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Abstract: The particle swarm optimization (PSO) algorithm is an established
nature-inspired population-based meta-heuristic that replicates the synchro-
nizing movements of birds and �sh. PSO is essentially an unconstrained
algorithm and requires constraint handling techniques (CHTs) to solve con-
strained optimization problems (COPs). For this purpose, we integrate two
CHTs, the superiority of feasibility (SF) and the violation constraint-handling
(VCH), with a PSO. These CHTs distinguish feasible solutions from infeasible
ones. Moreover, in SF, the selection of infeasible solutions is based on their
degree of constraint violations, whereas in VCH, the number of constraint
violations by an infeasible solution is of more importance. Therefore, a PSO
is adapted for constrained optimization, yielding two constrained variants,
denoted SF-PSO and VCH-PSO. Both SF-PSO and VCH-PSO are evaluated
with respect to �ve engineering problems: the Himmelblau’s nonlinear opti-
mization, the welded beam design, the spring design, the pressure vessel design,
and the three-bar truss design. The simulation results show that both algo-
rithms are consistent in terms of their solutions to these problems, including
their different available versions. Comparison of the SF-PSO and the VCH-
PSO with other existing algorithms on the tested problems shows that the
proposed algorithms have lower computational cost in terms of the number of
function evaluations used. We also report our disagreement with some unjust
comparisons made by other researchers regarding the tested problems and
their different variants.
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1 Introduction

Optimization can be simply de�ned as the process of searching for the best outcome. The
process of optimization is not new to human beings; they have been applying it since the dawn
of time. Owing to its role in solving real-world problems, optimization is imperative for research
in applied mathematics. With the advent of digital computing machines in the early 1950s,
population-based stochastic algorithms started to develop, paving the way for solutions to complex
optimization problems that were previously considered to be unsolvable [1]. In particular, during
the past �ve decades, optimization has emerged as a new branch of computational mathematics.
Optimization can be categorized into two main sub-branches: unconstrained optimization and
constrained optimization. In an unconstrained optimization, each objective or cost function is
optimized without any constraint, whereas in a constrained optimization, the objective or cost
function is optimized subject to certain constraints. As almost all real-world problems can be
modeled as constrained optimization problems (COPs), algorithms designed for unconstrained
optimization are often hybridized with CHTs to solve these problems.

Without loss of generality, in the minimization sense, a COP can be de�ned as follows [2]:

Minimize f (x) , x= (x1, x2, . . . , xn)
T
∈ F ⊆ S

Subject to

gi (x)≤ 0, i= 1, . . . , l, hj (x)= 0, j= l+ 1, . . . , p, xl
i ≤ xi ≤ xu

i , i= 1, . . . , n. (1)

In problem (1), f (x) is called the objective function, which is to be minimized. In the case
of maximization, f (x) is multiplied with a negative sign. The n-dimensional vector x is called the
decision variables vector. There are l inequality-type and p− l equality-type constraints. xl

i and xu
i

are the lower and upper bounds for the component xi of the decision variable vector x. These
bounds de�ne the search space S. Solutions that meet all constraints of problem (1) are called
feasible solutions. If F is the feasible region containing all feasible solutions, then F ⊆ S. On
the other hand, solutions that violate any of the constraints of problem (1) are called infeasible
solutions, and the region of all such solutions is called the infeasible region.

Nature-inspired algorithms (NIAs), as the name suggests, are inspired by successful biological
and/or physical systems in nature [3]. NIAs are population-based meta-heuristics and have two
major subdivisions: evolutionary algorithms (EAs) and swarm intelligence (SI)-based algorithms.
EAs are optimization techniques that work on Darwin’s principle of “survival of the �ttest” [4],
whereas the main theme of SI-based algorithms is communication among members of a swarm.
Through this communication, they learn from the experience of other members of the swarm,
and the swarm reaches a level of intelligence that no individual could attain. Designing SI-based
algorithms is a relatively new research area in the �eld of NIAs. Important SI-based algorithms
include ant colony optimization [5], the bat algorithm (BA) [5], �re�y algorithm (FA) [5], and
particle swarm optimization (PSO) [6].

PSO was developed by Kennedy and Eberhart in 1995. Owing to its ease of implementation,
PSO is one of the most widely used SI-based algorithms. In the PSO algorithm, an initial popu-
lation of particles (swarm members) is generated randomly in a given search space. Each particle
is assigned a velocity. In subsequent iterations, the velocity of each particle is updated using
appropriate formulae. This updated velocity is then used to update the position of the particle.
This process of updating velocities and then positions is repeated until some stopping criteria are
ful�lled. To deal with constrained problems, PSO, like other EAs and SI-based algorithms, needs
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modi�cation in the sense that some CHT must be incorporated into its framework. Several such
modi�cations for single- and multi-objective constrained optimization are detailed in [7–15].

Any parameter-free CHT is preferred over the commonly used penalty function approach for
constraint handling provided it gives competitive results. The superiority of feasibility (SF) [16]
approach is one such CHT. In a penalty function approach, if competing solutions are feasible,
then selection among them for the next generation is based on their objective functions’ values.
However, if competing solutions are infeasible, then their objective functions’ values are aug-
mented with penalty terms. The SF technique is different in that if the competing solutions are
infeasible, their functions’ values are not important; instead, their degrees of infeasibility are used
in their ranking.

