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Abstract: In the Next Generation Radio Networks (NGRN), there will be
extreme massive connectivity with the Heterogeneous Internet of Things
(HetIoT) devices. The millimeter-Wave (mmWave) communications will
become a potential core technology to increase the capacity of Radio Net-
works (RN) and enable Multiple-Input and Multiple-Output (MIMO) of
Radio Remote Head (RRH) technology. However, the challenging key issues
in unfair radio resource handling remain unsolved when massive requests
are occurring concurrently. The imbalance of resource utilization is one of
the main issues occurs when there is overloaded connectivity to the closest
RRH receiving exceeding requests. To handle this issue effectively, Machine
Learning (ML) algorithm plays an important role to tackle the requests of
massive IoT devices to RRH with its obvious capacity conditions. This paper
proposed a dynamic RRH gateways steering based on a lightweight super-
vised learning algorithm, namely K-Nearest Neighbor (KNN), to improve the
communication Quality of Service (QoS) in real-time IoT networks. KNN
supervises the model to classify and recommend the user’s requests to optimal
RRHs which preserves higher power. The experimental dataset was generated
by using computer software and the simulation results illustrated a remark-
able outperformance of the proposed scheme over the conventional methods
in terms of multiple significant QoS parameters, including communication
reliability, latency, and throughput.

Keywords: Machine learning; Internet of Things; traffic steering; mobile
edge computing

1 Introduction

Fifth Generation (5G) communication utilizes millimeter-Wave (mmWave) technology to
deliver ultra-high communication reliability and throughput, maximum user devices’ connectivity,
heterogeneous user applications, etc. [1]. The 5G Stand-Alone (SA) based communication systems
have fully been migrated from the legacy Long-Term Evolution (LTE) system. In the SA-based
radio networks, the Next Generation evolved Node B (gNB) provides controllability throughout
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the Control Plane (CP). For Non-Stand-Alone (NSA) radio networks, LTE’s Radio Remote Head
(RRH) utilizes both evolved Node B (eNB) and gNB. It is worth mentioning that the NSA is
generally suffered from insufficient slicing control of the application Quality of Service (QoS)
and inadequate software-based radio resource control. Since the NSA 5G system has been widely
launched in several countries, and there are serval remaining challenging issues to fully migrate to
the SA communication systems. The 5G Radio Access Network (5GRAN) communication systems
will be converged by numerous computing power devices and recent edge technologies. So, the
5GRAN environments will upsurge potential power with incredible resources and opportunities
to overcome the issues of massive connectivity for the Internet of Things (IoT) devices. Due
to the explosive growth of mobile devices and heterogeneous IoT (HetIoT) devices, big data
has been rapidly generated throughout the network. The huge user traffic volume has suffered
from insufficient capacity at the fronthaul and backhaul gateways which are commonly installed
by optical network environments. To minimize outgoing traffic to the remote cloud, namely the
Mobile Cloud Computing (MCC), the mobile edge cloud technology is a vital key candidate for
local computing perspectives.

Furthermore, 5GRAN architecture consists of massive infrastructures and platforms that
enable local cloud servers for handling heterogeneous services of HetIoT and Mobile Users (MU)
(see Fig. 1). The increment of Ultra-Dense Networks (UDN) and mesh connectivity of wireless
networks are offered by numerous base stations, such as macrocell, microcell, picocell, femtocell,
massive MIMO, etc. According to the extensive growth of small cell Base Stations (BS), a lower
transmission power is continually applied for small cell coverage purposes. Microcell, picocell, fem-
tocell, relay, and Device-to-Device (D2D) offer short-range distance communications with lower
or equal power to 30 dBm, and from 0 to 5 dBi for the antenna power gains [2]. The restriction
of users in joining the radio networks occurs in the low power BS systems for both wide-
band and narrow-band communications [3]. To satisfy the massive MIMO’s QoS provision, the
presence of software-based radio network control is mandatory. 5G enhances broadband wireless
networks with high user data rates from 100 Mbps up to 20 Gbps for MU with extremely high
peak rates accordingly [4]. The evolution of both mobility (wireless) and stationary technologies,
including Wireless Local Area Network (WLAN), Wi-Fi, Fiber to the Home (FTTH), Passive
Optical Network (PON), and Active Optical Network (AON) required to enumerate in 5GRAN
communication systems [5].

