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Abstract: This paper describes an efficient solution to parallelize software
program instructions, regardless of the programming language in which they
are written. We solve the problem of the optimal distribution of a set of
instructions on available processors. We propose a genetic algorithm to paral-
lelize computations, using evolution to search the solution space. The stages
of our proposed genetic algorithm are: The choice of the initial population
and its representation in chromosomes, the crossover, and the mutation oper-
ations customized to the problem being dealt with. In this paper, genetic
algorithms are applied to the entire search space of the parallelization of
the program instructions problem. This problem is NP-complete, so there
are no polynomial algorithms that can scan the solution space and solve the
problem. The genetic algorithm-based method is general and it is simple and
efficient to implement because it can be scaled to a larger or smaller number of
instructions that must be parallelized. The parallelization technique proposed
in this paper was developed in the C# programming language, and our results
confirm the effectiveness of our parallelization method. Experimental results
obtained and presented for different working scenarios confirm the theoretical
results, and they provide insight on how to improve the exploration of a search
space that is too large to be searched exhaustively.

Keywords: Parallel instruction execution; parallel algorithms; genetic
algorithms; parallel genetic algorithms; artificial intelligence techniques;
evolutionary strategies

1 Introduction

The importance of parallel instruction execution for our digital society is undeniable, and the
development of fast processing algorithms raises interesting research questions in a wide range of
fields: Aerospace technology, banking systems, CAD/CAM technologies, and IoT. Modern society
depends on the parallel processing capabilities of electronic devices, and we would not be able
to maintain our current operations without different optimization techniques. However, there is
currently no polynomial algorithm capable of parallelizing software instructions.
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Optimizing parallel computing algorithms is an open research field. Research methods gen-
erally involve finding a series of suboptimal solutions that asymptotically tend to the optimal
solution. For some poorly optimized problems, probabilistic algorithms can be used to improve
efficiency. They usually do not guarantee the best solution, but there is a chance that, through
random selection, they will approach the proposed goal. In addition, analytical models cannot be
applied to such problems either, because the problem of optimal distribution in multiprocessor
systems is not a typical problem of the extremum. It has been shown that this type of problem
is NP-complete (there are no polynomial algorithms capable of providing solutions) [1].

Running parallel instructions on multiple processors becomes more difficult in the case of
additional communication constraints between processors. For example, there are dependencies
between the instructions executed in parallel on different processors, dependencies between the
instructions on the same processor, and dependencies between instructions on different pro-
cessors, that are not executed in parallel. Optimization for parallel computation is generally
based on broad and poorly structured search areas. For this reason, heuristic techniques are
much more appropriate. Artificial intelligence methods provide effective solutions, and genetic
algorithms, a type of evolutionary strategies, are perfectly suitable for complex optimization.
Moreover, if a task is properly encoded, in some cases, it is possible to obtain better results than
analytical approaches.

This paper is structured in five sections as follows. Section 2 provides a brief review of the
parallelization of program instructions and genetic algorithms used for exploring large search
spaces. Section 3 presents our method for the parallelization of software program instructions
and our implementation of the genetic algorithm-based solution. Section 4 contains experimental
results, with a focus on the functional performance in terms of processing speed and quality
of the obtained results. Finally, Section 5 discusses our findings and sets some goals for future
research directions.

2 Basic Concepts on Parallelization of Program Instructions and Genetic Algorithms

In this section, we briefly present the literature on the parallelization of program instructions
and existing genetic algorithms-based models.

2.1 Parallelization of Program Instructions
The parallelization of program instructions or instruction scheduling is performed with a

set of program instructions and a number of functional units. As reported by [2] the task
involves selecting, from the large number of possible arrangements of concurrent instructions, one
combination that decreases both the program space and the runtime. Scheduling methods include
local scheduling and global scheduling. Existing instruction scheduling methods can be classified
into linear methods [3], backtracking algorithms [4], constraint programming [5], machine learn-
ing based on reinforcement and rule-based learning [6–13], simulated annealing [14,15] and list
scheduling [16,17]. List scheduling uses a directed acyclic graph and a heuristic algorithm that
ends when all program instructions have been scheduled on the available functional units. List
scheduling depends on the value of the heuristic used to select the best possible arrangement
of instructions in the frontier list. In [18], a group of transformations were applied to the data
dependency graph to solve the local instruction scheduling problem.