In [17], a new CHT, violation constraint-handling (VCH), was introduced, using the number
of constraint violations as a decisive factor. The authors developed VCH-GA by combining VCH
with a genetic algorithm (GA), and obtained striking results for some engineering problems. This
technique is similar to SF, with some modi�cations towards the end. In this technique, candidates
with fewer constraint violations are preferred over candidates with more constraint violations.
In this work, we integrate SF and VCH into the PSO framework to handle the constraints of
problem (1), thereby adapting PSO for constrained optimization and designing two constrained
versions of PSO, denoted SF-PSO and VCH-PSO.

The remainder of the paper is organized as follows. Section 2 contains a brief literature
review pertaining to PSO and some constrained versions of PSO. Section 3 presents a brief
introduction of the two CHTs and details of proposed algorithms. Section 4 presents and discusses
experimental results. A short summary of the work and plans for the future are given in the
concluding Section 5.

2 Literature Review

In this section, we �rst describe PSO and a number of its improved variants. Then, a number
of promising constrained algorithms employing PSO as a base algorithm are discussed.

2.1 PSO Algorithm
PSO is among the most popular algorithms in the �eld of optimization. It has been widely

used in various applications including in engineering and industry. PSO was inspired by the
navigation patterns and synchronized movements of bird �ocks. PSO was developed in 1995
for unconstrained optimization problems. Over the years, various versions of PSO have been
developed. Owing to its ease of implementation, PSO is among the most widely used SI-based
algorithms. However, PSO differs from EAs, as it assumes that a member of the swarm never
dies but rather �ies from one place to another in a given search space. In the PSO algorithm, an
initial population of particles (swarm members) is generated randomly in a given search space.
Each particle is assigned a velocity, which can initially be set to zero or generated randomly [18].
In subsequent iterations, the velocity of the ith particle at generation t+1, vt+1

i , is updated using
the following equation [19]:

vt+1
i = vt

i + c1 ∗ r1 ∗ (pbest− xt
i)+ c2 ∗ r2 ∗ (gbest− xt

i), (2)

where vt
i is the current velocity, xt

i is the current position, pbest is the best particle in the linage
of the ith particle, gbest is the best particle of the entire population so far, and r1 and r2 are
randomly generated vectors with components lying between 0 and 1 that give a stochastic nature
to the algorithm. In Eq. (2), the �rst term on the right-hand side is the velocity of the particle
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in the previous generation and is termed the inertia component. One purpose of this component
is to avoid any abrupt change in the direction of the particle. The second term is based on
the personal experiences of the particle and is called the cognitive component, while the third
term is based on the experiences of the whole swarm and is called the social component. In
the initial version of PSO, r1 and r2 were randomly generated numbers, but the authors soon
replaced them with randomly generated vectors. Parameters c1 and c2 are learning parameters
used to balance the local and global search. In the initial version of PSO, these two parameters
were set to 2. The role of these two parameters is very important, as they control the explorative
and exploitative capabilities of the algorithm. A higher value of c1 means a higher rate of
exploration, and a higher value of c2 means a higher rate of exploitation. In initial versions, these
parameters were kept constant, but intuition suggests a higher c1 value for the initial iterations
to enable maximum exploration of the search space, and a higher c2 value for the last iterations
to exploit the regions with a possible solution (global optima). This intuitive idea is now an
essential part of modern versions of PSO. In [20], the idea of time-varying acceleration coef�cients
was applied. In Eq. (2), a larger value of c1 and a smaller value of c2 in the initial stages
ensure exploration of the whole search space. Gradual reduction of the weight of the cognitive
component through c1 and an increase in the weight of the social component through c2 facilitate
global convergence. Mathematically, the two coef�cients of the cognitive and social components
are updated as follows [20]:

c1 = (c1f − c1i) ∗
It

MaxIt
+ c1i, (3)

c2 = (c2f − c2i) ∗
It

MaxIt
+ c2i, (4)

where c1i and c1f are lower and upper bounds for the cognitive component, while c2i and c2f
are lower and upper bounds for the social component. In [20], after much experimentation,
the authors proposed reducing c1 from 2.5 to 0.5 and increasing c2 from 0.5 to 2.5 for better
performance. In [21], Vmax was introduced. This parameter keeps the newly generated particles in
a given search space and controls the search steps.