To achieve dynamic efficient service provisioning for IoT and MU, the revolution and evolu-
tion of the intelligent and powerful network architecture need to be performed. Due to the fact
that Over the Top (OTT) applications have rapidly increased concurrently, especially in the period
of the Covid-19, the usage of Internet service and applications has exponentially increased. There
are several types of Critical Communication Applications (CCA) including video conversation,
voice conversation, remote operation, non-streaming conversation, game streaming, real-time IoT
traffic, and other time-sensitive communication applications which needs to meet an End-to-
End (E2E) latency requirement close to 0 s and 99.99% communication reliability [6,7]. To meet
the requirement of CCA, E2E Ultra-Low Latency (ULL) services, Ultra-High Communication
Reliability (UHCR), and Ultra-High Mobility (UHM) have to be considered. Software-Defined
Networking (SDN), Mobile Edge Computing (MEC), and Network Function Virtualization
(NFV) were also applied to offer superb contributions for distinct CCA requirements [8,9].
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Figure 1: The common architecture of next-generation massive 5G radio networks
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The rest of the paper is organized as follows. In Section 2, the overview of the radio
network environment is illustrated. The proposed traffic handling method based on a lightweight
machine learning algorithm is presented in Section 3. In Section 4, the discussion is thoroughly
studied about the proposed communication system analysis. In Section 5, the simulated results
and analysis are intuitively described and evaluated. Finally, the paper conclusion is provided in
Section 6.

2 Radio Network Environments

In this section, we provided several illustrations of significant elements for the 5GRAN envi-
ronments including the involved technologies, challenging issues appearance in terms of resource
management and orchestration, radio resource handling, service offloading, and opportunity
enabling to overcome the significant issues mentioned. A detailed discussion of each element is
presented as follows.

2.1 Technology Adoption
The 5GRAN technology arises out of heterogeneous cloud platforms, and will be a con-

vergence of various novels and up-to-date technologies to alleviate from a legacy Radio Access
Network (RAN) to a powerful radio cloud systems. MEC paradigm becomes a compulsory can-
didate, widespread numerous opportunities in the edge network environments, caching technology
enabler, and local cloud servers [10]. The caching method extracts popular request content of
applications from the remote cloud to compute in Edge Cloud Networking (ECN). The QoS can
be enhanced by reducing the communication distance so that its delay can be omitted from each
network device. However, the MEC-based radio cloud suffers from the expanding cloud infrastruc-
ture for both Capacity Expenditure (CAPEX) and Operation Expenditure (OPEX) [11,12]. The
CAPEX is influential to the management, orchestration and the 5GRAN architecture turns into
more complications. Due to the emergence of CAPEX, OPEX is increasing simultaneously, the
Infrastructure as a Service, Platform as a Service, Resource as a Service, and Management and
Orchestration as a Service will happen in the future 5GRAN environment [12–14].

NFV provides Virtual Network Infrastructures (VNI) which runs on top of host operating
systems in single computing physical hardware. Virtual Edge Clouds (VEC) offered by NFV
and provides the benefit of less cost deployment and prevents the suffering of CAPEX and
OPEX [15–17]. The implementation of NFV with MEC enables VEC and also virtual 5GRAN
(v5GRAN). The v5GRAN entails a variety of Virtual Machines (VM) for independent comput-
ing. The VEC synchronizes with each RRH for multiple computing purposes in terms of user
request caching information, user QoS/Quality of Experience (QoE) control, Radio Link Control
(RLC), uplink and downlink control, latency, and antenna gains monitoring [18]. Due to the
limitation of computing power and resources of MEC, virtual MEC (vMEC) plays an important
role to fulfill insufficient resources. Based on the VEC environment, the backup resources are
possible for fault-tolerance offloading. Fault-tolerance boosts communication reliability and can
be analogously computed for load-balancing offloading. NFV is recommended to apply at the
CP area since the VM can be suffered from the offloading time, which possibly degrades the
communication performance of the User Plane (UP). The 5G UP networks handle massive
traffic forwarding that required wide-band and ULL for E2E communications. Meanwhile, the
CP requires a redundancy computing server, high computing power and stability, fault-tolerance
and load-balancing for tremendous computing services. MEC and NFV offer both physical and
virtualized resources for enabling E2E Network Slicing (NS) methods. NS classifies the differences
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of user terminal behaviors, application, QoS/QoE, radio resource, services, etc., so the VM is
required for each slicing.

