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Abstract: A novel model of a hyperbolic two-temperature theory is investi-
gated to study the propagation the thermoelastic waves on semiconductor
materials. The governing equations are studied during the photo-excitation
processes in the context of the photothermal theory. The outer surface of
o semiconductor medium is illuminated by a laser pulse. The generalized
photo-thermoelasticity theory in two dimensions (2D) deformation is used
in many models (Lord–Shulman (LS), Green–Lindsay (GL) and the classical
dynamical coupled theory (CD)). The combinations processes between the
hyperbolic two-temperature theory and photo-thermoelasticity theory under
the effect of laser pulses are obtained analytically. The harmonic wave tech-
nique is used to obtain the exact solutions of the main physical fields under
investigation. The mechanical, thermal and recombination plasma loads are
applied at the free surface of the medium to obtain the complete solutions
of the basic physical fields. Some comparisons are made between the three
thermoelastcity theories under the electrical effect of thermoelectric coupling
parameter. The influence of hyperbolic two-temperature, two-temperature and
one temperature parameters on the distributions of wave propagation of
physical fields for semiconductor silicon (Si) medium is shown graphically
and discussed.

Keywords: Photo-thermo-elasticity theory; semiconductors; laser pulses;
hyperbolic two temperature; harmonic waves; thermo-elastic waves

1 Introduction

In the first half of the last century, many authors used the generalized thermoelasticity
theory to describe the elastic and thermal waves in elastic material such as semiconductors
(semi-insulating). In this case, the semiconductor materials have been studied as an elastic media
only. But at the end of the last century, various scientists studied the semiconductor materi-
als especially the inner structures of them during the microelectronics processes. In this study,
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the photothermal (PT) technique is used to describe the wave propagation of the semiconductor
material in the context of photo-acoustic (PA) modern technology. In modern studies the heat
conduction effect for semiconductor solid materials is very important when the change of mass
and heat transport (thermal diffusivity) occur. The diffusion of heat and mass clearly happens in
semiconductor materials when the PT and PA in modern technology are taken into consideration
in the context of sensitive to photo-excited transport processes [1,2]. The thermal excitation of the
laser pulses causes the electrons to move rapidly and plasma waves (carrier density) are generated
in semiconductor materials. This process is very important in microelectronic devices industry
during the waves of plasma and elastic-thermal created. A non-Gaussian laser beam is used in
this problem to heat the semiconductor plane surface.

Biot [3] developed the coupled thermoelasticity theory (CD theory) when motived the law
of Fourier heat conduction that became appropriate for modern engineering applications spicily
in high temperature case. But in low temperature case, the thermoelastic models are physically
unacceptable and cannot obtain equilibrium state. Lord et al. [4] (LS) inserted one relaxation time
and Green et al. [5] (GL) inserted two relaxation times in the heat conduction equation (Fourier’s
law of heat conduction) to overcome this contradiction. Many scientists developed many works
with some applications in the generalized thermoelasticity theory when used these theories (CD,
LS and GL) [6–10].

When an intracavity sample of semiconductor is exposed to laser pulses or beams of laser
light sources for photoacoustic spectroscopy analysis in this case, the photothermal theory is
introduced [11–14]. Experimentally the electrical resistance of semiconductor materials depends
on the temperature increasing. Due to the thermal wave an elastic vibration and thermoelatic
deformation (TE) is occurred in the medium, in this case the thermoelastic mechanism during
photothermal processes will generate [15]. In the context of photo-excited transport processes the
free carriers (carrier density) appear this process is the electronic deformation (ED) [16]. During
the two processes TE and Ed, the coupled between plasma and thermo-elastic waves are obtained
in a semiconductor medium [17,18]. In modern technology (renewable energy), a semiconductor
material industry is widely used specially in solar cells. When the inner structure of semiconductor
material is taken into consideration a two different temperatures (the conductive temperature (φ)
and the thermo-dynamical temperature (T)) should study. The system two temperature theory
is investigated during structural stability and convergence by Quintanilla et al. [19]. Youssef
et al. [20,21] developed a novel technique when used two-temperature theory in the context of
the linear generalized thermoelasticity. Lotfy et al. [22–30] used the photo-thermoelasticty theory
during TE and ED deformation when used pulse heat flux and gravity field in the context of two-
temperature theory with many external fields and various thermal memories. Mondal et al. [31,32]
used the memory dependent and fractional derivative during piezo-thermoelastic medium to study
Photo-thermo-elastic wave propagation in semiconductor medium.

