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Abstract: With the explosive advancements in wireless communications and
digital electronics, some tiny devices, sensors, became a part of our daily life in
numerous �elds. Wireless sensor networks (WSNs) is composed of tiny sensor
devices. WSNs have emerged as a key technology enabling the realization
of the Internet of Things (IoT). In particular, the sensor-based revolution
of WSN-based IoT has led to considerable technological growth in nearly
all circles of our life such as smart cities, smart homes, smart healthcare,
security applications, environmental monitoring, etc. However, the limitations
of energy, communication range, and computational resources are bottlenecks
to the widespread applications of this technology. In order to tackle these
issues, in this paper, we propose an Energy-ef�cient Transmission Range Opti-
mized Model for IoT (ETROMI), which can optimize the transmission range
of the sensor nodes to curb the hot-spot problem occurring in multi-hop
communication. In particular, we maximize the transmission range by employ-
ing linear programming to alleviate the sensor nodes’ energy consumption
and considerably enhance the network longevity compared to that achievable
using state-of-the-art algorithms. Through extensive simulation results, we
demonstrate the superiority of the proposed model. ETROMI is expected
to be extensively used for various smart city, smart home, and smart health-
care applications in which the transmission range of the sensor nodes is a
key concern.

Keywords: Internet of Things; wireless sensor networks; routing; transmission
range optimization; energy-ef�ciency; hot-spot problem; linear programming

1 Introduction

1.1 Background and Problem Statement
Data-driven wireless sensor networks (WSNs) are widely applied to enhance the Internet

of Things (IoT) in terms of the data throughput, energy ef�ciency, and self-management [1].
WSN-based IoTs are composed of wireless sensor nodes, which realize data collection and
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communication [2,3]. In this framework, the sensor nodes are deployed in the physical environment
to sense the phenomena and report their readings in a distributed manner to the sinks [4].
However, the sensor nodes exhibit certain limitations in terms of energy, computation resources,
and communication range [5,6].

When a WSN-based IoT is deployed over a large application area, the nodes perform mul-
tihop communication due to the limited transmission range, and direct data transmission cannot
be realized. Furthermore, it has been reported that a larger number of relay nodes on the path
of data delivery to the sink corresponds to a higher probability of these nodes closer to the sink
suffering from hot-spot problem [7]. In such a scenario, the number of intermediate nodes should
be reduced to decrease the emergence of a no-connection zone for distantly located nodes.

Moreover, the battery of the sensor nodes may not be able to be changed or recharged. There-
fore, it is necessary to ensure ef�cient power consumption in a WSN-based IoT [8]. Furthermore,
transmitting one kilobyte of data corresponds to the processing of three million instructions [9].
Therefore, data transmission in the WSNs should be minimized with regard to the distance
between any two entities among sensor nodes, cluster heads (CHs), or sinks [10].

One solution is to maximize the transmission range between nodes. The key concept of
transmission range maximization is that if a sensor initiates a data packet transmission to a sink
located 1000 m away, the least number of relay sensors should be selected to forward the packet.
The communication range of sensor nodes depends on their transmission power and the volume
of the packet to be transmitted. Transmission over long distances requires a higher energy [11,12].
Therefore, it is necessary to determine the maximum possible distance (transmission range) to
which the sensor nodes can transmit the data packets.

Many researchers have attempted to reduce the energy consumption by avoiding the hot-
spot problem [13]. In particular, Verma et al. [14] proposed the multiple sink-based genetic
algorithm-based optimized clustering (MS-GAOC) approach, in which four data collection sinks
were incorporated outside the network. However, the cost of using four sinks may be prohibitive
in various applications.

Moreover, researchers generally apply the corona-based model to avoid hot-spot problems.
A survey of the various corona-based approaches has been presented in an existing study [15].
Nevertheless, even corona-based methods are not suf�ciently reliable in mitigating the hot-spot
problem. In fact, the literature review indicates that the concept of transmission range adjustment
for the sensor nodes, to realize direct data transfer to the sink or transfer with the least possible
number of intermediate nodes, has not been extensively investigated.