Figure 2: The convergence of ML, MEC, and SDN based architecture for next-generation
radio network

Furthermore, it requires the decoupling of CP from the UP for more independent operation
based on different responsibilities. The convergence of key technologies enables intelligent 5GRAN
network architecture (see Fig. 2). SDN performs a decoupling of CP from the UP functions
and offers application programming interfaces (API) for management and orchestration of the
three layers in common SDN architecture, such as UP, CP, and application plane layers [19].
The UP, sometimes called the data plane, takes the responsibility of forwarding the incoming
traffic to reach the destination based on the configured flows table offered by SDN controller.
The ULL forwarding devices with wide-bandwidth are capable of forwarding massive user data
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at the UP. The UP is a forwarding plane area without computing or making decisions, and the
forwarding flow configuration executes at the CP functions. The communication flows between
southbound and northbound interfaces are linked based on the OpenFlow protocol [20]. The
CP offers the computing infrastructure for a variety of services. SDN controller has a global
view of the network systems due to its location in the centralized application and data plane
infrastructures. So, the data plane device’s capacities or conditions are monitored by the controller
module. SDN takes important roles in the management and orchestration of the multiple VM in
the VNI. The integration of SDN and NFV enables numerous opportunities since both SDN and
NFV fulfill the missing points to each other for better performances [21,22]. 5GRAN architecture
is beneficial from the combination of SDN/NFV. The existing entities of the legacy radio system
can be fully replaced by SDN and NFV in both UP and CP or hybrid SDN/NFV in the future
5GRAN network architecture.

Machine learning (ML) and Deep Learning (DL) algorithms are under the umbrella of Arti-
ficial Intelligent (AI) which is addressed to enable intelligent network infrastructure [23–25]. ML
and DL are popular for massive traffic identification, different QoS/QoE classification, massive
devices behavior classification, especially for HetIoT devices, data profiling, RRH behaviors classi-
fication and statuses prediction, MEC server resource allocation, user Quality Class Identification
(QCI), and so on. The classification of the user application, RRH, Evolved Packet Core (EPC)
entities, and services of the MEC servers is mandatory to enable E2E NS. Without classifica-
tion, different resource requirement applications and dedicated physical or virtualized computing
resources are unable to establish NS methods. Due to the offered computing resource from MEC,
the SDN controller will be possible for computing the learning model of ML/DL algorithms.

2.2 Challenging Issues
Although there are several contributions of MEC, SDN, NFV, ML/DL, and NS in the future

5G communication systems, there still exist many challenging issues that require effective handling
methods. The insufficient control of radio resources, power, and energy issues occur when there
is an increasing delay in the communication networks. Especially, there is the heterogeneity of
VM and MEC servers in the ECN, which requires different power and resource management.
The effective management policy of energy is important for profitable utilization. Even though
multiple MEC servers are handling massive requests from different application users, there is
insufficient real-time user application classification and lacking high accuracy recommendation
towards the best MEC servers for specific services to the specific application users. The com-
munication QoS/QoE is decreased due to the unspecific QCI applications, and poorly matching
between request and serving entities. In Cloud Radio Access Network (CRAN), the base stations
connect to the ECN. So the failure response increment of the ECN entities happens when the
requests exceed the remaining capacity. Moreover, the service failure happens when the incoming
request is concurrently attempted to connect to the inadequate capacity servers. A high accuracy
failure prediction method based on AI system is required to provide an efficient recommendation
system for matching the incoming traffic with the serving entities. Moreover, the communication
in CRAN system is massive and the user requests are imbalanced.