It has been proven that there are no polynomial algorithms that can scan the solution space
and solve the instruction scheduling problem [1]. An alternative is the use of list and genetic
algorithms to search through the problem space and find suitable solutions. In [19], a solution
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based on the injection of randomness in the instruction scheduling list was presented. The solution
space was explored by randomly choosing instructions from the frontier list, instead of choosing
the first one.

Research has been conducted on the different heuristics that can be applied for different
computer architectures. The aim of the artificial intelligence-based strategies, including genetic
algorithms, is to move away from investigating regions of the search space that do not produce
significant results. In [20], the authors used a perceptron variant in which the weights are adjusted
using heuristics. This patent did not give detailed experimental results, but the proposed variant
is time-consuming. A group of researchers, in [21,22], proposed the use of genetic algorithms to
scan the solution space and to adjust the heuristics values depending on various hardware targets
in a greedy scheduler.

An interesting approach was presented in [23] in which the instruction scheduling, for opti-
mizing embedded software performance includes building a data dependency graph for each
basic block in an assembly program. A genetic technique was used to find the correct order
of instructions with the highest performance, minimum execution time, for different kinds of
processor architectures.

In [24,25], meta-heuristic techniques were proposed to solve the task scheduling problem
using heterogenous computing systems. The authors proved that task scheduling is NP-complete
for certain computer architectures and a genetic-based algorithm with a multi-objective fitness
function reduces the runtime, increases the scheduling efficiency, and can reach a relatively optimal
solution. Another interesting question, presented in [26], was how to design a general genetic
algorithm that can adapt to various models of scheduling problems. The results of this paper
showed that, for non-identical parallel machine scheduling, there is no ideal genetic algorithm,
and their numerical example shows a promising execution time.

In [27], a genetic algorithm evolved a cellular automaton to perform instruction scheduling.
This paper suggested two phases: In the first phase, the learning phase, the genetic algorithm
is used to discover the suitable cellular automata rules for solving the instruction schedul-
ing problem; in the second phase, the operation phase, the cellular automata operate as a
parallel scheduler.

Taking previous research into consideration, we investigated instruction scheduling techniques,
and we designed and developed a general genetic algorithm applicable to different parallelization
methods and functional units. By investigating the way solutions are found, we improved our
understanding of instruction scheduling and proposed optimized arrangements of concurrent
instructions for different implementations.

2.2 Basic Concepts of the Genetic Algorithms
The beginnings of genetic algorithms are rooted in the 1950s, when several biologists sug-

gested using computers to simulate biological systems. Later it was found that genetic algorithms
were powerful computing tools for optimization problems. Therefore, models for finding optima
in complex problems were established using the basic principles of genetics [28,29]. The core
of genetic algorithms is to reproduce the mechanisms that govern the evolution of species
in nature.
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There are several forms for a genetic algorithm [30], but the commonest form is the following:

Algorithm: Genetic Procedure
begin

t= 0
it generates the initial population P(0)
repeat

it evaluates the population P(t)
t= t+ 1
it selects from P(t) the individuals to cross
it applies the crossover operator
it applies the mutation operator

until t= t_max
end

The algorithm above requires some discussion. First, the initial population is generated by
randomly creating a fixed number of chromosomes, with each chromosome being a valid solu-
tion to the problem at hand. An evaluation function is then applied to each individual in the
population [31]. The evaluation function is chosen that reflects the proximity or the distance
of an individual from the optimal solution to the problem. A good genetic algorithm depends
on the proper choice of this function. The selection of individuals to be crossed can be done
in several ways. The commonly used technique is based on the Russian roulette, which has a
number of slots equal to the number of individuals representing the population. The size of each
slot is proportional to the value of the evaluation function applied to the individual. In other
words, if an individual is closer to the optimal solution, it is more likely to be selected for the
crossover. The selection procedure maintains superior solutions and removes inferior ones based
on the fitness value at each iteration [32]. Of course, selection alone cannot find new points in
the search space, so technically it cannot insert new individuals in population. For this reason,
a crossover probability can be used, to select a part of the population for crossover. Along with
the population size, this probability is one of the genetic algorithm’s parameters and generally has
values above 30%. Another parameter is the mutation probability, based on which individuals are
selected. Subsequently, the mutation operator is applied to them. In this way, new, and possibly
better, individuals are obtained. The mutation probability generally has low values, below 5%.
Finally, the t_max value is the parameter that represents the maximum number of generations for
which the algorithm is run.