Recently, Youssef et al. [33] investigated a new model in generalized thermoelsticity the-
ory when they introduced the theory of hyperbolic two-temperature. Ezzat [34] developed the
hyperbolic two-temperature theory to study thermal-plasma-elastic wave propagation in organic
semiconductor material. Hobiny [35] studied the influence of the hyperbolic two-temperature
theory for Photo-thermal waves in a semiconducting medium without energy dissipation. Abbas
et al. [36,37] used the hyperbolic two-temperature during the interaction between photo-thermal
waves in a cylindrical cavity of semiconductor medium. Many authors developed many models in
thermoelasticity theory [38,39].
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The basic goal of the investigation is solving a new mathematical model in the context of the
2D deformation processes for hyperbolic two-temperature theory. The problem is studied in photo-
thermoelasticity (coupled between plasma and thermal waves) theory of a thin film semiconductor
material which exposed to laser pulses. The photo-excitation transport processes occur due to the
thermal effect of laser pulses. The problem is studied when using three models of thermoelasticity
theory. The harmonic waves (normal mode analysis) expressions are used to obtain the analytical
solutions and exact expressions of the main physical quantities. The effects of the hyperbolic two-
temperature parameters, thermoelectric (electrical) parameters and the relaxation times (thermal
memories) on some physical quantities are obtained. The obtained results have been depicted by
simulation (using Si material) graphically and theoretical discussed.

2 Basic Equations

In the present work, a theoretical dissuasion during the heat transport process when the inner
structure of semiconductor is taken into consideration. The interaction between plasma-thermal
and elastic waves altogether are generated in the context of the own temperature (the hyperbolic
two-temperature). The system of equations in this work depend on four main variable quantities,
the carrier density N(�r, t) which describe the plasma wave, the thermal wave or thermodynamic
temperature distribution T(�r, t), the conductive temperature (φ(�r, t)) and the elastic waves (dis-
placement distribution)

⇀
u(�r, t). In this problem, the vector �r is the position vector and t is the time

during the heat flux located, the two-temperature influence appear for a linear, homogeneous and
isotropic semiconductor medium. In 2D deformation the variables x and in the xz-plane are taken
into account. When the semiconductor surface is excited that it exposed to a laser pulses [40] with
the heat input function Q as follows (see the schematic Fig. 1):

Q= I0 f (t)g (z)h (x) . (1)

The function f (t) expresses the temporal profile which can be represented as,

f (t)= t

t20
exp

(
− t
t0

)
. (2)

The pulse Gaussian spatial profile g (z) for the laser beam in z-direction is:

g (z)= γ ′

2πa2
exp

(
− z2

a2

)
. (3)

Spatial profile and temporal of the pulse Geometry of the problem

Figure 1: Schematic representation of the problem (a) spatial profile and temporal of the pulse
(b) geometry of the problem
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The laser pulse causes a heat deposition h (x) which it decays exponentially and propagates
in the semiconductor medium as the follows:

h (x)= γ ′ exp
(−γ ′x

)
. (4)

Using Eqs. (2)–(4) and substitution in Eq. (1), yields:

Q= I0γ ′t
2πa2t20

exp

(
− z2

a2
− t
t0

− γ ′x

)
, (5)

The laser constants I0, t0, a and γ ′ represent the absorbed energy, the pulse rise time, the
radius of the laser beam and the absorption heating energy at the medium depth (z) respectively.

When the external surface of semiconductor is exposed to thermal effect due to the laser
pulses the net charge carrier density is generated. During the excitation transport heat, the coupled
plasma, thermal and elastic equations can be obtained in the context of the hyperbolic two
temperature theory in the absence of heat source as the form [5,20,41,42]:

∂N
(⇀
r, t
)

∂t
=DE∇2N

(⇀
r, t
)− N

(⇀
r, t
)

τ
+ κT (⇀r, t) , (6)

ρCe

(
n1+ n0τ0

∂

∂t

)
∂T
(⇀
r, t
)

∂t
= k∇2φ

(⇀
r, t
)+ Eg

τ
N
(⇀
r, t
)+ γT0

(
n1+ n0τ0

∂

∂t

)(
∂

∂t
∇ · �u (⇀r, t)−ρQ) ,

(7)

ρ
∂2�u (⇀r, t)
∂t2

=μ∇2�u (⇀r, t)+ (μ+λ)∇ (∇ · �u (⇀r, t))− γ (1+ ν0 ∂
∂t

)
∇T

(⇀
r, t
)− δn∇N (⇀r, t) . (8)

The hyperbolic two temperature theory which it describes the coupled between the heat
conduction and the thermo-dynamical temperatures can be written in the following form [40]:

T̈ − φ̈ =−β∇2φ. (9)

where β is arbitrary positive constant and it expresses the hyperbolic two-temperature parameter
and ∇φ represents the gradient in heat conduction flux.

