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Abstract: This research presents, and clari�es the application of two permu-
tation algorithms, based on chaotic map systems, and applied to a �le of
speech signals. They are the Arnold cat map-based permutation algorithm,
and the Baker’s chaotic map-based permutation algorithm. Both algorithms
are implemented on the same speech signal sample. Then, both the premier
and the encrypted �le histograms are documented and plotted. The speech
signal amplitude values with time signals of the original �le are recorded and
plotted against the encrypted and decrypted �les. Furthermore, the original
�le is plotted against the encrypted �le, using the spectrogram frequencies of
speech signals with the signal duration. These permutation algorithms are used
to shuf�e the positions of the speech �les signals’ values without any changes,
to produce an encrypted speech �le. A comparative analysis is introduced by
using some of sundry statistical and experimental analyses for the procedures
of encryption and decryption, e.g., the time of both procedures, the encrypted
audio signals histogram, the correlation coef�cient between specimens in the
premier and encrypted signals, a test of the Spectral Distortion (SD), and
the Log-Likelihood Ratio (LLR) measures. The outcomes of the different
experimental and comparative studies demonstrate that the two permutation
algorithms (Baker and Arnold) are suf�cient for providing an ef�cient and reli-
able voice signal encryption solution. However, the Arnold’s algorithm gives
better results in most cases as compared to the results of Baker’s algorithm.

Keywords: Arnold’s cat map; chaotic maps; permutation algorithms; speech
encryption; Baker’s chaotic map

1 Introduction

We have been in the middle of a technological revolution in recent years, which involves stable
and secure multimedia transmission [1–4]. Transmitting speech or audio �les via communication
networks requires an encryption process, which is vital for conserving �les by contra reading,
modifying the signals, faking an insert for the signals, or removing part of their tenor.
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Speech conversations are considered a vital part of our lifestyle. During the last few years,
the fast and extensive growth of network technology has increased speech conversations through
the public switch telephone network, cell phones, satellites, and the internet [5–8]. Preventing
unauthorized people from eavesdropping is almost impossible when an audio signal is transmitted
through the air or unreliable wired connections [7,8].

Leakage prevention is vital due to the regular �ow of audio signals worldwide over trans-
mission devices [3,4]. Crypt-analysis activities have rapidly developed. Thus, it is possible for any
unauthorized person using the simplest receiver to receive transmitted data. Consequently, the
protection of speech interactions has recently become a critical problem [8].

The criteria to meet multimedia protection needs have led to the invention of excellent encryp-
tion mechanisms (e.g., chaos-based). Chaos-based encryption mechanisms are considered perfect
for practical use because they provide a secured combination of speed, high protection, complex-
ity, rational overhead computing, and computational power [3,4]. Chaotic maps are highly com-
plex nonlinear dynamic systems used in �gure correspondence and encryption [3,4,9–12] because
they are highly sentient to the initial conditions and can create strong pseudo-random sequences.

The two permutation algorithms are based on Baker’s map [3,13] and Arnold’s map [3,14–16].
These algorithms were used for shuf�ing voice signals. Shuf�ing is shifting speech signal locations
without altering the values; thus, successful shuf�ing raises confusion and security.

Both chaotic maps are two-dimensional (2D) chaotic invertible maps. The Baker’s map is a
chaotic bijection of a square I unit (I× I) onto itself. Baker’s map structure includes a generalized
map and discretized map [3]. After applying the two algorithms on an equivalent sample of speech
signals, the comparative analysis is introduced using several experimental and statistical analyses
for decryption and encryption, such as the time for both procedures, histogram of encrypted
speech signals, correlation coef�cient (CC) between samples within the original and encrypted
signals, spectral distortion (SD) measures, and log-likelihood ratio (LLR) measures.

This paper is arranged as follows: Section 2 presents the chaotic maps (Baker’s chaotic map
and Arnold’s cat map) used in our research. Section 3 describes the algorithms’ application on
speech signals. Additionally, it discusses speech patterns, spectrograms, and histograms for per-
muted speech signals. Section 4 examines the measurements and analyses of performing encryption
and decryption time, CC, SD, and LLR measures. Section 5 is the conclusion of the paper.