VNI requires many VM for dedicated applications, while multiple VM offloads for computing
and the excellent resource scheduling of each VM are crucial for power consumption [26]. The
offloading computation from the physical to the VM, and from the VM to the physical computing
load will take a duration that affects the communication latency. For lower power IoT network,
the real-time application requires to handle the offloading method that reduces the loading time
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to overcome the communication delay, jitter, and also the communication power consumption of
the IoT devices. The AI algorithms are proposed to cope with the offloading times and efficient
resource allocation issues in massive VM. However, there are many crucial issues in applying
ML/DL in the communication systems. The appearance of ML/DL for intelligent resource han-
dling (see Fig. 3) suffers from the frequent change of the communication traffic, making it hard
to create the training dataset and select the fit learning model to overfit the testing for boosting
the model accuracy. However, the ML/DL model takes an amount of time for processing in the
learning model. So, the real-time IoT network requires an excellent learning model to compute in
a short time and also requires high computing power of MEC servers.

Figure 3: The intelligence radio network in 5GRAN architecture

Moreover, radio communication suffers from transmission drop as one of the open issues that
are required to be solved. Each RRH has a limitation of a radio resource block for serving the
massive IoT devices when they request to join the radio network at the same time. Whenever the
RRH serves the massive IoT devices, the arising delays are incurred by the Transmission Time
Interval (TTI) of the scheduling MAC to the communication channel. So, the transmission drops
ratio increases based on the TTI. To enhance QoS/QoE at the radio network, an efficient method
that can reduce TTI delays is required to improve communication reliability for real-time networks.

3 Proposed Scheme

In this section, the proposed lightweight ML-based real-time massive IoT traffic handling
in 5G radio networks and the contribution of key technologies, including K-Nearest Neighbor
(KNN), SDN, and the computed results caching is thoroughly discussed as follows.

As mentioned, the transmission drops in 5GRAN have become the main consideration point
for real-time IoT traffic. This paper proposed an intelligent traffic handling based on lightweight
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ML called KNN for classification and recommendation of the incoming traffic to meet the condi-
tion of multiple RRH gateways and balance the massive traffic to match with the availability of
the obvious base station statues. The proposed scheme is executed by the converged computation
of the aforementioned key technologies. MEC was proposed to cache the IoT traffic and RRH
information. Also, MEC provides the computing power for the ML model which locates in the
control plane infrastructure. The target of this paper is to focus on improving QoS/QoE of the
real-time IoT communication in the edge networks, so a lightweight ML algorithm is suitable
for the computing resources for operating in the ECN environments. ECN entities suffer from
computing power because of the insufficient capacity of MEC servers. However, lightweight ML
can be processed in a regular machine. The learning model is executed in a short period which
is considerable for real-time applications. Supervised learning, KNN algorithm, was selected for
classification and recommendation of the IoT traffic. KNN is widely used ML model for efficient
recommendation systems. The SDN monitored and gathered the UP information, IoT traffic, and
RRH statuses. While the CP is the brain of the proposed scheme, the learning model of ML
took place in CP. Also, the output of KNN results was cached to the MEC servers and updating
information was managed by the controller module. The scheme comprised of three stages, which
includes the MEC part (store the information of IoT traffic, RRH status, and output results of
KNN), ML models (classification and recommendation of the user traffic to the RRH), and SDN
controller (monitoring, flow configuration, and system controlling).

The first stage is to balance the requests to fit with the RRH capacity or sink node statuses.
The information of RRH has to be real-time monitoring, and the incoming traffic has to be
categorized into different classes. Each class contains different numbers of traffic and recommends
a specific serving gateway. Each gateway also receives the request traffic according to its status. To
perform the caching of UP information and RRH statuses, MEC was proposed to be the caching
servers that store the information of both UP and CP (output of ML). The computation of the
KNN algorithm is also provided by the MEC server.