In the above equations, κ is a non-zero coupling parameter which expresses about the thermal

activation
(
κ = ∂N0

∂T
T
τ

)
in equilibrium carrier concentration N0 at the temperature T (high

temperature) [43–45]. The elastic Lame’s constants are λ and μ, but γ = (3λ+ 2μ)αT and αT
represents the linear thermal expansion coefficient. The other constants, DE , τ , Eg, ρ, k, Ce, δn
and T0 express about the carrier diffusion coefficient, the lifetime during the photo-generated
carrier processes, the energy gap, the density of the material, the heating conductivity, the spe-
cific heat coefficient, the deformation potential difference with valence band and the absolute
temperature respectively. The thermal memories constants (the thermal relaxation time) are ν0
and τ0. The parameters n0, n1 are chosen in dimensionless according to the thermoelasticity
theories [43,44]. In this investigation all main variables are analyzed the xz-plane, in this case
the displacement vector can be taken the components form as �u = (ux, 0,uz), where the two
components of displacement are ux (x, z, t) and uz (x, z, t).
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The constitutive (stress–strain) relation during the coupled processes can be represented
in 2D as:

σxx = (2μ+λ)∂ux
∂x

+λ∂uz
∂z

− (3λ+ 2μ)(αT

((
1+ ν0 ∂

∂t

)
T + dnN

)
, (10)

σzz = (2μ+λ) ∂uz
∂z

+λ∂ux
∂x

− (3λ+ 2μ)
(
αT

(
1+ ν0 ∂

∂t

)
T + dnN

)
, (11)

σxz =μ
(
∂ux
∂z

+ ∂uz
∂x

)
. (12)

3 Formulation of the Problem

The dimensionless displacement (ux and uz) can be represented in terms of the scalar and
vector potentials Π (x, z, t) and ψ (x, z, t) functions as follows:

ux = ∂�

∂x
+ ∂ψ

∂z
, uz = ∂�

∂z
− ∂ψ

∂x
.

In the other hand, the all quantities can be introduced in non-dimensional quantities for
simplicity as follows:

(
x′, z′, u′x,u

′
z
)= (x, z,ux,uz)

CTt∗
,

(
t′,υ ′0, τ

′
0

)= (t,υ0, τ0)
t∗

,
(
T ′, φ′

)= γ (T ,φ)
2μ+λ ,

σ ′
ij =

σij

μ
, N′ = δnN

2μ+λ ,
(
�′,ψ ′)= (�,ψ)

(CTt∗)2
, Q′ = Q

T0Cet∗
. (13)

Therefore, the dimensionless Eq. (13) and the scalar and vector potential function (9) can be
used in the governing Eqs. (6)–(12), yields (in this case, the primes are dropped for convenient):(
∇2 − q∗1 − q∗2

∂

∂t

)
N+ ε3T = 0, (14)

∇2ϕ−
(
n1+ n0τ0

∂

∂t

)
∂T
∂t

+ ε2N + ε1
(
n1+ n0τ0

∂

∂t

)
∂

∂t
∇2�= ε1

(
n1t+ n0τ0

{
1− t

t0

})
Q
t
, (15)

(
∇2− ∂2

∂t2

)
�−

(
1+ ν0 ∂

∂t

)
T −N = 0, (16)

(
∇2−β2 ∂

2

∂t2

)
ψ = 0, (17)

T̈ − φ̈ =−a∇2φ. (18)

where,

q∗1 =
kt∗

DEρτCe
, q∗2 =

k
DEρCe

, ε1 = γ 2T0t∗2

kρ
, ε2 =

αTEgt∗

dnρτCe
, ε3 = dnkκt∗

αTρCeDE
,

C2
T = 2μ+λ

ρ
, C2

L = μ

ρ
, β2 = C2

T

C2
L

, δn = (2μ+ 3λ)dn, t∗ = k

ρCeC2
T

, a= β

C2
L

.
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Where, ε1, ε2 and ε3 are parameters which describe the thermal-elastic, thermal-energy and
thermal-electric coupling parameters respectively, dn is the coefficient of electronic deformation.