2 Chaotic Maps

A succinct overview of the two chaotic mapping systems used in this work is clari�ed in this
section. These are Baker’s map and Arnold’s map.

2.1 Baker’s Chaotic Map
Chaotic map systems are sensible to the initial parameters. If speci�c parameters are used,

the system operates in several orbits, which are complicated and strenuous to analyze and
compute. The system output sequences have strong randomness, weak correlation, and unpre-
dictability [8,13].

One of the chaotic map systems that rely on the encryption process’s permutations is Baker’s
chaotic map. Chaotic structures use maps to rearrange the elements in the �le as a whole or as a
�le block. Baker’s chaotic map is one of the 2D invertible chaotic maps that has been introduced.
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We follow Baker’s chaotic map to shuf�e locations for speech signals in the audio �le. Baker’s
map, B, is described in Eq. (1) [13,17,18]:

B(x, y)= (2x, y/2) when 0≤ x< 0.5, (1)

B(x, y)=
(

2x− 1,
y
2
+

1
2

)
when 0.5≤ x<= 1.

The map acts on the unit square depicted in Fig. 1. Baker’s chaotic map system is a chaotic
bijection of the unit square I× I onto itself [13,17]. Two versions of Baker’s chaotic map exist:
The generalized map and discretized map.

Figure 1: General shape of Baker’s map

In the generalized Baker map, the square is divided into vertical k rectangles instead of
dividing the square into two rectangles of the same size, where [Fi−1, Fi) × [0, 1), i = 1, . . . , k,
Fi = p1+ . . .+pi, F0 = 0, whereas p1+ . . .+pk = 1 (Fig. 2). The generalized Baker map extends each
rectangle by a factor of 1/pi horizontally. Moreover, the factor pi contracts the rectangle vertically.
Finally, all rectangles are stacked on top of each other as illustrated in Fig. 2 and formally as in
Eq. (2):

B(x, y)=
(

1
pi

(x−Fi), piy+Fi

)
, (2)

for (x, y) ∈ [Fi, Fi+Pi)× [0, 1).

The discretized Baker map is an effective tool for randomizing objects within a square
matrix. Let B(n1, . . . , nk) denote the discretized map, where the [n1, n2, . . . , nk] vector is the secret
key, Skey. With N de�ned as the number of data items in a row, the secret key is chosen where
every integer ni is a division of N, where n1+n2+ . . .+nk =N. Moreover, let Ni = n1+ . . .+ni−1.
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The data item at the indices (r, s), with Ni ≤ r<Ni+ni, and 0≤ s<N is mapped to B(n1, . . . , nk)
(r, s) by Eq. (3), where N1 = 0:

B(n1, . . . , nk)(r, s)=
(
N
ni

(r−Ni)+ smod
N
ni

,
ni
N

(
s− smod

N
ni

)
+Ni

)
. (3)

Figure 2: Generalized Baker map

The messy permutation is implemented as follows in phases:

1) A square matrix (N×N) is split into N of rectangles, each is ni in width and contains
N items.

2) Items in every rectangle are reorganized into a row within the produced permutation
matrix. Rectangles are possessed from right to left, starting with higher rectangles and then
lower ones. For every column within each rectangle, the scan begins from the bottom left
corner toward the top items. Fig. 3 offers an instance of an 8× 8 matrix permutation.

As clari�ed in Fig. 3, the secret key is selected as (2, 4, 2) (i.e., n1 = 2, n2 = 4, and n3 = 2),
whereas N = 8. Fig. 3a displays the generalized Baker map, whereas Fig. 3b depicts the discretized
Baker map.

