2, 3, . . .

∂

∂y

[
eiλ0x coshλ0 (y+ h)+

∞∑
m=0

am�0
m (x,y)

]
− ω2

g

[
eiλ0x coshλ0 (y+ h)+

∞∑
m=0

am�0
m (x,y)

]
= 0,

at y= 0, 0≤ x< b and c< x≤ a, (46)

�0
m (x,y) are defined by (37). Relations (46) are simplified as

∞∑
m=0

am

[
mπ

a
sinh

(mπ

a
h
)
− ω2

g
cosh

(mπ

a
h
)]

cos
(mπ

a
x
)
= 0, 0≤ x< b and c< x≤ a, (47)

On the other hand, the function �(x,y), given by (43)–(45), should have a constant value on
the boundary of the floating obstacle (y=−K(x),b≤ x≤ c) since this boundary is a part of a
certain streamline. Therefore, the coefficients am has also to obey the following series equation

∞∑
m=0

am�0
m (x,y)= C0

I0
+ ieiλ0x sinhλ0 (y+ h) , y=−K (x) , b≤ x≤ c, (48)

where C0 denotes the constant value taken by the stream-function � (x,y) on the barrier with
equation y = −K (x) ,b ≤ x ≤ c (see Fig. 1 for the constants b, c). Let x0 be a point arbitrar-
ily chosen in the interval b ≤ x ≤ c with y0 = −K(x0). Condition (48) may be replaced by
the following

∞∑
m=0

am
[
�0
m (x,y)−�0

m (x0,y0)
]
= i

[
eiλ0x sinhλ0 (y+ h)− eiλ0x0 sinhλ0 (y0+ h)

]
,y=−K (x) ,

b≤ x≤ c, (49)

If the floating obstacle occupies the interval 0 ≤ x ≤ a, and no part of the free surface is
enclosed in this interval then expression (49) only is to be considered and expressions (47) are
discarded. We hence give the solution to the problem in terms of a set of coefficients am. To
determine the coefficients of expressions (47, 49), we follow the collocation procedure [39,40].
We replace the infinite upper limit of the series on the L.H.S. of both expressions (47) and (49)
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by M has taken sufficiently large according to the desired accuracy. We choose a decomposition
{xn,n = 0, 1, 2, . . . ,N1, . . . ,N2, . . . ,N} for 0 ≤ x ≤ a such that 0 = x0 < x1 < . . . < xN1 = b < . . . <

xN2 = c< . . . < xN = a, where N is an integer with N >M. We thus obtain the following system
of equations

∞∑
m=0

Bm,na(N,M)
m =Dn, n= 1, 2, . . . ,N, (50)

The elements Bm,n and Dn are

Bm,n=
[
mπ

a
sinh

(mπ

a
h
)
− ω2

g
cosh

(mπ

a
h
)]

cos
(mπ

a
xn

)
,

Dn = 0 for n= 0, 1, 2, . . . ,N1 and m= 1, 2, . . . ,M,

⎫⎪⎬⎪⎭ (51)

and

Bm,n=�0
m (xn−K (xn)) ,Dn = ieiλ0xn sinh (h−K (xn)) for n=N1+1, . . . ,N2−1 and m= 1, 2, . . . ,M.

(52)

We have a number N of linear Eqs. (50)–(52) in a number M of the coefficients a(N,M)
m with

N >M. We put this system in the following square form(
BTB

)
A=BTD (53)

where A is the vector of unknown coefficients a(N,M)
m , BT is the transpose of the matrix B and D

is the vector of constants Dn. The solution of the system (53) determines the velocity potential
�0(x,y) and the stream-function �0(x,y), in the sub-region V0 as

�0(N,M) (x,y)= I0

[
eiλ0x coshλ0 (y+ h)+

M∑
m=0

a(N,M)
m �0

m (x,y)

]
, (54)

and

�0(N,M) (x,y)= I0

[
eiλ0x sinhλ0 (y+ h)−

M∑
m=0

a(N,M)
m �0

m (x,y)

]
, (55)

respectively.

The function �0(N,M) (x,y) given by (54) satisfies approximately a relation of the form (45)
and the function �0(N,M) (x,y) given by (55) has approximately a constant value along the
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boundary of the immersed part of the obstacle. We introduce ER(N,M)(x), 0 ≤ x ≤ a, as local
error with:

ER(N,M) (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∑
m=0

a(N,M)
m

[
mπ

a
sinh

(mπ

a
h
)
− ω2

g
cosh

(mπ

a
h
)]

cos
(mπ

a
x
)
,

for 0≤ x< b, c< x≤ a∑M
m=0 a

(N,M)
m

[
�0
m (x,y)−�0

m (x0,y0)
]
,

−i [eiλ0x sinhλ0 (y+ h)− eiλ0x0 sinhλ0 (y0+ h)
]
,

for y=−K (x) , b≤ x≤ c

(56)

By checking the inequality

ER(N,M)
L = max

0≤x≤a

∣∣∣ER(N,M) (x)
∣∣∣ < ε (57)

for a control parameter ε, the choice of N and M can be controlled. Also, this can be done by
checking another inequality of the form

ER(N,M)

G = 1
a

∫ a

0

∣∣∣ER(N,M) (x)
∣∣∣dx< ε (58)

We start with a choice of N and M, then if (4.46) (or (4.47)) is not satisfied, the values of
N and M are increased, and we restart the technique to obtaining the desired result. The straight
forward collocation technique is met by setting N =M + 1.

Approximate expressions for R0 and T0 are then given as

R(N,M)

0 = I0
M∑
m=0

{
1− (−1)m eiλ0a

}
α0,m a

(N,M)
m , (59)

and

T (N,M)

0 = I0

[
eiλ0a+

M∑
m=0

{
(−1)m− eiλ0a

}
α0,m a(N,M)

m ,

]
(60)

respectively.