The constitutive (stress–strain) relations can be obtained in dimensionless form as:

σxx = (2μ+λ)
μ

∂2�

∂x2
+ λ

μ

∂2�

∂z2
+ 2

∂2ψ

∂x∂z
− (2μ+λ)

μ

((
1+ ν0 ∂

∂t

)
T +N

)
, (19)

σzz = (2μ+λ)
μ

∂2�

∂z2
+ λ

μ

∂2�

∂x2
− 2

∂2ψ

∂x∂z
− (2μ+λ)

μ

((
1+ ν0

∂

∂t

)
T +N

)
, (20)

σxz = ∂2ψ

∂z2
+ 2

∂2�

∂x∂z
− ∂2ψ

∂x2
. (21)

4 Solution of the Problem

Using the harmonic wave technique (normal mode method) to discuss the wave propagation
of the main quantities, which it can be expressed in the xz-plane as follows:[
�,ψ ,φ,T ,σij,N

]
(x, z, t)=

[
�̃ (x) , ψ̃ (x) , φ̃ (x) , T̃ (x) , σ̃ij (x) , Ñ (x)

]
exp (ωt+ ibz) , (22)

where ω, i, b and (�̃ (x) , ψ̃ (x) , φ̃ (x) , T̃ (x) , σ̃ij (x) , Ñ (x)) represent the angular frequency (con-
stant of a complex time), the imaginary unit, the number of wave in z-direction and the
amplitudes of the main quantities (�(x), ψ (x), φ (x), T (x), σij (x), N (x)) respectively.

Applying the normal mode (harmonic wave technique) which defined in Eq. (22) on the main
Eqs. (14)–(18), the system of non-homogeneous ordinary deferential equations (ODE):(
D2 −α1

)
Ñ+ ε3T̃ = 0, (23)(

D2 − b2
)
φ̃−ω∗T̃ + ε2Ñ+α2

(
D2− b2

)
�̃= g (z, t) exp

(−γ ′x
)
, (24)(

D2 −α3
)
�̃−α7T̃ − Ñ = 0, (25)(

D2 −α24
)
ψ̃ = 0, (26)(

D2 −A1

)
φ̃+β∗T̃ = 0. (27)

In the other hand, the constitutive (stress–strain) relations (19)–(21) when the normal mode
analysis is applied yields:

σ̃xx =
(
α5D

2−α6b2
)
�̃+ 2ibDψ̃ −α5

(
α7T̃ + Ñ

)
, (28)

σ̃zz =
(
−α5b2+α6D2

)
�̃− 2ibDψ̃ −α5

(
α7T̃ + Ñ

)
, (29)

σ̃xz = 2ibD�̃−
(
D2+ b2

)
ψ̃ . (30)
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where,

D= d
dx

, α1 = b2+ q∗1 +ωq∗2, α2 = ε1ω (n1+ n0τ0ω) , α3 = b2+ω2, α24 = b2+ω2β2,

A1 = b2+β∗, β∗ = ω2

a
, ω∗ =ω (n1+ n0τ0ω) , α5 = (2μ+λ)

μ
, α6 = λ

μ
, α7 = 1+ ν0ω,

g(z, t)= ε1
(
n1t+ n0τ0

{
1− t

t0

}
I0γ ′

2πa2t20
exp

(
− z2

a2
− t
t0

+ωt+ ibz

)
. (31)

Solving the system of Eqs. (23)–(25) and (27) by eliminate �̃ (x) , φ̃ (x) , T̃ (x), and Ñ (x), the
non-homogeneous six-order ODE in θ̃ (x) can be obtained as:[
D6−ED4 +FD2 −G

]
θ̃ (x)=L1g (z, t) exp

(−γ ′x
)
. (32)

where the coefficients of Eq. (32) are:

E =
[(
α1+α3+ b2

)
β∗ + (α1+α3 +A1)ω

∗ − ε2ε3 −α2
(
α∗1 +α7

(
A1+ b2

))]/
A2, (33)

F =
[(
α1α3+ (α1+α3)b2

)
β∗ + (α1A3+α3A1)ω

∗ − ε2ε3A3−α2
(
α∗1A1+ b2A4

)]/
A2, (34)

G=
[
α1α3b

2β∗ +α1α3A1ω
∗ − ε2ε3α3A1−α2α∗1A1b

2
]/

A2. (35)

The other constants are:

L1 = γ ′6 − (α1+α3 +A1) γ
′4 + (α1A1+α3A1+α1α3)γ ′2 −α1α3A1,

α∗1 = α1α7+ ε3, A2 = β∗ +ω∗ −α2α7, A3 = α3+A1, A4 =
(
α∗1 +α7A1

)
.