As we can see from the inertia component of Eq. (2), the velocity of a particle in the previous
iteration is fully utilized in updating its velocity for the next iteration. However, this may not
always be the preferred choice. Sometimes, we may wish to use only a fraction of the velocity.
More precisely, we may wish to use a larger fraction of the velocity in the initial iterations to
explore the whole search space, whereas in later iterations, a smaller fraction of the previous
velocity is preferable to exploit the regions with higher probabilities of having solutions. This can
be accomplished using a new parameter ω, termed the inertia weight [21]. To control the weight of
the velocity at various stages, the following equation for updating the velocity contains an inertia
factor ω:

vt+1
i =ω ∗ vt

i + c1 ∗ r1 ∗ (pbest− xt
i)+ c2 ∗ r2 ∗ (gbest− xt

i). (5)

When �rst introduced, the inertia weight was kept constant, but various researchers soon
experimented with changing the value of the parameter ω. In [21], the authors used a linearly
changing inertia weight and noted a signi�cant improvement in the performance of their algorithm
as a result. The formula for updating ω is as follows [21]:

ω= (ω1−ω2) ∗
MaxIt− It

MaxIt
+ω2, (6)
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where ω1 and ω2 are the lower and upper bounds of the inertia weight, MaxIt is the total number
of iterations, and It is the current iteration number. The authors observed through experiments
that the algorithms performed well when 0.4 and 0.9 were used as lower and upper bounds for ω.

The parameter ω given by Eq. (6) does well in static problems but not so well in dynamic
systems. Another formula for updating ω randomly was introduced in [21]. This ω, as given by
the following equation, improved the performance of algorithms for dynamic systems [21]:

ω= 0.5+
rand

2
. (7)

The velocity given by Eqs. (2) or (5) is used to update the position of the ith particle in
generation t+ 1, xt+1

i , as follows [19]:

xt+1
i = xt

i + vt+1
i . (8)

As far as the population size of the swarm is concerned, there is no signi�cant difference in
the results when the population size is varied [21]. Conversely, larger the population size, higher
the computational costs, which is generally not desirable, particularly in engineering problems.
Although in [22] the concept of a small population (�ve particles) with a re-initialization option
was adopted to maintain diversity, a normal range of 20 to 60 particles was used in most of the
existing literature.

Owing to the fast converging capability of PSO, various researchers have integrated it with
CHTs for solving COPs. Some of the prominent works using PSO as a base algorithm are
described in the following sections.

2.2 FS-PSO
In FS-PSO [23], the preservation of feasible solutions (FS) method is incorporated into PSO

to deal with constraints in COPs. This method requires a feasible initial population, and the
feasibility of solutions is maintained throughout subsequent generations. As there exists no infea-
sible solution, the entire search process will be con�ned to the feasible region. Hence, selection
of the winner is solely based on the objective function value. This method seems simple in the
sense that it considers feasible solutions only, and there is no question of constraint violations.
However, in some problems, the feasible region is small compared with the given search space.
Also, there are problems in which it is dif�cult to generate a single feasible solution, let alone a
whole population. In [22], the authors could not �nd a single feasible solution among one million
randomly generated solutions for some problems. Thus, the idea of having a feasible population
at the start of each problem is almost impractical. In cases where we have the entire feasible
population at the start of the problem, it is not con�rmed that there will be a whole feasible
population at the next generation unless the search space is convex.

2.3 HPSO
In HPSO [24], PSO is hybridized with SF to solve COPs. This rule is quite strict in the case of

infeasible solutions, which are radially discarded in comparison with feasible solutions, leading to
premature convergence. The authors avoided premature convergence by using simulated annealing
(SA). The global best is perturbed by SA to escape local optima.

In HPSO, the personal best solution, pbest, is selected per the SF rule, whereas SA is
employed during selection of the generational best solution, gbest. Furthermore, the authors kept
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the number of generations quite low at 300 in their experiments, but they used a population
of 250 particles, which is quite large in comparison with those used in other contemporary
PSO algorithms.

2.4 SR-PSO
The authors of SR-PSO incorporated stochastic ranking (SR) into PSO to develop a hybrid

algorithm for COPs. Although SR is a popular CHT that works quite well in most cases, there
remains a user-de�ned parameter Pf in this technique. In this technique, if particles are feasible or
a randomly generated number, rand, is less than Pf , then particles are ranked per their objective
function values; otherwise, they are ranked per their constraint violations. As parameters are
always hard to �ne-tune, if Pf is too high, most of the infeasible solutions will be ranked per
objective function values, and the role of constraint violations will be minimal. Of course, this is
not a good idea. On the other hand, if Pf is kept low, most of the infeasible solutions will be
ranked per constraint violations, and the role of objective function values will be minimal. Again,
this is not a good idea. A balance between the two is preferable for any algorithm. Algorithms
based on SR cannot be termed as properly guided, as many of the outcomes rely on Pf and rand
with no or very limited use of previous knowledge. Another drawback is that the algorithm does
not implement PSO in a real sense, as particles never die in PSO, whereas in SR-PSO some of
the particles are discarded. PSO does not have an explicit selection. Also, in SR-PSO, generating
npop particles from µ(µ= npop/7) particles is a form of crossover.

2.5 ε-PSO and α-PSO
In [25], the authors used a combination of an epsilon constraint method and PSO to develop

ε-PSO, a technique based on ε-level comparison. In [26], the authors integrated PSO with an
α-constraint-handling method based on α-level comparison. According to [25], the two techniques
are theoretically equivalent. A satisfaction level 0 ≤ µ(x) ≤ 1 is de�ned for constraints of the
problem. For feasible solutions, µ(x)= 1. For 0≤ α ≤ 1, if µ1 and µ2 are less than α, objective
function values are used for ranking particles, otherwise their satisfaction levels µ1 and µ2 are
used. Equality constraints can be coped with very easily by relaxing constraints at early stages
and then tightening them gradually. Both techniques closely resemble SR.