In the second stage, the precise training dataset is required for the learning model. The
labeled dataset (training dataset) guides the IoT user traffic to match with the RRH gateways.
The sufficient labeled datasets require to ensure that it contains enough information for the testing
model. In case of insufficient information or too small volumes of the training dataset, the
model evaluation will perform with low accuracy that the classification and recommendation will
be unsatisfied. Whenever the ML model output poor evaluation scores, it provides unsatisfied
QoS/QoE for the communication systems. In this paper, the KNN classified the IoT traffic and
recommended to individual RRH gateways depending on three behaviors of RRH in terms of the
delay (D) that occurred during the MAC-to-channel scheduling, delay Ds1 that occurred at the
S1-uplink interface and the transmission power (E) of the gNB. The KNN algorithm classifies
and recommends the traffic to a specific gNB based on the Dist metric values. The entire operation
flows of KNN (see in Fig. 4) are based on the training dataset, the gNB with higher transmission
power E and lower delay D is recommended. The incoming traffic connects to the gNB with the
lowest Dist metric as defined in Eq. (1) below. The gNB with a high Dist metric indicates that
it is handling massive traffic, so D possibly arises. gNB with a higher D metric value requires to
restrict the joining of IoT traffic. So, it is important to identify the gNB with a lower D metric
and configures it to serve more incoming traffic than the other gNB.

In the final stage, the management and orchestration of the computing entities for caching
incoming user traffic information, gNB statuses, classification, recommendation results of the ML
algorithm, and the synchronous between UP and CP have to be performed by the SDN controller.
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The output of the KNN guides the incoming traffic, SDN controller configured each of the IoT
devices based on the recommendation of the KNN. The dynamic configuration between the IoT
devices and gNB for radio communication is required. However, it is difficult for guiding the
connectivity in the radio networks, because the IoT devices will automatically attempt to join the
RRH with close distances.

Figure 4: The classification and recommendation flow of the KNN ML

The Dist metric evaluation can be modeled as the expression (1) below.

Dist(Di, Ds1i, Ei)=
√√√√ n∑

i=0

(
Di+Ds1i

Ei

)2

, Ei �= 0; i= 1, 2, 3, . . . , n (1)

where,

• Dist represents the status of the gNB with the relation of transmission power E, the delay
D which occurred at the gNB physical interface and the Ds1 is the delay that occurred at
the S1-uplink interface. The gNB with the lowest number of Dist metric will be selected to
serve for the incoming traffic. So, the gNB with higher transmission power E, lower delay
D and Ds1 will be received more amount of the request traffic.

• Dn represents the delay that occurred when the massive incoming traffic needs to be
scheduled at the gNB interface. When delay at the gNB interface is increasing, the failure of
the radio resource joining will occur and the increasing delay interval in the radio area will
reduce the communication QoS/QoE. For real-time applications, it is mandatory to reduce
the delay interval in the gNB for lessening transmission time and improving communication
reliability.

• Ds1 represents the delay that occurred at the S1-uplink interface. Therefore, the queu-
ing of incoming traffic arises at S1-uplink interface, so, the delay Ds1 will be increasing
simultaneously.

• En refers to the transmission power in dB or signal strength. When there are many requests
of IoT devices to a single gNB, the signal strength will be reduced. The lower power En
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impacts the capability of transmission traffic. The gNB with higher metric values has a
higher chance to be selected.

4 System Analysis

4.1 5G Communication Latency
The E2E latency of packet transmission in 5G communication systems can be written as T

which is the addition of multiple delay occurrences, i.e.,

T =TRadio+TBackhaul+TCore+TTransport (2)

where,

• TRadio is the broadcasting radio delay which occurred at the interval communication of end
sending devices and RRHs.

• TBackhaul is the packet transmission delay which occurred at the interval of gNB and the
backhaul networking, particularly, the switching process at the Service Gateway (SGW) and
Packet Data Gateway (PGW). The popular connectivity technique of gNB and the core
network is a physical fiber-optic or microwave transmission link system.

• TCore is the time taken within the core gateway connectivity establishment which is con-
tributed by the control plane and data plane. For the control plane, there are several
occurrence delays in various EPC entities including, the SDN controller, Home Sub-
scriber Server (HSS), Mobile Management Entity (MME), and Policy and Charging Rule
Function (PCRF).

• TTransport is the time taken within the remote network data transmission communications
which is relied on four main metrics such as, distance, routing, link bandwidth, and
switching protocol.

• The thorough broadcasting radio delay can be described in the following equation.