The factorization of six-order homogenous ODE (32) can be expressed as:(
D2− k21

)(
D2 − k22

)(
D2− k23

)
T̃ (x)= 0. (36)

But the characteristic equation six-order homogenous ODE (36) which it has the roots
k2n (Re (kn) > 0, n= 1, 2, 3) can be taken the following form:

π6−Eπ4 +Fπ2 −G= 0 (37)

In the other hand, the characteristic equation of the six-order non-homogenous ODE (32)
and homogenous ODE (26) can be rewritten the same equation as the follows:(
D2− k21

)(
D2 − k22

)(
D2− k23

)(
D2− k24

)(
T̃ , ψ̃

)
=L1g (z, t)exp

(−γ ′x
)
. (38)

where k24 represents the real root of Eq. (26).

The solution of the eighth-order non-homogenous ODE Eq. (38) takes the following form:

T̃ (x)=
3∑

n=1

�n (b,ω)exp (−knx)+L2 exp
(−γ ′x

)
. (39)
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where, L2 = L1g (z, t)[
γ ′6 −Eγ ′4 +Fγ ′2 −G

] .
By the same way,

�̃ (x)=
3∑

n=1

�′
n (b,ω)exp (−knx)+L3 exp

(−γ ′x
)
, (40)

Ñ (x)=
3∑

n=1

�′′
n (b,ω)exp (−knx)+L4 exp

(−γ ′x
)
, (41)

φ̃ (x)=
3∑

n=1

�′′′
n (b,ω)exp (−knx)+L5 exp

(−γ ′x
)
, (42)

ψ̃ (x)=�4 (b,ω)exp (−k4x) . (43)

where, L3 = L2

(
α7γ

′2 −α∗1
)

(
γ ′2 −α1

)(
γ ′2 −α3

) , L4 = −ε3L2(
γ ′2 −α1

) , L5 = − β∗L2

γ ′2 −A1
and the parameters

�n, �′
n, �′′

n, �′′′
n and �4 are unknown which they depend on b and ω.

The displacement components in terms of the amplitude of the scalar and vector potential
functions can be rewritten as:

ũx (x)=D�̃+ ib ψ̃ , (44)

ũx (x)=−
3∑

n=1

�′
n (b,ω)kne−knx− γ ′L3 exp

(−γ ′x
)+ ib�4 (b,ω)exp (−k4x) , (45)

ũz (x)= ib �̃−Dψ̃ , (46)

ũz (x)= ib

{
3∑

n=1

�′
n (b,ω)e−knx+L3 exp

(−γ ′x
)}+�4 (b,ω)k4 exp (−k4x) . (47)

Using Eqs. (39)–(42) into Eqs. (23)–(25) and (27) to obtain the main relations between the
unknown parameters �n, �′

n, �′′
n and �′′′

n which they can written as follows:

�′
n (b,ω)=

(
α7k2n−α∗1

)
(
k2n−α1

) (
k2n−α3

)�n (b,ω) , n= 1, 2, 3. (48)

�′′
n (b,ω)= −ε3(

k2n−α1
)�n (b,ω) , n= 1, 2, 3, (49)

�′′′
n (b,ω)=− β∗

k2n−A1
�n (b,ω) , n= 1, 2, 3, (50)
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Therefore, the other physical quantities can be represented in terms of the unknown param-
eters �n as follows:

�̃ (x)=
3∑

n=1

(
α7k2n−α∗1

)
(
k2n−α1

) (
k2n−α3

)�n exp (−knx)+L3 exp
(−γ ′x

)
, (51)

Ñ (x)=
3∑

n=1

−ε3(
k2n−α1

)�n exp (−knx)+L4 exp
(−γ ′x

)
, (52)

φ̃ (x)=
3∑

n=1

−β∗
k2n−A1

�n exp (−knx)+L5 exp
(−γ ′x

)
, (53)

σ̃xx =
3∑

n=1

hn�n exp (−knx)+χ1 exp
(−γ ′x

)− 2ibk4�4 exp (−k4x) , (54)

σ̃zz =
3∑

n=1

h′n�n exp (−knx)+χ2 exp
(−γ ′x

)+ 2ibk4�4 exp (−k4x) , (55)

σ̃xz =
3∑

n=1

h′′n�n exp (−knx)+χ3 exp
(−γ ′x

)−(k24 + b2
)
�4 exp (−k4x) , (56)

ũx (x)=−
3∑

n=1

kn
(
α7k2n−α∗1

)
(
k2n−α1

) (
k2n−α3

)�ne−knx− γ ′L3 exp
(−γ ′x

)+ ib�4e
−k4x, (57)

ũz (x)=
3∑

n=1

ib
(
α7k2n−α∗1

)
(
k2n−α1

) (
k2n−α3

)�ne−knx+ ibL3 exp
(−γ ′x

)+ k4�4e−k4x. (58)