3 Proposed Solution

In this section, we present our method for the parallelization of program instructions. First,
we describe the parallelization steps and the construction of the general data dependence graph
using an example. Second, we present our genetic algorithm in detail. Third, we illustrate our
algorithm with a general diagram and describe our implementation.

3.1 Problem Description and Representation
A software program consists of a set of instructions, each of them with associated latencies.

Parallelization is possible when there are multiple processors that can execute the instructions. The
goal is to rearrange the program’s instructions so that the number of the unparalleled instructions
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and the makespan (task execution time) are minimized. In order to describe the problem, let a
program consist of several instructions that we number in the order of their appearance:

(1) x= 2+ x (2) y= 10+ 3 (3) z= x− 21 (4) w= y ∗ z
(5) a= y/5 (6) b= x+ y+ z (7) c= a− 1 (8) d= b ∗ c
(9) e=w/2

Using two processors, to parallelize, we can distribute these instructions as presented
in Tab. 1.

Table 1: A possible example of instruction scheduling on two processors

Iteration steps Processor 1 Processor 2

Instruction number Instruction code Instruction number Instruction code

1 (1) x= 2+ x (2) y= 10+ 3
2 (3) z= x− 21 (5) a= y/5
3 (6) b= x+ y+ z (7) c= a− 1
4 (4) w= y ∗ z (8) d= b ∗ c
5 (9) e=w/2 – –

In this example, we could parallelize instructions (1) and (2) because there are no data
dependences between them, as well as (3) and (5), (6) and (7), and (4) and (8) for the same reason.
However, we cannot parallelize (3) and (4) because to calculate w, in (4), z is required, but z is
modified in (3), so there is a data dependence between instructions (3) and (4). Also, instruc-
tion (3) depends on (1), because (3) needs x, which is modified in (1). Moreover, instructions (1)
and (3) must appear in this order. Instructions (4) and (5) depend on (2) and (4) depends on (2)
and (3), so (4) must appear after (2) and (3).

We can generate a general data dependence graph in which the nodes contain the instructions,
and each edge denotes a data dependence constraint between the nodes it connects. The general
data dependence graph for the instructions presented above is depicted in Fig. 1.

One possibility for representing a chromosome (possible solution) would be: (1), (3), (6),
(4), (9), (2), (5), (7), (8), –, i.e., by taking the instructions in order on the first processor and
then on the second one (as in Tab. 1). However, we should bear in mind additional pieces of
information, where the instructions on the first processor end and where the instructions on the
second processor start. That is why we prefer another representation, namely: (1) (3) (6) (4) (9) 0 0
0 0 | (2) (5) (7) (8) 0 0 0 0 0 (the symbol “|” is fictive, indicating the middle of the chromosome).
The idea is to make the length of the chromosome equal to twice the number of instructions so
that the length of the chromosome remains fixed for a given problem, and where no instruction is
assigned, we put 0. This gives a clear delimitation between the instructions corresponding to the
two processors. It is also important to note that the chromosome representation does not contain
repetitions of the genes. To avoid complications related to the implementation of the crossover
operation, it is recommended to have distinct values within a chromosome, so we propose the
following representation: (1) (3) (6) (4) (9) −1 −2 −3 −4 | (2) (5) (7) (8) −5 −6 −7 −8 −9,
where a negative number shows that no instructions were given. This representation can be easily
implemented and maintains a low complexity for the crossover operation. In order to further
reduce the effort of implementing the algorithm, we will consider that a chromosome consists of
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the following possible elements: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17,
where: 9, 10, 11, 12, 13, 14, 15, 16, 17–correspond to −1, −2, −3, −4, −5, −6, −7, −8 and −9.

Figure 1: General data dependence graph for the instructions presented above

3.2 Proposed Genetic Algorithm Based Solution
Our proposed genetic algorithm for parallelizing instructions of a software program has six

main components: The initialization function, the initial population (chromosomes), the evaluation
function, the selection function, the crossover function, and the mutation function.

Initialization function—The program instructions are read from a file and checked for the order
and the dependences between them. The general data dependence graph is created.

Construction of the initial population (array of chromosomes)—The individuals of the initial pop-
ulation are created randomly, and they represent possible solutions of the instruction scheduling
problem. As we described at the end of Section 3.1, a chromosome represents a sequence of
instructions that represent a possible schedule.