1.2 Motivation
The review pertaining to the mitigation of hot-spot problems indicated that the optimization-

based approach can provide a balanced solution to speci�c problems. Therefore, in this work, we
used linear programming (LP) to compute the maximum data transmission range [16,17]. In par-
ticular, LP exhibits remarkable exploration and exploitation capabilities, enabling fast convergence
to the optimal solution. Moreover, LP is highly computationally ef�cient [16].
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1.3 Our Contributions
In the context of the aforementioned problems, the key contributions of this work are

as follow:

a) We propose an energy-ef�cient transmission range optimized model for IoT (ETROMI) to
optimize the transmission range of the sensor nodes to reduce the hot-spot problem in
WSN-based IoT.

b) The mathematical model and formulation using LP is presented.
c) The simplex method is used to solve the de�ned problem.
d) The proposed model’s performance of the proposed model is analyzed in terms of various

aspects, and the optimal solution is identi�ed.

1.4 Paper Organization
The remaining paper is structured as follows. Section 2 presents the background of trans-

mission range adjustment algorithms and describes the existing work pertaining to the hot-spot
problem in WSNs. Section 3 describes the system model and explains the LP formulation.
Section 4 describes the performance evaluation of ETROMI, which is used to compute the
maximized distance corresponding to the transmission range of a node. The concluding remarks,
along with the limitations and scope for future work, are presented in Section 5.

2 Related Work

In this section, we discuss the existing work focused on addressing the hot-spot problem
through various state-of-the-art techniques and on realizing the transmission range adjustment of
a sensor node.

2.1 Approaches to Solve the Hot-Spot Problem
In applications involving an extremely large network area, the sensor nodes inevitably perform

multi-hop communication [18]. In this process, a hot-spot is created at the nodes located nearest to
the sink. Several researchers have addressed this concern through various topology-based methods.
Moreover, the many-to-one approach (many sensor nodes corresponding to one sink) has been
widely implemented through corona-based structures [13]. Many researchers use the term “energy-
hole,” which is equivalent in meaning to a hot-spot.

Elkamel et al. [19] proposed an unequal clustering method to overcome the hot-spot prob-
lem by placing the small and large clusters nearer to and farther from the sink, respectively.
However, the proposed technique failed to eliminate the hot-spot problem, and the network’s
energy consumption was high. Verma et al. [7,14] implemented multiple data sinks in a given
network to mitigate the hot-spot problem. In their former and latter studies, the authors used
the conventional approach and the genetic algorithm, respectively. However, the network incurred
a higher �nancial cost owing to the use of multiple data sinks. The authors in [20] proposed a
virtual-force-based energy-hole mitigation strategy to ensure sensor nodes’ uniform distribution.
Moreover, the network was composed of various annuli, and virtual gravity was used to optimize
the sensor node positions in each annulus. However, due to the multi-hop communication, the
number of overheads in each annulus was extremely high, which increased the energy consumption
in the network. Sharmin et al. [21] proposed a strategy in which the network was partitioned
into several wedges, and residual energy was considered to combine the various wedges. The head
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node was selected based on the distance between the innermost corona and node. However, the
inef�cient selection of the head node led to the mediocre performance of this strategy.

In addition to the static network scenario, certain researchers introduced sink mobility to
curb the hot-spot problem. Sahoo et al. [22] proposed a particle-swarm-optimization-based energy-
ef�cient clustering and sink mobility (PSO-ECSM) technique, in which the sink mobility was
used to alleviate the hot-spot problem. However, the mobility scenario was not ef�ciently uti-
lized, and the slow convergence of the PSO degraded the performance of the proposed scheme.
Furthermore, Kaur et al. [23] introduced dual sink mobility outside the network to target
unattended applications. Although the authors implemented the PSO-based sink mobility, the use
of the dual sink introduced overheads in the network, which increased the energy consumption.
In addition, the data delivery was required to be synchronized when using the two sinks in the
network. Certain other researchers also employed the sink mobility scenario to alleviate the hot-
spot problem. However, it was observed that the use of sink mobility limited the applicability of
the approaches in various real-time scenarios.

2.2 Transmission Range Adjustment Algorithms
In addition to the network topological changes associated with the introduction of the corona-

based model, the characteristics of sensor nodes have been examined. The focus of the present
study is to optimize the transmission range. Although certain researchers have attempted to adjust
the transmission range to alleviate the hot-spot problem, the proposed approaches suffer from the
inherent problems, which limit their relevance.