Where, hn =
(
α7k2n−α∗1

) (
α5k2n−α6b2

)
(
k2n−α1

) (
k2n−α3

) − α5

(
α7− ε3(

k2n−α1
)
)
, h′′n = −2ibkn, χ3 = −2ibγ ′L3,

h′n = −
(
α7k2n−α∗1

) (
α5b2−α6k2n

)
(
k2n−α1

) (
k2n−α3

) − α5

(
α7− ε3(

k2n−α1
)
)
, χ1 =

(
α5γ

′2 −α6b2
)
L3 − α5 (α7L2+L4),

χ2 =
(
α6γ

′2 −α5b2
)
L3−α5 (α7L2+L4).

5 Boundary Conditions

In this section, some boundary conditions are applied at the free surface of the semi-infinites
semiconducting ζ medium to obtain the unknown parameters �n (n= 1, 2, 3, 4) when the positive
exponentials unlimited when x tends to infinity. The problem is studied in the hyperbolic two
temperature theory with laser pulses that generate thermal, elastic, plasma effects in the context
of the photothermal transport during recombination processes.
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(I) Mechanical loads at the surface:

i) At surface x = 0, the traction can be chosen as loaded with force p1 in the
normal direction as:

σxx (0, z, t)=−p1 exp (ωt+ ibz) . (59)

ii) But, the traction is free for half-space surface as:

σxz (0, z, t)= 0. (60)

(II) Isolated thermal boundary:
The thermal boundary at the free surface x= 0 can be chosen as thermally insulated:

∂T (0, z, t)
∂x

= 0. (61)

(III) Diffusion recombination boundary:
During the photothermal transport processes, the carrier’s diffusion occur in the context
of the limited recombination processes (possibility), in this case the condition can be
chosen as:

∂N (0, z, t)
∂x

= s
De

N. (62)

With applying the above boundary conditions in harmonic wave technique, the following
expressions in terms of the parameters �n can be obtained as:

3∑
n=1

hn�n− 2ibk4�4 =− (p1+χ1) , (63)

3∑
n=1

h′′n�n−
(
k24 + b2

)
�4 =−χ3, (64)

3∑
n=1

kn�n=−γ ′L2, (65)

3∑
n=1

−ε3kn(
k2n−α1

)�n=−
(
s
De

N+ γ ′L4

)
. (66)

Using Cramer’s rule for the above Eqs. (63)–(66), the four unknown parameters �n can be
determinate at x= 0. In this case, the complete solutions of physical quantities can be obtained
in time-space domain.

6 Validation

6.1 Two Temperature Theory
To obtain the two-temperature thermoelasticity theory in classical model, Eq. (9) can be

rewritten in the following form [46]:

T −φ =−β∇2φ. (67)
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where, β > 0 is the two temperature parameter and the problem can be studied in photo-
thermoelasticity theory with laser pulses in two temperature field.

6.2 One Temperature Theory
To obtain the one-temperature theory when the two temperatures are identical (conductive

temperature and the thermodynamic temperature) when β = 0, in this case the heat conduction
Eq. (7) can be rewritten in the following form [22]:

ρCe

(
n1+ n0τ0

∂

∂t

)
∂T
∂t

= k∇2T + Eg
τ
N + γT0

(
n1+ n0τ0

∂

∂t

)(
∂

∂t
∇ · �u−ρQ

)
. (68)

6.3 Laser Pulses Effect
When the heat input function Q is neglected, then the problem is studied in photo-

thermoelasticty theory with hyperbolic two temperature theory, in this case the heat Eq. (7) can
be written as [47]:

ρCe

(
n1+ n0τ0

∂

∂t

)
∂T
∂t

= k∇2φ+ Eg
τ
N+ γT0

(
n1+ n0τ0

∂

∂t

)
∂∇ · �u
∂t

. (69)

6.4 The Thermoelasticity Theory without Photothermal Excitation

When the carrier density effects N
(⇀
r, t
)
(free electrons) which describe the plasma wave is

neglected (i.e., N = 0), in this case the main governing equation can be expressed in the generalized
thermoelasticity theory in hyperbolic two temperature theory with laser pulses [37].

6.5 The Generalized Photo-Thermoelasticity Theory
In generalized photo-thermoelasticity theory in this problem three theories can be obtained

as follows:

(i) When n1 = 1, n0 = 0, ν0 = τ0 = 0, the CD theory can be discussed [3].
(ii) When n1 = n0 = 1, ν0 = 0, τ0> 0, the LS theory can be discussed [4].
(iii) When n1 = 1, n0 = 0, ν0 ≥ τ0> 0, the GL theory can be discussed [5].