Genetic operators (crossover & mutation)

We first describe how to perform the crossover operation. The crossover operator is applied
to individuals from the intermediate population and imitates natural inter-chromosomal crossover.
Crossover provides an exchange of information between the two parents, with the offspring having
the characteristics of both parents. The crossover operator acts as follows: Two individuals of the
intermediate population (also known as the “crossover pool”) are randomly selected, and some
parts of the two individuals are interchanged.
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For our experiment, the selection of the individuals to be crossed is based on a roulette wheel
that has a number of slots equal to the number of individuals in the population, but the slots
are not equal in size. The size of each slot is proportional to the value of the evaluation function
applied to the individual it represents. In the first step, we calculated the fitness value of each
chromosome from the old population and then computed the ratio of each solution’s fitness value
to the solution. In other words, even if an individual is far from the optimal solution, there
is still a chance that the individual with improper fitness will reproduce, but if an individual is
closer to the optimal solution, it is more likely to be selected for the crossover. The number of
chromosomes involved in the crossover operation is calculated in software with the expression:

int noChromosomesCrossed=Convert.ToInt32((_algorithmGenetic.CrossoverProbability

∗ newGeneration.NoChromosomesPopulation)/100);
The crossover consists of the exchange of genetic information between two parents and is

performed by randomly choosing two positions within each selected chromosome to obtain two
new chromosomes according with the pseudocode presented in Subsection 3.3.

As an example, let two chromosomes be:

C1= 5 1 6 8 18 10 2 13 16 | 9 11 12 15 3 14 17 7 4

and

C2= 11 18 17 8 16 1 2 10 9 | 7 14 6 15 3 5 12 4 13

Two positions from each chromosome are randomly selected, for example, 5 and 8 (the vectors
start with the index 0 and end with 17). The new chromosomes are obtained as follows: The
elements between positions 5 and 8 remain unchanged and the other positions are replaced by
elements from the other chromosome.

newC1= 11 18 17 8 1 10 2 13 16 | 9 7 14 6 15 3 5 12 4

and

newC2= 5 6 8 18 13 1 2 10 9 | 16 11 12 15 3 14 17 7 4

Two valid chromosomes have been obtained, and any supplementary checking is unnecessary.

For the mutation operator, we use a swap mutation. We randomly choose two positions
from a chromosome and interchange the elements on these positions. For example, let the
chromosome be:

C= 11 5 16 1 0 17 15 14 3 | 10 9 7 6 8 4 12 2 13

If we generate positions 1 and 13, and we interchange the corresponding values, a new
chromosome can be obtained:

newC= 11 8 16 1 0 17 15 14 3 | 10 9 7 6 5 4 12 2 13



3300 CMC, 2021, vol.67, no.3

Evaluation function.

There should be very little dependencies between instructions, ideally none. There are three
types of dependencies:

Case 1: Dependencies between parallel instructions (executed in parallel on different
processors),

Case 2: Dependencies between two instructions on the same processor,

Case 3: Dependencies between instructions on different processors, that are not parallel.

Example.

Case 1: If we try to parallelize instructions (1) and (3) from Section 3.1, there is a data
dependence between them, so we increase the value of such a chromosome by 1 (where a high
value means a solution far from optimal). The goal is to minimize this value.

Case 2: If we interchange instructions (1) and (3) on the first processor, we will add a new
penalty because z from (3) uses x, from (1).

Case 3: If we have instruction (3) on the first processor and (1) on the second, so that the
execution of (1) follows the execution of (3), we will get a new penalty for the same reasons
as before.

A chromosome that has zero dependencies between instructions is a potential solution,
because the instructions were able to be parallelized. But we can imagine a chromosome such as
1 2 3 4 5 6 7 8 9 | 10 11 12 13 14 15 16 17 18, for which the number of dependencies is zero, but
it is not an optimal solution, because all the instructions were put on the first processor, and all
the instructions are executed in sequential order. Therefore, we need a parameter to indicate how
many instructions were not actually put in parallel. We should also note whether the instructions
have the appropriate sequence. Therefore, it is necessary to define a more complex evaluation
function, capturing the multitude of possible situations.

Taking into account the above explanations, the structure of the evaluation function can be expressed
as follows.