2.6 PSO for COPs
In [27], a non-stationary multi-stage assignment penalty function was combined with PSO to

solve COPs. In this approach, the actual objective function is augmented with a penalty term,
based on constraint violations, to form a �tness function. This �tness function is then used
for ranking particles. By contrast, in our proposed technique, no new function is formed. For
ranking particles, objective function values and constraint violations are considered separately,
one at a time. The newly developed algorithm achieved competitive results on the CEC 2006 test
functions suite.

2.7 SASPSO 2011
In [28], a newly proposed self-adaptive strategy was added to the standard PSO 2011

algorithm, resulting in a modi�ed PSO algorithm, SASPSO 2011. Furthermore, for population
diversity, an adaptive relaxation method is combined with a feasibility-based rule to handle
constraints and evaluate solutions in the suggested framework. In SASPSO 2011, the number
of parameters is increased, although they are adjusted adaptively. By contrast, our proposed
technique VCH-PSO uses a very basic version of PSO to keep the number of parameters low.
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Another main difference is that VCH-PSO considers the actual feasible region of the problem,
whereas in [28], similar to the α and ε techniques, constraints are initially relaxed to consider
larger regions as feasible. Furthermore, unlike feasibility-based rules, VCH-PSO mainly focuses
on the number of constraint violations rather than their degree. The performance of SASPSO
2011 was evaluated and compared on four benchmark and two engineering problems against
six PSO variants and some well-known algorithms. The authors claimed promising performance
of SASPSO 2011 versus competitors. The comparison of simulation results of VCH-PSO and
SASPSO 2011 on the two engineering problems, spring design and three-bar truss design, can be
seen in Tabs. 6 and 9.

3 SF-PSO and VCH-PSO

In this section, �rst we brie�y describe the two CHTs that were used to adapt PSO for
constrained optimization. Then, the two adapted algorithms, SF-PSO and VCH-PSO, are detailed.

3.1 Superiority of Feasibility
Any parameter-free CHT will be preferred over a penalty function approach if it gives

competitive results. The SF technique is one such CHT. In a penalty function approach, if
competing solutions are feasible, the selection is based on objective function values; if competing
solutions are infeasible, objective function values are augmented with a penalty term. The SF
technique is different in the sense that if the competing solutions are infeasible, their objective
function values are no longer important, and their degrees of infeasibility are considered for
their ranking. Furthermore, the SF technique is a combination of two different categories. On
the one hand, it separates feasible solutions from infeasible ones; on the other hand, it penalizes
infeasible solutions. If competing solutions are infeasible, their constraint violations will be used to
augment the objective function value of the worst feasible solution, not the competing solution’s
own objective function value. This �tness function is constructed as follows:

F(x)= f (x), if all constraints are satis�ed, (9)

= fmax(x)+
∑

(gi(x)), otherwise,

where fmax(x) is the maximum objective function value (worst in the minimization sense) calcu-
lated from feasible solutions. At any stage of the algorithm, if there is no feasible solution, then
fmax(x) is taken to be zero. There are following three cases for the selection of winner in the
SF technique.

1. Between two feasible solutions, winner will be the one with the lower objective
function value.

2. Between a feasible and an infeasible solution, a feasible solution will always be preferred
over an infeasible one.

3. Between two infeasible solutions, the winner will be the one with the lesser degree of
constraint violations.

The pseudo-code for selection in the SF technique is given in Algorithm 1.
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Algorithm 1: SF technique for constraint handling
Compare particle x with particle y based on the SF technique:
CV(x)=Degree of constraint violations by particle x; NV(x)=Number of constraint violations
by particle x;
if CV(x)=CV(y)= 0 and f (x) < f (y) then x is the winner;
else if NV(x)= 0 and NV(y) > 0 then x is the winner;
else if NV(x) > 0, NV(y) > 0 and CV(x) <CV(y) then x is the winner;

else y is the winner;
end if

3.2 VCH Technique
In VCH technique, the number of constraint violations was used as a preferred CHT. Here,

selection of the winner is made in such a way that if the two competitors are infeasible, the winner
will be pushed towards the feasible region. If the competitors are feasible, the quality of the
solution will be improved. In any CHT, the criteria for selection of a winner among the infeasible
competitors is mainly based on either their distance from the feasible region or the degrees of
their constraint violations. In VCH, it is the number of constraint violations that decides the
fate of infeasible competitors. VCH is a CHT that is based on the principle of “survival of the
�ttest.” Fortune cannot favor a solution that is not �t. On the other hand, techniques such as
SR have a space for the survival of the luckiest. A solution can go to the next generation by
chance even though it may be the worst with respect to the degree of constraint violations. In
SR, if for a user-de�ned parameter Pf , we have rand ≤ Pf and both competitors are infeasible,
a competitor with lower function value and a high degree of constraint violations will �nd space
in the next generation. As VCH is hard on infeasible solutions, one may think of the diversity of
the population. However, that is not an issue, because diversity in a population can be maintained
through the randomness involved in the PSO algorithm. Nor is the burden of penalty parameter
tuning an issue, as VCH is a parameter-free CHT. There are following four cases for the selection
of a winner in VCH.