In an existing strategy [24] pertaining to the transmission range adjustment, the network was
divided into various concentric sets termed as coronas. Every corona was assigned a transmission
range level. Furthermore, the authors presented an ant colony optimization (ACO)-based trans-
mission range adjustment strategy [24] to prolong the network lifetime. Liu [25] considered the
energy consumption balancing (ECB) and energy consumption minimization (ECM) techniques
to avoid the occurrence of energy holes. The authors exploited the short-trip moving scheme
for the ACO, which helped in decreasing the complexity and in the amelioration of convergence
speed. Furthermore, the authors considered a reference transmission distance to implement the
ECB and ECM techniques. Xin et al. [26] were the �rst to attempt to solve the many-to-one data
transmission problem, particularly in strip-based WSNs. The authors adjusted the transmission
range based on the computation of the accurate distance. The objective was to prolong the
network lifetime. However, the proposed algorithm was applicable only for strip-based WSNs, for
example, railway track, bridge, and tunnel systems.

In summary, only a few studies have been focused on addressing the hot-spot problem through
transmission range adjustment, and this approach exhibits considerable scope for improvement.
Furthermore, the use of LP for energy-hole mitigation in the transmission range adjustment
context is yet to be explored. Therefore, we implement these aspects in our proposed strategy.

3 System Model

In this section, we describe the network assumptions and the system model.

3.1 Network Assumptions
The following network assumptions are considered to implement ETROMI.
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a) The WSN is composed of one sink and several sensor nodes that collect data and transfer
them to the sink.

b) Each sensor has a unique ID.
c) There is no dispute for medium access, and thus, proportional fair channel access is

available to all the sensors.
d) The minimum cost forwarding approach is employed as the multi-hop-routing protocol.
e) The sensor nodes are homogeneous, i.e., all the nodes have the same con�guration in terms

of energy, computational resources, transmission range, etc.
f) The entire network is static, including the CHs and the sink.
g) The entire network has ideal conditions in terms of security, physical medium factors,

re�ection, refraction, splitting of signals, and presence of other obstacles.

3.2 Fundamental Principle of ETROMI
Assume a WSN with N sensor nodes, in which one of the sensor nodes initiates a data packet

with the intent to transmit it to the sink (�nal receiver base station). In the conventional clustering
method, a CH collects the data from the sensors node in the corresponding cluster and forwards
the data toward the sink via the other CHs. However, this approach is not ef�cient because the
CHs suffer from battery limitations, even more than the other data collecting elements, but must
be involved in all transmissions.

In contrast, the lifetime of the WSNs depends on the remaining energy of the members, i.e.,
the sensor nodes. Therefore, the number of forwarding nodes must be minimized. In this study,
we assume that instead of always selecting the CHs to receive and forward the data packets, the
sensors select the farthest sensor node in their transmission range. In other words, the sensor
nodes increase their transmission power to transmit a data packet over a longer distance. In this
con�guration, the number of nodes that are involved in a transmission are minimized, which can
considerably improve the energy ef�ciency. In Fig. 1, the red dotted line represents the routing
procedure in a clustering-based method.

In this approach, the nodes send their packets to their corresponding CH, which then for-
wards the packet to the next CH and so on. Finally, the closest CH delivers the packet to the
sink. In contrast, in the approach represented by the green dashed line, the node that initiates
the packet sends the packet to the farthest node, and the receiver node follows the same principle
and send the packet to the farthest node in its transmission range. Consequently, the number of
nodes involved in the transmission procedure is less than that in the clustering-based method.

Consider a network involving 100 sensor nodes. Sensor 1 initiates a data packet and wants
to send it to node 100. As mentioned earlier, in the WSNs, the topology is multi-hop. In other
words, node 1 sends its packet to its neighbor, which receives the packet and forwards it to the
neighboring nodes, excluding the node that the packet was received from. This process continues
until node 100 receives the packet. The problem then is to determine the number of nodes in the
transmission process that receive and forward the packet. This number of the relay nodes should
be minimized to abate the energy consumption and, in turn, prolongs the network lifetime.

One solution is to increase the transmission range of the nodes involved in the transmission
process from the source to the destination. In this case, a node selects a neighboring node,
which is far from it, but in its range, i.e., on the edge of its transmission range, and the
number of intermediate nodes is decreased. To this end, we consider the energy consumption
accounted to transmission and reception of data packets and also the magnitude of data packets.
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The total required energy can be expressed as

Eij =Etx
×Pi× dij +N×Erx

+

N−1∑
i=1

Di. (1)

Figure 1: Routing procedure in WSNs

The list of main symbols used in this paper are listed in Tab. 1.