5 Numerical Experiments for a Floating Obstacle of a Sinusoidal Boundary

As a numerical experiment, we consider the case of a fixed floating obstacle with a lower
immersed part of a sinusoidal boundary with H as a maximum depth and width W . K(x) is
considered as

K (x)= H
2

[
1− cos

(
2π (x− b)
c− b

)]
for b≤ x≤ c. (61)

The constant k0 is chosen such that a= 2k0π
λ0

. k0 is the smallest integer satisfying this relation

in such a way that the finite sub-domain V0, lying in the middle with the width a, encloses the
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fixed floating obstacle (see Fig. 2). Here, we considered the parameters of Fig. 1 as b = 0 and
c = W , and Fig. 4 shows the boundary of the floating obstacle in such a case. This curve
represents the witted part of the boundary of the floating ship.

Figure 4: The upper bound of the region V0

5.1 Reliability of the Method

We find the error ER(N,M)

G for some choices of the numbers M and N in Tab. 1. The

numerical values given to the different parameters are taken as ω = √
g/h, H/h = 0.5 and

W/h = a/h = 5.2373. The value of λ0h is 1.1997 and we have taken k0 = 1 which results
a/h = 2k0π/(λ0h) = 5.2373=W/h as required. The nodes {xn,n = 0, 1, 2, . . . ,N} in 0 ≤ x ≤ a are
assumed equidistant.

Table 1: The errors ER(N,M)

G for the fixed floating obstacle of Eq. (58)

M N =M M + 20 M + 40

30 1.112× 10−4 2.117× 10−6 6.857× 10−7

40 1.484× 10−5 5.290× 10−6 1.319× 10−6

100 5.474× 10−6 6.849× 10−6 1.725× 10−6

150 1.561× 10−6 4.717× 10−7 2.387× 10−6

200 7.199× 10−7 8.524× 10−8 3.095× 10−7

250 3.980× 10−7 2.357× 10−7 7.360× 10−8

260 1.601× 10−7 3.118× 10−7 3.306× 10−7

270 1.533× 10−7 2.183× 10−7 3.416× 10−6

300 2.328× 10−7 8.670× 10−8 5.652× 10−6

Tab. 1 indicates that, the efficiency of the method is in general acceptable and that for
N ≥ 100, the error oscillates between 10−8 and 10−6. The values N = 250 and M = 290 give the
best result in the table. For the present application there is an optimum value of M(M+1= 251)
and hence it is not recommended to increase the number M without limit.

Fig. 5 exhibits
∣∣ER(N,M)(x)

∣∣ along 0≤ x≤ a for the values M = 250 and N = 290. As shown,
this error is localized near the bounds of the fixed floating obstacle at x= 0 and at x=W .
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Figure 5: The error ER(N,M)(x) for M = 250 and N = 290

The conservation of energy relation (42) associated with the error distribution shown on

Fig. 5 is
∣∣∣T0
I0

∣∣∣2 + ∣∣∣R0
I0

∣∣∣2 = 1.0002, with an error of the order of 10−4. while the conservation of

mass relation (43) is satisfied identically.

5.2 The System of Streamlines
Streamlines are a family of curves that are instantaneously tangent to the velocity vector of

the flow. The stream function �(x,y) assumes constant value on each streamline and the general
equation of this family takes the form

� (x,y)= const., (62)

where different values of the constant on the R.H.S. of Eq. (62), gives different streamlines.

Fig. 6 illustrates the system of streamlines, in the present application, inside the extended
region V .

Figure 6: The system of streamlines inside the control region V

Fig. 7 illustrates the system of streamlines inside the control region V0. The number assigned
to each line refers to the constant value of the function Re(�0(x,y)/I0) along this line.
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The horizontal bottom of the channel is the lowest streamline (�0(x,y) = 0) and the lower
boundary of the fixed floating obstacle is a part of another streamline (�0(x,y) = C0). For the

present application Re
(
C0
I0

)
=−0.336.

Figure 7: The system of streamlines inside the control region V0

Fig. 7 shows that the fluid particles are accelerated when approaching the fixed float-
ing obstacle.

5.3 Pressure Applied to the Immerged Part of the Fixed Floating Obstacle
The calculation of the dynamical pressure acting on the witted part of the boundary of the

fixed floating obstacle (which simulates the floating ship) has a certain practical interest. Fig. 8
illustrates the real part of the dimensionless dynamical pressure along this boundary. The figure
shows that the pressure is greater on the side facing the incident wave direction and decreases till
attaining its minimum value on the other side.

Figure 8: The dynamical pressure acting on the boundary of the fixed floating obstacle
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6 Conclusions

The objective of the present work is to study a model, simulating the phenomenon of reflec-
tion and transmission of an incident wave on a floating ship in a vast ocean. The obtained results
may be used in checking the reliability of other methods proposed for studying the same problem.
We satisfy exactly the equations and the conditions of the problem except for the condition on
the fixed obstacle’s which we satisfy approximately.

The worked applications show that the method is easy to use with reasonable numerical
calculations. The accuracy of the method is tested on a particular worked application and the
resulting system of streamlines is given and the dynamical pressure acting on the witted part of
the surface of the fixed floating obstacle is calculated as well. The limiting case of a floating
obstacle having the form of a vertical partially immersed thin barrier needs another procedure for
the study and is in progress. This case needs special care.

If the boundary of the floating body contains corner points [25], the solution is singular. This
is not physical and comes from the mathematical treatment. To avoid this inconvenient result the
corner points should be smoothed to a convenient order.
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