1. Between two feasible solutions, the winner will be the one with the lower objective
function value.

2. Between a feasible and an infeasible solution, a feasible solution will always be preferred
over an infeasible one.

3. Between two infeasible solutions, the winner will be the one with the smaller number of
constraint violations.

4. Between two infeasible solutions having the same number of constraint violations, the
winner will be the one with lesser degree of constraint violations.

The pseudo-code of VCH is given in Algorithm 2.

Algorithm 2: Violation constraint handling (VCH) technique
Comparing particle x with particle y based on the VCH technique;
NV(x)=Number of constraints violated by particle x;
CV(x)=Degree of constraint violations by particle x;
NV(y)=Number of constraints violated by particle y;

(Continued)
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CV(y)=Degree of constraint violations by particle y;
if NV(x)=NV(y)= 0 and f (x) < f (y) then x is the winner;
else if NV(x)= 0 and NV(y) > 0 then x is the winner;
else if NV(x) > 0, NV(y) > 0 and NV(x) <NV(y) then x is the winner;
else if NV(x)=NV(y) > 0 and CV(x) <CV(y) then x is the winner;
else y is the winner;
end if

Figure 1: Flowchart of VCH-PSO algorithm

3.3 Adapted Algorithms: VCH-PSO and SF-PSO
PSO in its original version, like the majority of other meta-heuristics, was developed for

unconstrained problems. To deal with constrained problems, the PSO algorithm needs modi�cation
in the sense that some CHT must be incorporated into its framework. Two adapted algorithms,
VCH-PSO and SF-PSO, for problem (1) are developed in this work through integrating VCH and
SF into the PSO framework. The motive behind this hybridization was to combine the robustness
and quick convergence of PSO with the simplicity and effectiveness of VCH and SF. Integrating
these CHTs does not change the original objective function of the given problem, whereas the
penalty function approach does. The SF technique was already integrated with PSO, but the
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authors also used SA to perturb gbest. The reason for this perturbation was to avoid local optima.
In this work, we will show that our proposed algorithm SF-PSO can work well without SA.

Although the SF technique is sometimes placed into the category of CHTs that separate
feasible solutions from infeasible solutions, it does not do so in a true sense. Rather, it adds
the amount of infeasibility to the objective function value of the worst feasible solution, such
that infeasible solutions are penalized without giving weight to the penalty term. Thus, the SF
technique can be referred as a parameter-free penalty function approach. SF-PSO differs from
the SF technique in the sense that in the case of infeasible solutions, the objective function
value of the worst feasible solution is not added to form the new �tness function. For infeasible
competitors, the degree of constraint violations is the sole decisive factor in SF-PSO.

In VCH-PSO, the decision is solely based on the number of constraint violations when
comparing infeasible solutions. If the numbers of constraint violations for two competitors are
equal, then the degree of violation will be the basis for selection of the winner. The focus of this
research was to solve COPs of type (1). In our proposed algorithms, equality constraints present
in any problem are transformed into inequalities as follows:

|h(x)| − ε ≤ 0, (10)

where ε is a small positive number. In our experiments, it is taken as 1e−4, which is the standard
that is normally used in the literature. The pseudo-code of VCH-PSO is given in Algorithm 3. The
�owchart of VCH-PSO is shown in Fig. 1. The pseudo-code of SF-PSO is almost the same as
that of VCH-PSO; the only differences are in the update criteria for pbest and gbest. In SF-PSO,
the update criteria for pbest and gbest are based on Algorithm 1.

Algorithm 3: Pseudo-code of VCH-PSO
1: Set PSO parameters: population size, Npop, maximum iterations, MaxIt, ω, ωdamp, c1, c2;
2: Initialize position x for each particle of the swarm;
3: Initialize velocity v for each particle of the swarm;
4: Set gbest=∞;
5: Set iteration counter t= 1;
6: for i= 1 to Npop; do
7: Evaluate objective function and constraints for particle xi;
8: Set current position to pbest for particle xi;
9: Update gbest by comparing xi and gbest using Algorithm 2;

10: end for
11: while t≤MaxIt do
12: for i= 1 to Npop do
13: Update velocity vt+1

i using Eq. (5);
14: Update position xt+1

i using Eq. (8);
15: Evaluate objective function and constraints for particle xt+1

i ;
16: Update pbest by comparing xt+1

i and pbest using Algorithm 2;
17: Update pbest by comparing xt+1

i and gbest using Algorithm 2;
18: end for
19: ω=ω ∗ωdamp;
20: t= t+ 1;
21: end while
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4 Simulation Results and Discussion

In order to evaluate the performance of the proposed algorithms, �ve engineering problems
were selected from the available literature. All these problems were constrained and non-linear. As
these problems had already been attempted by various researchers, a comparative study was used
to help evaluate the performance of the proposed algorithms. The results were compiled from
20 independent runs of each algorithm on each problem. The PC con�guration and parameter
settings used were as follows.