2.2 Arnold’s Map
Shang et al. [15] stated that Arnold’s map is a 2D chaotic invertible map. We chose the Arnold

cat map system for shuf�ing locations of speech signal items in the voice �le. Without inadequate
generality, we estimated the multimedia �le dimension as N×N. (It could be N×M.) Arnold’s
method is de�ned in Eq. (4) [15,19,20]:[
xm+1

ym+1

]
=A

[
xm

ym

]
(mod N)

=

[
1 p

q pq+ 1

][
xm

ym

]
(mod N)=

[
xm+ pym

qxm+ (pq+ 1)ym

]
mod N. (4)

There are positive numbers for p and q, which results in det(A)= 1 because (pq+ 1)− pq. In
addition, (xm+1, ym+1) is the new location of the premier item location (xm, ym) when Arnold’s
map is applied one time, in which m= 0, 1, 2, 3, . . .. Upon R repetitions, T as a positive integer
exists at which (xm+1, ym+1)= (xm, ym). The variable T is based on p, q, and size N parameters
of the premier multimedia �le (audio or image). Therefore, the parameters p, q and the number
of repetitions R can all be employed as private keys.
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(a)

(b)

Figure 3: (a) Generalized Baker map. (b) Discretized Baker map

3 Applying Algorithms on Speech Signals

The outcomes of implementing the two algorithms (based on Baker’s chaotic map system and
Arnold’s cat map system) on speech signals are discussed in this section. The premier speech signal
�le of a time domain is a conversation between women and men. Its samples are demonstrated
in Fig. 4, where L is the length of the vector of this speech �le, which is equal to 60,416 for
this �le.

Figure 4: Premier speech signal patterns in the time domain

Fig. 5 clari�es the corresponding spectrograms for premier speech �le signals, clari�ed
in Fig. 4.

Baker’s algorithm is implemented on the premier speech �le three times with different choices
for the key (N) each time, where N = 16 is represented as [4, 2, 4, 4, 2], N = 32 is represented
as [8, 2, 2, 8, 2, 4, 4, 2], and N= 64 is represented as [8, 2, 2, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 4, 2,
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2, 2, 4]). In addition, Arnold’s algorithm is implemented on the same premier speech �le three
times at p= 1, q= 1, and R= 1 with different choices for N each time. It also computes another
dimension (M), where N = 16, 32, or 64, and M = L/N for each case (i.e., M = L/16, L/32, or
L/64, respectively). Fig. 6 illustrates the corresponding histogram of premier speech signals, which
is clari�ed in Fig. 4.

Figure 5: Spectrograms of the speech signals for premier �le

Figure 6: Histogram of the premier speech signal �le

The two algorithms were applied with different cases of keys and dimensions on the original
speech signals. The results of the speech signal pattern histograms and spectrograms of the
permuted speech signals are registered and plotted for each case for each algorithm compared to
the plots of the premier speech �le clari�ed in Figs. 4–6.

3.1 Permuted Speech Signal Patterns
Fig. 7 illustrates the permuted speech signals’ patterns for Baker’s algorithm and Arnold’s

algorithm in the case of N= 16, in which Fig. 7a depicts the outcome of Baker’s algorithm, and
Fig. 7b depicts the outcome of Arnold’s algorithm. Fig. 7 indicates that the permuted speech of
Baker’s algorithm is close to the original speech. In contrast, the permuted speech of Arnold’s
algorithm is different from the original speech (i.e., the result of applying Arnold’s algorithm is
better than the result of applying Baker’s algorithm for N= 16).

Fig. 8 displays the permuted speech signal patterns for Baker’s and Arnold’s algorithms for
N = 32. Figs. 8a and 8b illustrate the outcome of Baker’s and Arnold’s algorithms, respectively.
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Fig. 8 clari�es that the permuted speech of Baker’s algorithm is slightly different from the original
speech. However, the permuted speech of Arnold’s algorithm is entirely different from the premier
speech (i.e., the result of applying Arnold’s algorithm is better than the result of applying Baker’s
algorithm for N = 32).