Table 1: List of symbols

Symbol De�nition

Di The distance between node i to the sink
EI The initial power
Eij Total energy consumption of a link
Erx The receiving power
Etx Transmission power
Pi Packet volume
dij The distance between node i and j
N The number of nodes
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3.3 LP in ETROMI
Consider a WSN-based IoT represented by graph G = (V , E), in which V = v1, v2, v3, . . . , vn

is the set of sensor nodes, and E = e1, e2, e3, . . . , en is the set of direct wireless links between the
nodes, such that E ⊆V×V . Link (i, j) exists if and only if j ∈Li, where Li is the set of all nodes
that can be reached by sensor i directly with a certain transmission power level. Furthermore,
each sensor i has the initial power EI . The transmission energy consumed by node i to send a

data packet to the neighboring sensor j is Etx
ij =

{
etx

1j , etx
2j , etx

3j , . . . , etx
nj

}
; Erx

ij =

{
erx

1j , erx
2j , erx

3j , . . . , erx
nj

}
is the energy required for a node to receive a packet from node i; and P= {p1, p2, p3, . . . , pn} is
the set of the packet volumes.

The objective function is to maximize the transmission distance with respect to the packet
volume and the transmission and receiving energies, that is

max
x

n∑
j=1

dij, (2)

s.t.
n∑

i=1

pi+

n∑
j=1

dj ≤P, (3)

n∑
i=1

Etx
i < Etx, (4)

n∑
i=1

Erx
i < Erx, (5)

Etx
+Erx < EI . (6)

Constraint (3) speci�es that the total number of packets received or transmitted to/from
node i must be less than a threshold for a speci�c time slot. Constraints (4) and (5) control
the maximum transmission and receiving energy consumptions, respectively. Constraint (6) ensures
that the total consumed energy for transmission and receiving by node i, is not less than the initial
energy of the node.

4 Performance Evaluation

To evaluate the performance of the technique, we consider that a data packet is to be sent
from a sensor node to the sink via two intermediate sensor nodes. Therefore, four sensor nodes
are involved in the process: one sender, one sink, and two relay nodes. The size of each packet is
50 bits, and the transmission and receiving power are 100 and 70 W, respectively.

4.1 Linear Problem
The linear problem can be expressed as

max
x

x1+ x2+ x3, (7)

s.t. − x1− 2x2+ 4x3 ≤ 50, (8)

− 2x1+ 5x2− 2x3 ≤ 100, (9)
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4x1− 2x2− x3 ≤ 70, (10)

x1, x2, x3 ≥ 0. (11)

By adding slack variables to constraints, the primal problem in standard format is represented
as follows:

max
x

x1+ x2+ x3+ 0x4+ 0x5+ 0x6, (12)

s.t. − x1− 2x2+ 4x3+ x4 = 50, (13)

− 2x1+ 5x2− 2x3+ x5 = 100, (14)

4x1− 2x2− x3+ x6 = 70, (15)

x1, x2, x3, x4, x5, x6 ≥ 0. (16)

4.2 Simplex Method
We use the simplex method to solve the problem. The simplex method is used to solve LP

models by using slack variables, tableaus, and pivot variables to determine the optimal solu-
tion of an optimization problem [27]. To solve the optimization problem, the following steps
are performed:

a) Obtain the standard form,
b) Introduce slack variables,
c) Create the tableau,
d) Identify the pivot variables,
e) Create a new tableau,
f) Check for optimality,
g) Identify the optimal values.

The procedure starts with an initialization phase, followed by several iterations to determine
the optimal solution.

The initialization step for our optimization problem is presented in Tab. 2. After the �rst step,
x6 is the leaving variable, x1 is the entering variable, and 4 is the pivot element.

Subsequently, we apply the �rst iteration, as indicated in Tab. 3. Upon completing this
iteration, the leaving variable is x5, the entering variable is x2, and the pivot element is 4.

Table 2: Stating section

Maximize 1 1 1 0 0 0 RHS Θ

x1 x2 x3 x4 x5 x6

0x4 −1 −2 4 1 0 0 50 –
0x5 −2 5 −2 0 1 0 100 –
0x6 4 −2 −1 0 0 1 70 70/4
Cj −Zj 1 1 1 0 0 0 0

We continue by applying the second iteration as indicated in Tab. 4, which results in a leaving
variable x4, an entering variable x3, and a pivot element, 35/16.
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Table 3: Iteration I

0x4 0 −5/2 15/4 1 0 1/4 270/4 –
0x5 0 4 −5/2 0 1 1/2 135 135/4
1x1 1 −1/2 −1/4 0 0 1/4 70/4
Cj −Zj 0 3/2 5/4 0 0 −1/4 70/4

Table 4: Iteration II

0x4 0 0 35/16 1 5/8 9/16 1215/8 486/7
1x2 0 1 −5/8 0 1/4 1/8 135/4 –
1x1 1 0 −9/16 0 1/8 5/16 275/8 –
Cj −Zj 0 0 35/16 0 −3/8 −7/16 545/8

We proceed to the third iteration, in which all Cj−Zj values are zero or negative; therefore,
the simplex method is terminated at this step, as indicated in Tab. 5. The optimal solution for the
de�ned problem is presented in Tab. 6.