4.1 PC Con�guration
The system used for the simulations ran Windows 10 with 8 GB RAM and a Core m3 1.00

GHz processor. All experiments were performed in the MATLAB R2013a environment.

4.2 Parameter Settings

Population size: Npop= 50, Maximum number of generations: MaxIt= 500,

Number of runs: runs= 20, Cognitive component coef�cient: c1 = 2,

Social component coef�cient: c2 = 2, Damping factor: ωdamp= 0.99.

4.3 Results and Discussion
In this section, the experimental results are discussed for the selected engineering problems.

It can be noted from the comparison tables that different researchers used different numbers of
function evaluations (NFEs) to reach the optimum, which makes comparison hard and the derived
conclusions weak and non-af�rmative.

4.3.1 Himmelblau’s Nonlinear Optimization Problem
This nonlinear optimization problem was proposed by Himmelblau in 1972 [29]. It has been

widely used as a yardstick to check the performance of algorithms devised for nonlinear COPs.
The problem was also included in the CEC 2006 suite [30]. The problem has �ve decision
variables, six nonlinear inequality constraints, and ten boundary conditions. The optimal solution
of this problem, as given in a special session on CEC 2006 by [30], is −30665.53 with decision
variable vector [78, 33, 29.99, 45, 36.7758].

Tab. 1 shows results of VCH-PSO, SF-PSO, and some other algorithms for the problem. The
results of other algorithms have been taken from the respective papers, and the last column of
this table indicates the NFEs taken by each individual algorithm to reach the optimal solution.
As can be seen in this column, both our algorithms, VCH-PSO and SF-PSO, achieved the global
optimum with minimum NFEs= 25000. The small standard deviation (st. dev.) values achieved by
our algorithms with less effort indicate the consistency of both algorithms.

Some researchers have claimed far better results than the ones as mentioned in Tab. 1; for
some examples, see [17,25,31]. However, they made a slight change in the �rst constraint of the
problem to achieve their results and unfairly compared their results with those of researchers who
attempted a different version of the problem. In this work, both versions of the problem have
been attempted.

Tab. 2 shows results for another version (version 2). In this version, the �rst constraint of the
problem is replaced by the following function:

g1(x)= 85.334407+ 0.0056858x2x5+ 0.00026x1x4− 0.0022053x3x5. (11)
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Table 1: Comparison of proposed and other algorithms on Himmelblau’s nonlinear problem
(version 1)

Algorithms Best Worst Mean st. dev. NFEs

α-PSO −30665.5386718 −30665.5386718 −30665.5386718 4.2e− 11 350000
HPSO −30665.539 −30665.539 −30665.539 1.7e− 6 81000
SR-PSO −30665.5386 −30665.5364 −30665.5386 4.05e− 5 100000
CPSO −30665.53 −29846.65 −30665.53 NA 240000
SF-PSO −30665.5386718 −30665.5386712 −30665.5386703 4.6e− 6 25000
VCH-PSO −30665.5386718 −30665.5386712 −30665.5386717 1.46e− 7 25000

Table 2: Comparison of proposed and other algorithms on Himmelblau’s nonlinear problem
(version 2)

Algorithm Best Worst Mean st. dev. NFEs

ε-PSO −31011.9988 −30762.8890 −30947.3262 55.86 50000
ε-PSO-GA −31025.5168 −31012.5285 −31023.9699 2.62 50000
VCH-GA −30998.951 −30800.891 −30845.422 48.61 50000
SF-PSO −31025.5602 −31025.5593 −31025.5601 2.51e−4 25000
VCH-PSO −31025.5602 −31025.5592 −31025.5601 2.34e− 8 25000

This change in the problem de�nition has greatly affected the results. The results for this
second version attained by our algorithms VCH-PSO and SF-PSO are compared with those of
ε-PSO, ε-PSO-GA, and VCH-GA.

Tab. 2 shows some interesting results. SF-PSO and VCH-PSO outperformed the above-
mentioned algorithms in all respects using NFEs= 25000. Even the worst values attained by SF-
PSO and VCH-PSO were better than the best of the rest. The design variables for the best solution
by VCH-PSO were x1 = 78.000000000009393, x2 = 33.000000001832397, x3 = 27.070997106372257,
x4 = 44.999999999998280, x5 = 44.969242546562349. The small st. dev. values for our both
algorithms indicate their strength.

4.3.2 Welded Beam Design Problem
This problem was originally proposed by Rao in 1996 [32] and has been used as a benchmark

problem to evaluate algorithms. The problem is to minimize the cost of constructing a welded
beam with constraints on the sheer stress in the weld (τ ), bending stress in the beam (σ ),
buckling load on the bar (Pc), and end de�ection of the beam (δ), as well as side constraints.
Four decision variables represent the length of the beam, thickness of the beam, length of the
weld, and thickness of the weld. The optimal solution, reported by Rao, is 2.3810 with solution
vector [0.2444, 6.2177, 8.2915, 0.2444]. This problem is reported differently in the literature. The
number of constraints used and various terms involved in the constraints differ among different
researchers [17,19,33,34]. This difference in de�nition greatly affects the results, as evidenced by
the wide differences in some comparison tables by various researchers. Three different versions
of the problem were used here to test the proposed algorithms. Four different comparison tables
have been constructed, keeping in mind the different versions of the problem.