(a)

(b)

Figure 7: Permuted speech signal patterns in the time domain at N = 16: (a) Baker and (b) Arnold

(a)

(b)

Figure 8: Permuted speech signal patterns in the time domain at N = 32: (a) Baker and (b) Arnold

Fig. 9 conveys the permuted speech signal patterns for Baker’s and Arnold’s algo-
rithms for N = 64, where Figs. 9a and 9b display the outcome of Baker’s and Arnold’s
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algorithms, respectively. Additionally, Fig. 9 illuminates that the permuted speech of Baker’s
algorithm is more confusing than the original speech. However, the permuted speech of Arnold’s
algorithm is entirely different from the premier speech (i.e., the result of Arnold’s algorithm is
better than the result of Baker’s algorithm for N = 64).

(a)

(b)

Figure 9: Permuted speech signal patterns in the time domain at N = 64: (a) Baker and (b) Arnold

3.2 Spectrogram
A spectrogram represents an optical image of the signal frequency spectrum as it varies over

time when applied to an audio signal. Additionally, it is usually depicted as an image with the
density shown by altering the color or brightness.

Figs. 10–12 illustrate the permuted speech signal spectrograms for Baker’s and Arnold’s
algorithms for N = 16, N = 32, and N = 64, respectively. Figs. 10a, 11a, and 12a present the
results of Baker’s algorithm, whereas Figs. 10b, 11b, and 12b present the results of Arnold’s
algorithm. Figs. 10–12 illustrate the spectrograms of permuted speech of Baker’s algorithm, which
are slightly different from the spectrograms of the premier speech for N = 16, N = 32, and
N = 64, respectively.

However, the spectrograms of permuted speech for Arnold’s algorithm are entirely different
from the premier speech spectrograms for all cases (i.e., implementing Arnold’s algorithm is better
than implementing Baker’s algorithm).

3.3 Histogram
The histogram is used for continuous data, whereas bins represent data domains. Additionally,

histograms are a convergent portrayal of the distribution of categorical or numerical data. Both
encryption procedures are used as permutation methods (scrambling of signal positions) for speech
�les. The histogram for the permuted speech signal �le corresponds to the histogram for the
premier speech signal �le in Fig. 6 for all situations, except the histogram that applies Baker’s
algorithm for N = 64 because the length of the permuted speech signal �le is 61,440.
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(a)

(b)

Figure 10: Permuted speech spectrograms in the time domain at N = 16: (a) Baker and (b) Arnold

(a)

(b)

Figure 11: Permuted speech spectrograms in the time domain at N = 32: (a) Baker and (b) Arnold

In contrast, the length of the original speech signal �le is 60,416. This exceptional case is
illustrated in Fig. 13. Thus, Arnold’s algorithm is more stable and ef�cient than Baker’s algorithm
for N ≥ 64. In the decryption phase for both Baker’s and Arnold’s algorithms, all outcomes and
plots of patterns of speech signals, spectrograms, and histograms for the decrypted speech �les
correspond to all signal plots of the premier speech �les clari�ed in Figs. 4–6. Therefore, the
decryption process is equally ef�cient and reliable with the application of the two algorithms.
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(a)

(b)

Figure 12: Permuted speech spectrograms in the time domain at N = 64: (a) Baker and (b) Arnold

Figure 13: Histogram of permuted speech signals with Baker’s algorithm at N = 64

4 Empirical Outcomes and Comparative Analysis

The empirical outcomes and comparative study are presented using various empirical and
statistical tests for encryption and decryption methods. These tests include the encryption or
decryption time, CC between samples of the premier �le and signals of the encrypted �le, SD
test, and LLR test.
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4.1 Time of Encryption or Decryption
In this test, the time in seconds for the encryption (permutation) and decryption was estimated

for applying both algorithms on the premier speech signal �le in all situations of N. Tab. 1
displays the time of encryption or decryption procedures for both algorithms for all N (16, 32,
and 64).