TRadio= tFA+ tEU + ttx+ tbsp+ tmpt (3)

where,

• tFA is the time taken within the process of frame alignment, configuration, modulation, etc.
• tEU is the synchronization delay between IoT devices and (R)AN gateways.
• ttx is the packet transmission delay which relied on payload size, channel condition, and

transport protocol.
• tbsp is the time taken within eNB regions.
• tmpt is the time taken which relied on the capacity of end devices and gNB terminal.
• The thorough TBackhaul can be described in the following equation.

TBackhaul = tQ+ te+ ttx+ ts (4)

where,

• tQ is the time taken when the packet transmission waits within the queue.
• te is the time taken within the circuit performances of any network devices.
• ts is the time taken within the switching operation.
• The thorough TCore, the time taken within the core gateway connectivity establishment, can

be described in the equation below.



CMC, 2021, vol.67, no.3 3443

TCore = tQ+ te+ ttx+ tepc+ tsr (5)

where,

• tepc represents the delay of EPC entities’ communication interfaces including, MME, HSS,
and PCRF which is approximately within microseconds.

• tsr represents the delay of the switching and routing operations.

The conditions of each RRH depend on the serving of each gateway and the network device
from the heterogeneous network can be defined as the M/M/1 queue model as below.

� = λ

μ
(6)

where � denotes the ratio of serving rate, λ denotes the incoming rate of user traffic and μ is
represented the serving rate of the gateway or any base stations.

Figure 5: The simulation diagrams

4.2 Simulation Environment
The simulation system comprises of two different scenarios, including conventional (random

and equal-cost based methods) and proposed approach based on KNN lightweight ML algorithm
(see Fig. 5). There is 5,817 user traffic which was generated from the user devices at the same
time. Four RRHs or gNB were used to conduct the experiment. There is 5,817 traffic in the
dataset which was generated by Python programming. The dataset was generated based on the
definition of 4 different RRH behaviors. The RRH behaviors were generated to reflect the real-
world RRH statuses in massive IoT environments. RRH behaviors are based on transmission
power E, scheduling delay between MAC and communication channel D, and delay occurrence
at the S1-uplink interface Ds1. The training dataset was made by giving more weights to RRH
with higher E, lower D, and Ds1. According to the trained dataset, the RRH with the lowest
Dist metric value was considered as the optimal RRH (see Eq. (1)). Consequently, the ML model
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selected the optimal RRH based on the guided features of the trained dataset. The conventional
approaches were simulated base on random access of incoming user traffic to the RRH and
equal traffic handling of each RRH. For the random scheme, 5,817 was randomly accessed to
4 RRHs. In terms of the equal cost-based handling, the model separated user traffic equally
for each RRH. While with the proposed scheme, each RRH was configured to serve the user
traffic based on the output of KNN algorithm. The training and testing model of KNN was
conducted by using the opened machine learning library, namely Sci-kit Learn. The real-time
network simulation was conducted by using the discrete Network Simulation version 3 (NS3). The
simulation time was set to 200 s, 40 user devices, and 3,332,250 total transmission traffic. And the
Random Early Detection (RED) queue was integrated into the SGW/PGW gateway for buffering
and QoS evaluation purposes.

5 Results and Discussion

In this section, results and discussion of the proposed and conventional schemes will be
thoroughly presented as follows. The evaluation results were mainly based on the key important
communication QoS parameters, such as average delay, average jitter, and average throughput
in the radio network. The QoS evaluation at the S1-uplink interfaces presented the subjects of
average communication delay and jitter. Moreover, the E2E communication reliability parameters
in terms of packet (Pkt) delivery ratio, Pkt drop ratio, and Pkt drop count will be discussed in
this section. The efficiency of the proposed scheme will be evaluated by comparing with the two
conventional approaches, random and equal-cost methods.