Table 5: Iteration III

1x3 0 0 1 16/35 2/7 9/35 486/7
1x2 0 1 0 2/7 3/7 2/7 540/7
1x1 1 0 0 9/35 2/7 16/35 514/7
Cj −Zj 0 0 0 −1 −1 −1 220

Table 6: The optimal solution

Z 220

x1 514/7
x2 540/7
x3 486/7

4.3 Duality
The duality refers to a speci�c relationship between an LP problem and another problem,

both of which involve the same original data, albeit located differently [28]. The former and
latter problems are referred to as the primal and dual problems, respectively. The feasible regions,
optimal solutions, and optimal values of these problems must be strongly correlated. The duality
and optimality conditions obtained from these aspects are a basis for the LP theory. Once either
of the primal or dual problems is solved, both the problems can be solved owing to duality. To
convert the primal problem to a dual problem, the following steps are performed:

a) If the primal problem corresponds to “Maximize,” the dual problem corresponds
to “Minimize.”

b) The number of variables in the dual problem is equal to the number of constraints in the
primal problem.

c) The number of constraints in the dual problem, is equal to the number of variables in the
primal problem.
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d) The coef�cients of the objective function in the dual problem, are equal to the right-hand
side (RHS) values in the primal problem.

e) The RHS values in the dual problem are equal to the coef�cients of the objective function
in the primal problem.

f) The coef�cient variables in the constraints of the dual problem correspond to the transpose
matrix of the coef�cient variables in the primal problem.

g) “≤” constraints in the primal problem are “≥” constraints in the dual problem, and
vice versa.

h) The variables in the dual problem are denoted as “y”.
i) The objective function is denoted as “w”. The primal problem is as follows:

Our primal problem is as below:

max
x

x1+ x2+ x3, (17)

s.t. − x1− 2x2+ 4x3 ≤ 50, (18)

− 2x1+ 5x2− 2x3 ≤ 100, (19)

4x1− 2x2− x3 ≤ 70, (20)

x1, x2, x3 ≥ 0. (21)

Coef�cient matrix of basic variables in objective function is

x1

x2

x3

=
1

1
1

, Coef�cient matrix

of basic variables in constraints is

−1 −2 4
−2 5 −2
4 −2 −1

, and RHS matrix is RHS=

 50
100
70

. Based on

the aforementioned steps, our dual problem will be as bellow:

max
x

50y1+ 100y2+ 70y3, (22)

s.t. − y1− 2y2+ 4y3 ≥ 1, (23)

− 2y1+ 5y2− 2y3 ≥ 1, (24)

4y1− 2y2− y3 ≥ 1, (25)

y1, y2, y3 ≥ 0. (26)

By adding surplus variables, the dual problem is as follows:

max
x

50y1+ 100y2+ 70y3+ 0y4+ 0y5+ 0y6, (27)

s.t. − y1− 2y2+ 4y3− y4 = 1, (28)

− 2y1+ 5y2− 2y3− y5 = 1, (29)

4y1− 2y2− y3− y6 = 1, (30)

y1, y2, y3, y4, y5, y6 ≥ 0. (31)
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As indicated in the dual problem, no identity matrix exists for the coef�cients of the variables
in the constraints; therefore, arti�cial variables must be introduced. In this case, the dual problem
in the standard format is:

max
x

50y1+ 100y2+ 70y3+ 0y4+ 0y5+ 0y6−Ma1−Ma2−Ma3, (32)

s.t. − y1− 2y2+ 4y3− y4+ a1 = 1, (33)

− 2y1+ 5y2− 2y3− y5+ a2 = 1, (34)

4y1− 2y2− y3− y6+ a3 = 1, (35)

y1, y2, y3, y4, y5, y6 ≥ 0. (36)

By adding arti�cial variables, an identity matrix can be generated, and the simplex method
can be implemented.