7 Numerical Results and Discussions

To investigate the obtained results theoretically, the physical properties and physical constants
in SI unit of silicon (Si) as a semiconductor elastic material is used. Silicon (Si) constants are
used to make the numerical simulation and discussed the computational results. The MATLAB
(2018) is used to complete the numerical simulation; the constants of Si are shown in Tab. 1
as [46,47]:

In the above computations, ω = ω0 + iξ (ω0 = −0.03) for small time t = 0.0005 s and
ξ = 0.01, the exponential function can be expressed as eωt = eω0t (cos ξ t+ i sin ξ t) where i =√−1
represents the imaginary unit. The obtained results are calculated when the wave number is b= 1.0
and load force is p1 = 1, the distributions of physical quantities are taken for the real part in
this problem.
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Table 1: The physical constants of Si

Unit Symbol Value

N/m2 λ , μ 3.64× 1010, 5.46× 1010

kg/m3 ρ 2330
K T0 800
sec τ 5× 10−5

m3 dn −9× 10−31

m2/s DE 2.5× 10−3

eV Eg 1.11
K−1 αt 4.14× 10−6

Wm−1K−1 k 150
J/ (kgK) Ce 695
m/s s 2
ps t0 9
μm a 100
m−1 γ ′ 10−3

J I0 105

Figure 2: The variation of main physical fields against the horizontal distance under generalized
three theories when ε3 =−5 with laser pulses in hyperbolic two temperature field
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Fig. 2 shows the wave propagation of the main physical fields (thermo-dynamical tempera-
ture T , the horizontal displacement ux, heat conduction temperature φ, the normal and tangent
stresses (σxx, σxz) and carrier density N) against the horizontal distance x at the plane z = −1.
A three theories of generalized photo-thermoelasticity are applied, the coupled model (CD the-
ory (solid lines)), the Lord-Şhulman model (LS theory (dashed-dotted lines)) with one thermal
memory (relaxation time) when τ0 = 0.00002 s, and generalized theory Green-Lindsay model (GL
theory (dashed lines)) with two thermal memories when τ0 = 0.00002 s, ν0 = 0.00003 s. In these
figures, the real dimensionless forms are applied for main fields in hyperbolic two temperature
field under the influence of laser pulse at ε3 = −5. From the subfigures in Fig. 2, all physical
fields satisfy the thermal, mechanical and plasma conditions at the boundary surface. All waves’
distributions start from minimum values and increases in the first range near the boundary surface
due to the effect of laser pulses. The distributions of waves are damped which have an exponential
wave form with a finite speed with the increasing in the horizontal distance due to the effect of
hyperbolic two temperature parameter.

Figure 3: The variation of main physical fields against the horizontal distance under generalized
Gl theory with laser pulses in hyperbolic two temperature field and different thermoelectric
coupling parameter

The second category (Fig. 3) displays the variation of main physical fields with the horizontal
distance under the effect of different three negative values of thermoelectric coupling parameter
in hyperbolic two temperature field with laser pulse under GL theory. From the second figure,
the wave propagation distributions coincide with the increasing of distance x at infinity due to a
finite speed of waves. The thermoelectric coupling parameters have a great significant effect of all
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physical field distributions. The amplitude of most wave propagations increases when the value of
the thermoelectric coupling parameters decreases.

Fig. 4 represents the comparison between the main physical fields under investigation three
cases, the first case when the thermodynamic temperature T is equal to the conductive tempera-
ture φ (one-temperature (OT)) in the absence of heat supply which it expresses by the solid lines.
The second case represents the classical two temperature parameter (CTT) in absence of heat
supply which it represents by dashed-dotted lines. But the third case represents hyperbolic two
temperature (HTT) case which it expresses by dashed lines. All obtained results are made when
ε3 =−5 under the influence of laser pulses under in GL model. A clear significant difference is
obtained in three different cases.

Figure 4: The variation of main physical fields against the horizontal distance under generalized
Gl theory with laser pulses in one temperature, two temperature and hyperbolic two temperature
when ε3 =−5

The forth category (Fig. 5) shows that the variations of the basic physical fields against the
horizontal distance in two cases, the first when the problem is studied without laser pulse (WOLP)
which it represents by solid lines. The second case when the problem is investigated under the
effect of laser pulse (WLP), all computationals are carried out in GL photo-thermoelasticity
theory in hyperbolic two temperature field when ε3 = −5. The influence of laser pulses clearly
shows in the amplitude of the wave propagation. The values of the amplitude of physical quantity
are greater under the influence of laser pulse (WLP) than without the effect of laser pulse
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(WOLP) due to the physical properties of semiconductor materials (laser with thermal effect
causes photo-excited electrons).