Figure 6: The average delays comparison between the proposed and conventional schemes

Fig. 6 depicts the average delay comparison of the proposed and conventional schemes in the
radio networks. The graph shows that the proposed scheme noteworthy outperformed the con-
ventional approaches due to the proposed scheme has lower average communication delays than
random and equal-cost methods. The delay of the random method varied based on random situa-
tions, and if the random accessing of incoming traffic is more appropriate to the existed capacity
of RRH, the communication delay will reduce. For a real-world scenario, communications can
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be randomized that the stability of communications will be inadequate. As shown in the graph,
the random method has higher communication delays than equal-cost. And the equal-cost based
communication has insufficient dynamic traffic handling, due to the RRH configuration for equal
serving the user traffic. So, the delay can occur at the RRH with a lower capacity. The proposed
scheme is used to improve the communication delay for real-time applications. By applying a
lightweight ML for recommending the incoming traffic to the appropriate RRH, the ML offered
high accuracy matching and assigned an appropriate amount of traffic to a specific RRH to be
served. The reduction of TTI at gNB of the next generation RRH will be significantly mandatory
for handling massive IoT traffic and improving the real-time application that required ULL. The
capability of reducing communication latency improves not only the communication QoS/QoE
but also the power consumption reduction of the IoT devices and lessens the device resource
utilization in the communication systems.

The comparisons of average communication jitters between the proposed and conventional
schemes in the radio networks are illustrated in Fig. 7. The graph indicates that the proposed
scheme extraordinary outperforms the conventional approaches. And, the random and equal-
cost schemes have higher communication jitter than the proposed scheme. The communication
jitters represent the stability of the system when the interval of the metric jitter values (standard
deviation of the delay) gets smaller and the stability of the communication gets higher. The
ultra-high stability of communication is compulsory for some critical time-sensitive applications.
According to the graph, the proposed scheme provides excellent system stability with minimum
communication jitters. To improve communication QoS/QoE for user applications and to meet the
perspective of 5G technologies, communication jitter minimization is an important key that has
to be performed. So, the proposed scheme based on lightweight ML is suitable for handling the
massive real-time IoT traffic in 5GRAN.

Figure 7: The comparison of average communication jitters between proposed and conventional
approaches

Fig. 8 presents the comparison of averaged communication throughput between the proposed,
random, and equal-cost methods. Based on the illustrated graph, the proposed scheme performed
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better than random and equal-cost. The proposed approach reached out up to 1,261.86465770492
Kbps of the average throughput, while the capable communication throughputs of random
and equal-cost approaches were 1,250.8488806848 and 1,210.86474217841 Kbps, respectively. The
greater capability of communication throughput will be a great opportunity for improving com-
munication QoS and QoE. Higher communication throughput will reduce the E2E communication
times of the user and the idle periods of the E2E network devices will increase. Regarding the
mentioned benefits, enhanced communication throughput becomes a great occasion for boosting
the battery life of lower power IoT devices. It is a great benefit for sensor IoT networks. The
proposed scheme applied the KNN for inspecting the obvious RRH statuses. And, the curiosity
of the RRH statues is convenient for the dynamic recommendation of the incoming user traffic to
meet the appropriate RRH with sufficient resources for handling. The monitoring of RRH statues
is mandatory for efficient control. The proposed scheme provided intelligent handling of massive
IoT traffic in massive RRH networks and offered high accuracy of the recommendation by the
lightweight ML algorithm. While the delay interval can be reduced by the proposed schemes,
the capability of increasing the traffic delivery in the communication system is possible and the
congestion that occurred during the flooding of massive traffic in radio gateways can be reduced.

Figure 8: Comparison of the communication throughput between proposed and conventional
(random and equal-cost) approaches

Based on the above-illustrated results, bad situations that occurred at the radio gateways are
solved by the proposed scheme in terms of communication delay, jitter, and throughput. These
significant QoS parameters have been improved by reducing the TTI at the physical RRH interface
and S1-uplink interface. In the future, the 5GRAN network environment will handle the bigdata
of user traffic generated by the mobile and HetIoT devices. So, heavy user traffic will become
long queues at radio gateways. Due to the insufficient serving method of the default RRH,
congestion will happen. In the case of inability to solve the congestion on times, the user traffic
in the queue will be exponentially dropped. Some critical applications that required ultra-high
communication reliability will be suffered from the congestion at radio gateways and the lessening
of communication QoS/QoE will happen. The proposed scheme provided an efficient distributed
control of massive IoT traffic in radio network environments that reduced bad network conditions.
The total E2E packet drop count during the experiment of the proposed scheme outperformed the
random and equal-cost methods (see Fig. 9). The total Pkt drop counts of the proposed scheme
are only 560 of the 3,332,250 total transmission traffic, while the random and equal-cost Pkt drop
counts are 770 and 940, respectively.
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Figure 9: Total E2E Pkt drop count compared between the proposed, random, and equal-cost
approaches