CMC, 2021, vol.67, no.3 2857

Tab. 3 gives a comparison of the best solutions obtained by SS-Rao, SF-PSO, and VCH-PSO.
VCH-PSO, and SF-PSO achieved the same results as SS-Rao.

Table 3: Comparison of proposed and other algorithms on welded beam problem (version 1)

Algorithm x1 x2 x3 x4 f (x)

SS-Rao 0.2444 6.2177 8.2915 0.2444 2.381
SF-PSO 0.2444 6.2175 8.2915 0.2444 2.381
VCH-PSO 0.2444 6.2175 8.2915 0.2444 2.381

Tab. 4 gives a comparative analysis of VCH-PSO and SF-PSO with some contemporary well-
known algorithms. The results indicate that the proposed algorithms, VCH-PSO and SF-PSO, are
quite effective at attaining the minimum using NFEs= 25000. The small st. dev. values were also
an indicator of our algorithms’ consistency. However, for this version of the problem, NM-PSO
was best at attaining the minimum value when using NFEs= 80000. The welded beam problem
has another version de�ned in BWOA [33], which is different from the version described by [32]
and the majority of researchers. It will be referred to as version 3.

Table 4: Comparison of proposed and other algorithms on welded beam problem (version 2)

Algorithm Best Worst Mean st. dev. NFEs

SR-PSO 1.724866 1.725422 1.724899 1.12E-06 100000
CPSO 1.728024 1.782143 1.748831 0.0129 240000
NM-PSO 1.72472 1.733339 1.726373 0.003 80000
VCH-GA 1.726718 1.728074 1.727529 0.000421 50000
SF-PSO 1.724852 1.888685 1.73866 0.039532 25000
VCH-PSO 1.724852 1.76926 1.729839 0.012529 25000

Tab. 5 gives a comparison of the best solutions obtained by PSO-GA, BWOA, VCH-PSO,
and SF-PSO for the third version of the problem. Again, VCH-PSO and SF-PSO performed
better than BWOA. Yet another version of the problem, different from the above three, is given
in [16,34], where �ve constraints instead of seven are mentioned.

Table 5: Comparison of proposed and other algorithms on welded beam problem (version 3)

Algorithm x1 x2 x3 x4 f (x)

PSO-GA 0.20573 3.25312 9.036624 0.20573 1.69525
BWOA 0.205829 3.251922 9.034556 0.205829 1.69562
SF-PSO 0.20573 3.25312 9.036624 0.20573 1.69525
VCH-PSO 0.20573 3.253121 9.036624 0.20573 1.69525

4.3.3 Spring Design Problem
The spring design problem was �rst proposed by Arora in 1989 [35]. The problem is to mini-

mize the weight of a tension spring, where the minimum de�ection, sheer stress, surge frequency,



2858 CMC, 2021, vol.67, no.3

and outside diameter are subject to constraints. The problem has three decision variables: x1 is
the diameter of the wire from which the spring is made, x2 is the diameter of the spring, and x3
is the number of active coils. Although some researchers have considered the third variable, x3,
as an integer, the majority have treated all three variables as continuous.

Optimal solutions obtained by VCH-PSO, SF-PSO, and some other contemporary algo-
rithms are listed in Tab. 6. The last column of this table shows the NFEs taken by each
individual algorithm.

Table 6: Comparison of proposed and other algorithms on spring design problem

Algorithm Best Worst Mean st. dev. NFEs

SR-PSO 0.012668 0.012685 0.012678 7.05e− 6 100000
NM-PSO 0.012675 0.012924 0.01273 5.18e− 5 80000
VCH-GA 0.012672 0.012706 0.012693 8.32e− 6 50000
ETEO 0.01267 0.01269 0.01267 5.12e− 6 8100
SF-PSO 0.01267 0.014808 0.013291 6.76e− 4 25000
VCH-PSO 0.01267 0.016412 0.013394 9.30e− 4 25000

This table indicates that VCH-PSO and SF-PSO attained the same best results with NFEs=
25000 as a recent algorithm, ETEO [36], with NFEs= 8100. Although the mean value of 20 runs
for our proposed algorithms was slightly higher than those of competitors, the small st. dev. values
indicate their consistency.

4.3.4 Design of a Pressure Vessel
This problem is based on the minimization of the cost of manufacturing a vessel that can

be used to store air. Four decision variables are used to represent the thickness of the vessel,
thickness of the head, internal radius, and length of the cylindrical section of the vessel. The
problem was proposed by Sandgren in 1988 [37]. Various researchers have attempted the problem.
There are two issues with the problem. Different researchers have de�ned the objective function
differently [17,19,33]. Some researchers have treated the �rst two variables as discrete (being
multiples of 0.0625) and the other two as continuous [17], while others have treated all the
variables as continuous [33]. In the literature, there exist some comparison tables, in which the
optima obtained differ by wide margins. At �rst glance, some researchers seem to have developed
superior algorithms, but our study reveals some unfair comparisons. These wide differences are
often due to differences in the de�nition of the problem and not in the performance of the
individual algorithm. In this work, the VCH-PSO and SF-PSO algorithms are applied to models,
treating all variables as continuous. Although four different versions of the problem have been
noted, only two have been attempted. Comparison is made with only those researchers who used
the same model of the problem as proposed in [37].