Figure 5: The variation of main physical fields against the horizontal distance under generalized
Gl theory with and without laser pulses in hyperbolic two temperature field when ε3 =−5

8 Conclusion

In the present problem, the coupled between the plasma, elastic and thermal waves is
investigated in generalized photo-thermoelasticity theory in the context of the hyperbolic two
temperature theory with the effect of laser pulses of a 2D deformation semiconductor wafer. The
harmonic wave analysis is used to obtain the physical fields analytically, therefore they are illus-
trated graphically and discussed. The influences of the thermal memories time, the thermoelectric
coupling parameters, three theories of thermodynamic-conduction temperatures (OT, CTT and
HTT) and laser pulses effect are discussed. From the above investigations, some important results
are obtained as follows:

1. The wave propagation of all physical fields decreases exponentially when the horizontal
distance x increases.

2. The thermal memories according to the thermoelasticity theories have a great influence of
all the physical field distributions.

3. The thermoelectric coupling parameters have a significant effect in all physical fields under
the hyperbolic two temperatures theory due to the effect of laser pulse.

4. The hyperbolic two-temperature in generalize photo-thermoelasticity theory is more effec-
tive for discus the wave propagation on the distribution of field quantities when study the
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behavior of the inner structure of the semiconductor elastic solid body more real than the
two temperature theory and one-temperature with laser pulses.

5. The laser pulses in the hyperbolic two temperature theory is important phenomena which
it has a great influence on the distribution of field quantities.

Acknowledgement: This paper was funded by the deputyship for Research & Innovation Ministry
of Education in Saudi Arabia through the project number (IFP-2020-08).

Funding Statement: The authors extend their appreciation to the deputyship for Research &
Innovation Ministry of Education in Saudi Arabia for funding this research work through the
project number (IFP-2020-08).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors. United States:

Elsevier, 1987.
[2] D. Almond and P. Patel, Photothermal Science and Techniques. Berlin, Germany: Springer Science &

Business Media, 1996.
[3] M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” Journal of Applied Physics, vol. 27,

no. 3, pp. 240–253, 1956.
[4] H. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” Journal of the

Mechanics and Physics of Solids, vol. 15, no. 5, pp. 299–309, 1967.
[5] A. E. Green and K. A. Lindsay, “Thermoelasticity,” Journal of Elasticity, vol. 2, no. 1, pp. 1–7, 1972.
[6] D. S. Chandrasekharaiah, “Thermoelasticity with second sound: A review,” Applied Mechanics Reviews,

vol. 39, no. 3, pp. 355–376, 1986.
[7] D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: A review of recent literature,” AppliedMechan-

ics Reviews, vol. 51, no. 12, pp. 705–729, 1998.
[8] K. Lotfy and S. Abo-Dahab, “Two-dimensional problem of two temperature generalized thermoelastic-

ity with normal mode analysis under thermal shock problem,” Journal of Computational and Theoretical
Nanoscience, vol. 12, no. 8, pp. 1709–1719, 2015.

[9] M. Othman and K. Lotfy, “The influence of gravity on 2-D problem of two temperature generalized
thermoelastic medium with thermal relaxation,” Journal of Computational and Theoretical Nanoscience,
vol. 12, no. 9, pp. 2587–2600, 2015.

[10] K. Lotfy and M. Othman, “The effect of rotation on plane waves in generalized thermo-microstretch
elastic solid with one relaxation time for a mode-I crack problem,” Chinese Physics B, vol. 20, no. 7,
pp. 74601, 2011.

[11] J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto and J. R. Whinnery, “Long-transient effects
in lasers with inserted liquid samples,” Journal of Applied Physics, vol. 36, no. 1, pp. 3–8, 1965.

[12] L. B. Kreuzer, “Ultralow gas concentration infrared absorption spectroscopy,” Journal of Applied
Physics, vol. 42, no. 42, pp. 2934–2943, 1971.

[13] A. C. Tam, Ultrasensitive Laser Spectroscopy. New York (NY): Academic Press, pp. 1–108, 1983.
[14] A. C. Tam, “Applications of photoacoustic sensing techniques,” Reviews of Modern Physics, vol. 58,

no. 2, pp. 381–431, 1986.
[15] A. C. Tam, Photothermal Investigations in Solids and Fluids. Boston (MA): Academic Press,

pp. 1–33, 1989.
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