As indicated in Tab. 7, after completing the initialization section, the leaving variable is a3, the
entering variable is x1, and the pivot element is 4. Subsequently, we implement the �rst iteration,
as indicated in Tab. 8. Upon completing iteration I, the leaving variable is a2, the entering variable
is x2, and our pivot element is 4. We then proceed to the second iteration, as indicated in Tab. 9.
After the second iteration, the leaving variable is a1, the entering variable is x3, and the pivot
element is 35/16. We attempt to determine the optimal solution by using the two-phase simplex
method. All the arti�cial variables are removed, and the problem can be solved through the other
variables. We then apply the third iteration in two phases, as indicated in Tabs. 10 and 11.

Table 7: Starting section

Min 50 100 70 0 0 0 −M −M −M RHS Θ

y1 y2 y3 y4 y5 y6 a1 a2 a3

−Ma1 −1 −2 4 −1 0 0 1 0 0 1 –
−Ma2 −2 5 −2 0 −1 0 0 1 0 1 –
−Ma3 4 −2 −1 0 0 −1 0 0 1 1 1/4
Cj −Wj −1 −1 −1 1 1 1 0 0 0 3

Table 8: Iteration I

−Ma1 0 −9/4 15/4 -1 0 −1/4 1 0 1/4 5/4 –
−Ma2 0 4 −9/4 0 −1 −1/2 0 1 1/2 3/2 3/8
50y1 1 −1/2 −1/4 0 0 −1/4 0 0 1/4 1/4 –
Cj −Wj 0 −3/2 −5/4 1 1 3

4 0 0 1/4 11/4

Table 9: Iteration II

−Ma1 0 0 35/16 −1 −5/8 −9/16 1 5/8 9/16 35/16 1
100y2 0 1 −5/8 0 −1/4 −1/8 0 1

4 1/8 3/8 –
50y1 1 0 −9/16 0 −1/8 −5/16 0 1/8 5/16 7/16 –
Cj −Wj 0 0 −35/16 1 5/8 9/16 0 3/8 7/16 35/16
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Table 10: Phase I, Iteration III

70y3 0 0 1 −16/35 −2/7 −9/35 16/35 2/7 9/35 1
100y2 0 1 0 −2/7 −3/7 −2/7 2/7 3/7 2/7 1
50y1 1 0 0 −9/35 −2/7 −16/35 9/35 2/7 16/35 1
Cj −Wj 0 0 0 0 0 0 1 1 1 0

Table 11: Phase II, Iteration III

70y3 0 0 1 −16/35 −2/7 −9/35 1
100y2 0 1 0 −2/7 −3/7 −2/7 1
1y1 1 0 0 −9/35 −2/7 −16/35 1
Cj −Wj 0 0 0 514/7 540/7 486/7 220

Finally, it is observed that the primal solution, presented in Tab. 12, is equal to the dual
solution, presented in Tab. 13, that is Z∗ =W∗.

Table 12: Primal optimal Solution

Z 220

x1 514/7
x2 540/7
x3 486/7

Table 13: Dual optimal solution

W 220

y1 1
y2 1
y3 1

4.4 Sensitivity Analysis
Sensitivity analysis is aimed at examining the in�uence of changes in the variables, such as

the RHS, coef�cients of the objective function, and constraints, on the solution. We start with
Tab. 14 and make the some changes as explained in the next subsection.

4.4.1 Change in the Objective Function Coef�cient for Non-Basic Variables
In the last iteration, no non-basic variables of the objective function exist. Therefore, if one

of the coef�cients is changed, the optimal solution is not in�uenced.
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Table 14: Simplex optimum tableau

Maximize 1 1 1 0 0 0 RHS

x1 x2 x3 x4 x5 x6

1x3 0 0 1 16/35 2/7 9/35 486/7
1x2 0 1 0 2/7 3/7 2/7 540/7
1x1 1 0 0 9/35 2/7 16/35 514/7
Cj −Zj 0 0 0 −1 −1 −1 220

4.4.2 Change in the RHS Value

Suppose the intention is to change the �rst RHS to b1; then we have

 50
100
70

. To calculate

new RHS;

RHS=B−1 b=

16/35 2/7 9/35

2/7 3/7 2/7

9/35 2/7 16/35


b1

100

70




16b1+ 1630
35

2b1+ 440
7

9b1+ 2120
35


, (37)

∴



16b1+ 1630
35

≥ 0⇒ b1 ≥−
815

8

2b1+ 440
7

≥ 0⇒ b1 ≥−80

9b1+ 2120
35

≥ 0⇒ b1 ≥−
−725

8

. (38)

Because, b1≥−815/8. We suppose a b1 value beyond the speci�ed range; as an example −110.