Tab. 7 lists simulation results obtained with VCH-PSO, SF-PSO, and some other algorithms.
Although SF-PSO achieved the minimum with NFEs = 25000 of all the algorithms, the high
average and st. dev. values for our proposed algorithms reveal the weak performance of VCH-PSO
and SF-PSO for this version of the problem.
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Table 7: Comparison of proposed and other algorithms on pressure vessel design problem
(version 1)

Algorithm Best Worst Mean st. dev. NFEs

SR-PSO 5886.198 6315.015 5942.84 80.44 100000
CPSO 6061.078 6363.804 6147.133 86.45 240000
NM-PSO 5930.314 5960.056 5946.79 9.16 80000
VCH-GA 6059.792 6060.215 6060.062 0.12 50000
SF-PSO 5821.42 6411.586 6099.488 158.99 25000
VCH-PSO 5866.686 6554.209 6111.09 219.17 25000

Tab. 8 lists data for version 2 of the problem. This table gives a comparison of the best
solutions obtained by the BWOA, VCH-PSO, and SF-PSO algorithms, showing that VCH-PSO
and SF-PSO surpass the BWOA algorithm in terms of the “best” value.

Table 8: Comparison of proposed and other algorithms on pressure vessel design problem
(version 2)

Algorithm x1 x2 x3 x4 f (x)

BWOA 1.258663 0.621865 65.17912 10.19874 5347.689
SF-PSO 1.258847 0.622249 65.22523 10 5345.11
VCH-PSO 1.258847 0.622249 65.22523 10.00001 5345.12

4.3.5 Three-Bar Truss Problem
Kannan and Kramer designed this problem in 1994 [38]. The problem is to minimize the

volume of a three-bar truss structure, which is subjected to some stress constraints. The design
must sustain a certain load without elastic failure.

Tab. 9 shows a comparison of the proposed algorithms with BA [38], SR-PSO, CSA [39],
SRIFA [40], and ETEO. Although ETEO attained the best result with only 600 NFEs, our
algorithm VCH-PSO with NFEs = 25000 achieved the same best result as CSA, SRIFA, and
ETEO. SF-PSO also achieved a best result close to the known solution. However, the results for
CSA with NFEs= 25000 were better in terms of mean, st. dev., and NFEs.

Table 9: Comparison of proposed and other algorithms on three-bar truss problem

Algorithm Best Worst Mean st. dev. NFEs

BA 263.8962 263.9025 263.9061 3.52e− 3 15000
SR-PSO 263.8958 263.908 263.8978 3.02e− 5 100000
CSA 263.896 263.896 263.896 1.01e− 10 25000
SRIFA 263.896 263.896 263.896 6.21e− 11 240000
ETEO 263.896 263.8959 263.8958 6.49e− 6 600
SF-PSO 263.8959 263.8982 263.8964 6.30e− 4 25000
VCH-PSO 263.896 263.8995 263.8963 8.82e− 4 25000
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5 Conclusion

In this work, two constrained variants of PSO, SF-PSO and VCH-PSO, are proposed. The
performance of both algorithms has been evaluated on �ve engineering problems. Two issues
regarding these problems have been identi�ed through this work. First, different versions of the
problems exist. Himmelblau’s nonlinear problem has two versions that differ in the constraints
involved. The welded beam problem has three versions, which vary in constraints’ de�nitions and
the terms involved in constraints. The pressure vessel problem has four different versions, which
differ in the de�nition of the objective function. The second issue is regarding the bounds for
decision variables. Various researchers have used different bounds. This greatly affects the results,
as changing the bounds means changing the search space.

For the �rst version of Himmelblau’s problem, both algorithms attained the optima men-
tioned in the literature. For the second version of the problem, the algorithms obtained better
results than some well-known recent algorithms. Three different versions of the welded beam prob-
lem were tried: In the �rst two versions, our algorithms produced competitive results, while for the
third version, our results were better than those of the competitors. For the spring design problem,
our algorithms performed better than some state-of-the-art algorithms. In the �rst version of
the pressure vessel design problem, VCH-PSO and SF-PSO gave high mean and st. dev. values,
indicating their weak performance. However, for the second version, Chen’s algorithm BWOA was
surpassed by a wide margin. For the three-bar truss problem, VCH-PSO gave better results but
with a narrow margin. These results are encouraging, as VCH-PSO attained the optimum with
a 100% feasibility rate. The low st. dev. values in most cases indicate the consistent performance
of the proposed algorithms. The experimental results show no marked difference between the
proposed algorithms. It may also be noted that our proposed algorithms achieved results better
than or comparable with those of competing algorithms on most of the tested problems, with
fewer NFEs used.

In future, the SF and VCH techniques will be implemented in other SI-based algorithms such
as the FA and BA to adapt them for constrained optimization.
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