Table 1: Results of encryption and decryption time with the Baker and Arnold algorithms

Baker Algorithm Arnold Algorithms

N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

Enc. 0.0470 0.0470 0.0620 0.3120 0.0890 0.0470
Dec. 0.1560 0.0520 0.0470 0.3580 0.0990 0.0460

As illustrated in Tab. 1 and Figs. 14 and 15, the execution times for both algorithms’ encryp-
tion and decryption procedures are satisfactory and less than 0.36 s. In contrast, the times for
encryption and decryption for both algorithms are quite close in most cases of N.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N=64  N=32  N=16

T
im

e 
in

 S
ec

. Baker

Arnold

Figure 14: Encryption time for the Baker and Arnold algorithms at N = 16, 32, and 64
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Figure 15: Decryption time for the Baker and Arnold algorithms at N = 16, 32, and 64

4.2 Correlation Coef�cient
If premier and encrypted �les are extremely dependent, the CC is 1 (i.e., an encryption pro-

cedure is unsuccessful in hiding the premier signal information). If the CC is 0, then the premier
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voice signals and their encryptions are entirely different. Consequently, encryption protocol success
means lower CC values [1,4]. The CC is calculated using Eq. (5):

CC=
cov(x, y)

σ xσ y
=

∑N
i=1 (xi−E (x)) (yi−E (y))√∑N

i=1 (xi−E (x))2
√∑N

i=1(yi−E (y))2
, (5)

where E (x) = 1
N
∑N

i=1 xi. Moreover, x and y are the speech signal values of the premier and
encrypted �les, respectively.

Tab. 2 displays the encryption outcomes of the CC for both algorithms in all situations of N.
Fig. 16 clari�es the outcomes of the CC for encrypted speech signals produced by both algorithms
in all situations of N.

Table 2: Correlation coef�cient encryption outcomes using the Baker and Arnold algorithms

Algorithm Correlation coef�cient for encrypted speech signals

N = 16 N = 32 N = 64

Baker 0.0112 0.0134 −0.0041
Arnold −0.0086 −0.0051 0.000383
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Figure 16: Correlation coef�cient (CC) values for the Baker and Arnold algorithms at N = 16, 32,
and 64

Tab. 2 and Fig. 16 illustrate that both algorithms (Baker and Arnold) achieve small values
(close to 0); thus, both are complicated and ef�cient algorithms for encrypting voice signals.
However, the CC outcomes using the Arnold algorithm are better than those using the Baker
algorithm for all situations of N (16, 32, and 64). The CC outcomes for decrypted speech signals
is 1 for both algorithms for all cases of N because the decryption of both produces a decrypted
speech signal �le that completely corresponds to the premier speech signal �le.

4.3 Spectral Distortion
The SD is a form of measurement implemented in the frequency domain on the frequency

spectrum of the premier and encrypted voice signals. It is measured in decibels to show how far
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the spectrum of encrypted signals is from that of the premier speech signals. It is possible to
calculate the SD using Eq. (6) [7,8]:

SD=
1
M

M−1∑
m=0

L,m+L,−1∑
n=L,m

∣∣Vs (k)−Vy (k)
∣∣ , (6)

where Vs(k) is the premier speech signal spectrum in decibels of a speci�c fraction, Vy(k) is the
encrypted and decrypted audio signal spectrum in decibels of the same portion, M is the count of
portions, and Ls is the portion longitude. A greater SD between the premier and encrypted �les
improves the ef�ciency of the encryption. However, the SD must be as small as possible between
the premier �le and decrypted �le.

Tab. 3 displays the SD measurement results for encrypting with both algorithms in all cases
of N. Fig. 17 presents the outcomes of SD for the encrypted speech �le, which were generated
by the Baker and Arnold algorithms in all situations of N.

Table 3: Spectral distortion outcomes for encrypting with the Baker and Arnold algorithms

Algorithm Spectral distortion for encrypted speech signals

N = 16 N = 32 N = 64

Baker 13.9122 14.0185 14.0239
Arnold 13.9700 14.0000 13.9586

Tab. 3 and Fig. 17 illustrate that both algorithms accomplish very convergent values for SD
in all situations of N (16, 32, and 64), whereas all outcomes are greater than 13.90 (far from
0). Consequently, both algorithms are complicated and ef�cient for encrypting speech signal �les.
The outcomes of the SD of decrypted speech signals is 0 for both algorithms for all cases of N
because the decryption by both algorithms produces a decrypted speech signal �le that completely
corresponds to the premier speech signal �le.
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Figure 17: Values of spectral distortion (SD) for the Baker and Arnold algorithms at N = 16, 32,
and 64
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4.4 Log-Likelihood Ratio
The LLR metric for speech signals is based on the supposition that every portion can be

interpreted using a linear all-pole predictive model as in Eq. (7) [7,8]:

S(n)=
mp∑
m=1

ams (n−m)+Gsu(n), (7)

where am (for m= 1, 2, . . . , mp) are coef�cients of the all-polar candidate, Gs is the candidate gain,
and u(n) is the perfect source of irritation for the candidate. The voice signal is fenced to form
frames that have longitudes of 15 to 30 ms. It is possible to calculate the LLR using Eq. (8) [8]:

LLR=

∣∣∣∣∣log

(
Eas ERyEaT

s

Eay ERyEaT
y

)∣∣∣∣∣ , (8)

where Eas is the vector of the coef�cient for LPCs ([1, as(1), as(2), . . . , as(mp)] for the premier clear
speech signal), Eay is the vector of the coef�cient for LPCs ([1, ay(1), ay(2), . . . , ay(mp)] for the

signals of encrypted or decrypted speech �le), and ERy is the 2D array of autocorrelation for the
signals of the encrypted or decrypted speech �le. A greater LLR among the premier and encrypted
�le signals results in higher competence of the encryption process. In contrast, the nearer the LLR
is to zero, the higher the competence of the process of decryption becomes.

Tab. 4 displays the LLR test outcomes for encryption with both algorithms in all cases of N.
Fig. 18 presents the outcomes of the LLR for the encrypted speech �le signals, which were
produced by implementing both algorithms for all values of N. Tab. 4 and Fig. 18 clarify that
both algorithms (Baker and Arnold) ful�ll the perfect outcomes of the LLR in all situations of N
(16, 32, and 64). Thus, both are complicated and ef�cient algorithms for speech signal encryption;
however, the LLR outcomes of the Arnold algorithm are better than those of the Baker algorithm
for all situations of N (16, 32, and 64).

Table 4: Log-likelihood ratio for encrypting with the Baker and Arnold algorithms

Algorithm Log-likelihood ratio for encrypted speech signals

N = 16 N = 32 N = 64

Baker 0.1867 0.3910 0.6637
Arnold 0.6776 0.5921 0.8303
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Figure 18: Log-likelihood ratio values for the Baker and Arnold algorithms for N = 16, 32, and 64
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The LLR outcomes for the decrypted speech signal �le are 0 for both algorithms for all cases
of N because the decryption by both algorithms produces a decrypted speech �le that entirely
corresponds to the premier speech �le.

5 Conclusion

In this paper, two permutation algorithms based on chaotic map systems are discussed. The
Baker and Arnold algorithms are implemented on a premier speech �le to secure it using a per-
mutation procedure for the signal locations. The permuted speech �les generated by implementing
both algorithms were examined and compared to each other using the following comparative
analyses and empirical tests: the time for encryption and decryption, histogram, CC, SD, and
LLR. The encryption/decryption times for both algorithms (Baker and Arnold) are very good and
less than 0.36 s, whereas the encryption and decryption times for both are very close in all cases.
Both algorithms achieve low (near 0) CC values, but the CC outcomes are better using Arnold’s
algorithm than Baker’s algorithm in all situations. Both algorithms achieve very convergent perfect
values for SD in all situations.

Additionally, both algorithms attain perfect results for LLR in all situations, but the LLR
outcomes are better with Arnold’s algorithm than Baker’s algorithm in all situations. Moreover,
permuted speech signal patterns and spectrograms were plotted and compared to the original
speech signals, illustrating that Arnold’s algorithm is better and more stable than Baker’s algo-
rithm. The decryption results for both algorithms produce a decrypted speech �le that fully
corresponds to the premier speech �le. The �nal results reveal that the two permutation algo-
rithms are robust algorithms to provide a productive and settled method to encrypt speech �les.
However, Arnold’s algorithm provides good results in most cases compared to the results of
Baker’s algorithm.
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