RHS=B−1 b=

16/35 2/7 9/35

2/7 3/7 2/7

9/35 2/7 16/35


−110

100

70

=


278
7

220
7

226
7


. (39)

Now, we continue the tableau with new RHS values;

As indicated in Tab. 15, the primal solution is not feasible; therefore, we attempt to �nd the
optimal solution through the dual problem.
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Table 15: New RHS values

Maximize 1 1 1 0 0 0 RHS Θ

x1 x2 x3 x4 x5 x6

1x3 0 0 1 16/35 2/7 9/35 278/7
1x2 0 1 0 2/7 3/7 2/7 220/7
1x1 1 0 0 9/35 2/7 16/35 226/7
Cj −Zj 0 0 0 −1 −1 −1 220

The initialization step, as the �rst iteration, is presented in Tab. 16. After completing the
initialization step, the leaving variable is x1, the entering variable is x5, and the pivot element
is 3/7.

Table 16: Initialization step

1x3 0 0 1 16/35 2/7 9/35 278/7
1x2 0 1 0 2/7 3/7 2/7 220/7
1x1 1 0 0 9/35 2/7 16/35 226/7
Cj −Zj 0 0 0 −1 −1 −1 220
Θ – 0 – −7/2 −7/3 −7/2

Subsequently, we implement the second iteration, as indicated in Tab. 17. After �nishing the
second iteration, it is noted that the primal is feasible; the leaving variable is x5, the entering
variable is x2, and the pivot element is 7/3.

We then implement the third iteration as indicated in Tab. 18. All the values for Cj − Zj
are zero or negative; therefore, the process is terminated at this step. The optimal solution is as
presented in Tab. 19.

Table 17: Iteration II

1x3 0 −2/3 1 28/105 0 7/105 394/21 –
0x5 0 7/3 0 2/3 1 2/3 220/3 220/7
1x1 1 −2/3 0 7/105 0 28/105 34/3 –
Cj −Zj 0 7 0 −1/3 0 −1/3 30.1

Table 18: Iteration III

1x3 0 0 1 48/105 6/21 37/105 278/7
1x2 0 1 0 2/7 3/7 2/7 220/7
1x1 1 0 0 27/105 6/21 48/105 226/7
Cj −Zj 0 0 0 −1 −1 −115/105 724/7
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Table 19: Optimal solution

Z 724/7

x1 226/7
x2 220/7
x3 278/7

4.4.3 Change in the Objective Function Coef�cient for the Basic Variable
We consider the case in which the coef�cient of x1 changes. Suppose the coef�cient of x1 is c1.

Any change in the coef�cient of the basic variables of the objective function affects the value
of Cj −Zj.

For x4⇒Cj−Zj= 0−
[(

1 ∗
16
35

)
+

(
1 ∗

2
7

)
+

(
c1 ∗

9
35

)]
⇒
−9c1

35
−

26
35

. (40)

For x5⇒Cj−Zj= 0−
[(

1×
2
7

)
+

(
1×

3
7

)
+

(
c1×

2
7

)]
⇒
−2c1

7
−

5
7

. (41)

For x6⇒Cj−Zj= 0−
[(

1×
9

35

)
+

(
1×

2
7

)
+

(
c1×

16
35

)]
⇒
−16c1

35
−

19
35

. (42)

If Cj−Zj ≤ 0 then the present solution remains optimal solution;

−9c1

35
−

26
35
≤ 0⇒ c1 ≤

−26
9

, (43)

−2c1

7
−

5
7
≤ 0⇒ c1 ≤

−5
2

, (44)

−16c1

35
−

19
35
≤ 0⇒ c1 ≤

−19
16

, (45)

In this case, the range of c1 is greater than −26/9. Thus, we assign c1 beyond this range, for
example c1 =−4, and implement the �rst iteration, as indicated in Tab. 20.

Table 20: Iteration I

Maximize −4 1 1 0 0 0 RHS Θ

x1 x2 x3 x4 x5 x6

1x3 0 0 1 16/35 2/7 9/35 486/7 270
1x2 0 1 0 2/7 3/7 2/7 540/7 270
−4x1 1 0 0 9/35 2/7 16/35 514/7 1285/8
Cj −Zj 0 0 0 2/7 3/7 9/7 −1030/7

Upon completing the �rst iteration, the leaving variable is x3, the entering variable is x6, and
the pivot element is 9/35.
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The second iteration is presented in Tab. 21. All the values for Cj −Zj are zero or negative;
therefore, the process is terminated at this step. We conclude that the optimal solution is as
follows: x1 =−50, x2 = 0, x3 = 270 and z= 470.