In the future 5G communication systems, the communication will be delivered mostly in the
edge network area. While most OTT applications and services will be cached and located in
edge network infrastructure. So, the congestion at backhaul and core gateways will be accordingly
reduced. However, the significant issues in the backhaul and core network environment will
migrate to the edge network area, especially the evolvement of massive traffic handling, hetero-
geneous MEC servers handling, massive heterogeneous RRH resource control, etc. To achieve
the 5G QoS perspectives, the guarantee of QoS in 5GRAN has to consider. The proposed
scheme mainly contributed to the radio gateways handling based on the KNN lightweight ML.
The scheme considered on the RRH statues regarding TTI of physical gNB and the condition
of the S1-uplink interfaces. Besides the enhanced delay, jitter, and communication throughput,
the proposed scheme remarkably outperformed the conventional regarding E2E communication
reliability as well.

Figure 10: Presents the comparison of communication reliability between the proposed and con-
ventional schemes. (a) The comparison of the Pkt delivery ratio between proposed, random, and
equal-cost approaches. (b) The Pkt drop ratio comparison between the proposed, random, and
equal-cost approaches
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Fig. 10 represents the evaluation of communication reliability between proposed and con-
ventional schemes. The transmission reliability of the proposed scheme reached 99.98319454%
in 200 s of the simulation period (in the simulation environment, the reliable communication
increased based on the cumulative simulation time), while the random and equal-cost schemes
reached only 99.97689242% and 99.97179083%, respectively (see in Fig. 10a). Also, the proposed
scheme had a lower Pkt drop ratio of 0.016805462%, while the random and equal-cost had a
higher ratio of Pkt delivery drop ratio up to 0.023107579% and 0.028209168%, respectively (see
Fig. 10b). Fig. 11 represents the comparison of average E2E delays and communication jitters
of each user traffic between the proposed and conventional schemes, respectively. The average
communication delay of the proposed scheme is better than random and equal-cost (see Fig. 11a).
While, the average delay value of the proposed scheme is about 4.625797 ms only, and the random
and equal-cost delays are 4.653295 and 4.63165875 ms, respectively. So, the proposed scheme
outperformed the conventional approaches regarding communication jitters (see Fig. 11b). The
average communication jitter of the proposed scheme is only 0.042951 ms, while the random and
equal-cost jitters are up to 0.11271 and 0.06322475 ms, respectively.

Figure 11: Presents the comparison of E2E communication latency between proposed and con-
ventional schemes. (a) The average E2E delay of each communication flow comparison between
the proposed, random, and equal-cost approaches. (b) The average E2E communication jitters of
each traffic flow comparison between the proposed, random, and equal-cost approaches

6 Conclusion

To guarantee E2E ultra-high communication reliability for massive real-time IoT and time-
sensitive OTT applications in the 5GRAN environment, the efficient radio resources handling
and dynamic gateways configuration of multiple RRH have to be considered. With the offered
opportunities of convergence key technologies of ECN and high computing power of the MEC
server, the lightweight machine learning algorithm was used for classification, prediction, and
recommendation with a short period of computation. Whenever the RRH serves the massive IoT
devices, the arising delay of TTI at the RRH and S1-uplink interface exponentially increased. This
paper presented an intelligent traffic handling based on KNN lightweight ML to improve real-
time communication QoS. The simulated results showed that the proposed scheme is remarkably
outperformed the conventional approaches (random and equal cost) in terms of communication
delay, jitter, throughput, and E2E communication reliability. Based on these great benefits, the
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proposed scheme is important and suitable for handling massive time-sensitive IoT traffic and
improving the QoS/QoE. For further improvement on this research, we will focus on the deep
packet inspection for the obvious status detections of the massive IoT packets towards effective
dynamic resource provision.
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