Table 21: Iteration II

1x3 0 0 35/9 16/9 10/9 1 270
1x2 0 1 −10/9 −2/9 1/9 0 0
−4x1 1 0 −16/9 −7/9 −2/9 0 −50
Cj −Zj 0 0 −80/9 −42/9 −19/9 −1 470

4.4.4 Change in the Constraint Coef�cient Corresponding to Non-basic Variables
In the last iteration, no non-basic variable of the objective function exists. Therefore, if one

of the coef�cients is changed, the optimal solution is not in�uenced.

4.4.5 Addition of a New Variable

Consider a new variable x7 with coef�cient c7 = 12 and P7 =

1
2
2

, then;

P7 =B−1P7⇒

16/35 2/7 9/35

2/7 3/7 2/7

9/35 2/7 16/35


1

2

2

=


638
105

12
7

61
35


. (46)

Table 22: Iteration I

Maximize 1 1 1 0 0 0 RHS Θ

x1 x2 x3 x4 x5 x6

1x3 0 0 1 16/35 2/7 9/35 486/7
1x2 0 1 0 2/7 3/7 2/7 540/7
1x1 1 0 0 9/35 2/7 16/35 514/7
Cj −Zj 0 0 0 −1 −1 −1 220

In this case, we perform three iterations as indicated in Tabs. 22–24.

Upon completing the �rst iteration, the leaving variable is x3, the entering variable is x7, and
the pivot element is 212/35.

The third iteration is presented in Tab. 12, in which all the values for Cj − Zj are zero or
negative and; therefore, the program is terminated at this step, and the optimal solution is as
indicated in Tab. 25.
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Table 23: Iteration II

Maximize 1 1 1 0 0 0 12 RHS Θ

x1 x2 x3 x4 x5 x6 x7

1x3 0 0 1 16/35 2/7 9/35 212/35 486/7 104/9
1x2 0 1 0 2/7 3/7 2/7 12/7 540/7 45
1x1 1 0 0 9/35 2/7 16/35 61/35 514/7 2570/61
Cj −Zj 0 0 0 −1 −1 −1 137/105

Table 24: Iteration III

Maximize 1 1 1 0 0 0 12 RHS Θ

x1 x2 x3 x4 x5 x6 x7

12x7 0 0 3/18 8/9 15/9 27/18 1 104/18
1x2 1 0 37/127 68/319 65/319 67/319 0 36/18
1x1 0 1 −18/63 −78/63 −153/63 −144/63 0 235/18
Cj −Zj 0 0 −1 −87/9 −160/9 −143/9 0 115

Table 25: Optimal solution

Z 115

x1 235/18
x2 36/18
x7 104/18

4.4.6 Addition of a New Constraint
To examine the in�uence of the addition of a new constraint to the problem, we consider

x3 ≤ 40:

As indicated in Tab. 26, the optimal solution is as follows: x1 = 514/7, x2 = 540/7, x3 = 486/7,
and Z= 20.

Table 26: Additional constraint

Maximize 1 1 1 0 0 0 0 RHS

x1 x2 x3 x4 x5 x6 x7

1x3 0 0 1 16/35 2/7 9/35 0 486/7
1x2 0 1 0 2/7 3/7 2/7 0 540/7
1x1 1 0 0 9/35 2/7 16/35 0 514/7
0x7 0 0 1 0 0 0 1 40
Cj −Zj 0 0 0 −1 −1 −1 0 220
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5 Conclusion and Future Direction

The transmission range of a sensor node de�nes whether the communication mode is single-
hop or multi-hop. In this paper, we proposed the use of ETROMI, which can determine the
maximum distance to which a sensor node can transmit data with the least possible number of
relay nodes. We presented an LP-based analytical model to determine the transmission range of
the sensor node. Moreover, we explained the mathematical model associated with the ETROMI
to reduce the energy consumption of WSN-based IoT. A key concern about the ETROMI is that
it considers the ideal conditions involving no obstacles between the sensor nodes and the sink.
Therefore, the model performance is speci�c to the circumstances. Furthermore, the network is
assumed to be homogeneous, whereas homogeneity does not exist in an actual network due to
the different factors associated with network deployment. In future work, we aim to extend our
work to address the aforementioned scenarios.
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