Based on the three cases that were identified, we construct a chromosome evaluation function
with three components, as presented in Eq. (1). If we note the first component that appears in
the fitness function with dependencies, the second component with rest, and the third component
with valid, then the evaluation function of an individual is:

F = x ∗ dependencies+ y ∗ rest+ z ∗ valid (1)

where dependencies—is the number of dependencies, rest—is the number of non-parallelized
instructions, valid—indicates whether the order of the instructions is valid, and x, y, and z are
values which are assigned based on the importance of each component.

It is clear that the last component named valid is the most important, and this requirement must
be strictly met (we are not interested in a solution where the running order of the instructions is
invalid), and the first two must be minimized (ideally, the first must be brought to zero). Then,
the first component is the second most important because we do not want to get code with data
dependencies between instructions; we would prefer purely sequential code. Therefore, we have
chosen values for parameters x, y and z as follows: x= 4, y= 1, z= 10.

For instance, suppose the first individual (chromosome) with the dependency component= 1,
valid = 0, and rest = 6 has the value of the evaluation function: F= 4 ∗ 1+ 1 ∗ 6+ 10 ∗ 0= 10,
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while the second individual (chromosome) which describes a completely sequential code has the
components 0, 9, 0 and the value: F = 4 ∗ 0 + 1 ∗ 9 + 10 ∗ 0 = 9. The second chromosome is
better than the first one and this is natural, because if we try to solve the only dependence in the
first chromosome, we will probably bump into the second one. However, a chromosome with
the components 1 and 6 is better than another with the components 3 and 0, which proves that
the number of dependencies is more important than the number of non-parallelized instructions.

For an odd number of instructions and when everything can parallelize, the best values
for components are as follows: Dependencies = 0, rest = 1 (the odd number of instructions
implies that one instruction cannot be parallelized), valid= 0. The final result for the evaluation
function is:

F= 4 ∗ 0+ 1 ∗ 1+ 10 ∗ 0= 1.

For an even number of instructions and when everything can be parallelized, the best values
for components are as follows: Component = 0, rest = 0, valid = 0. The final result for the
evaluation function is:

F= 4 ∗ 0+ 1 ∗ 0+ 10 ∗ 0= 0.

Consequently, the stop criterion (desired optimum) in the ideal case where all instructions can
be parallelized is F= 1 in the case of an odd number of instructions and F= 0 in the case of an
even number of instructions (Fig. 2).

3.3 Implementation of the Proposed Genetic Algorithm Solution
This subsection presents the implementation of our proposed genetic algorithm for paral-

lel optimization of a program instructions. Based on the details presented in Subsections 3.1.
and 3.2., our algorithm is represented in Fig. 2.

The crossover act as follows: Select two chromosomes from the population using roulette
wheel, randomly place two positions within each selected chromosome and obtain two new chro-
mosomes according with the details presented in Section 3.2. The pseudocode of our algorithm
for computing the crossover is the following:

1. Input: Old population
2. Output: New chromosomes in the new population (the number of new chromosomes is

determined by the parameter named crossover probability)
Start
while not done do

Select two chromosomes from the old population. We use the roulette wheel to generate
two numbers (between 0 and population size).

Generate two random positions inside of the selected chromosomes (the positions must
be between 0 and chromosome size).

Perform the two-point crossover, according with the details presented in Section 3.2.
(Explanation of genetic operators—crossover) and obtain two new chromosomes.

Add the two generated chromosomes in the new population.
end while
Stop
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Figure 2: The diagram of the proposed GA based solution

The algorithm will be applied until the application crossover probability is reached. The
formula used to calculate the number of new chromosomes resulting from the crossover
operation is:

noChromCross= (CrossoverProbability∗PopulationSize)/100
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The mutation (changing an element, gene, from a chromosome) is accomplished as follows:

1. Input: Old population
2. Output: New chromosomes in the new population (the number of new chromosomes is

determined by the parameter named mutation probability).
Start
while not done do

Select one chromosome from the old population. We use the roulette wheel to generate
the chromosome number (between 0 and population size).

Generate two random positions inside of the selected chromosome (the positions must
be between 0 and chromosome size).

Perform the swap mutation, according with the details presented in Section 3.2.
(Explanation of genetic operators—mutation) and obtain one new chromosome.

Add the generated chromosome in the new population.
end while
Stop

The algorithm will be applied until the mutation probability established in the application
interface is reached. The formula used to calculate the number of new chromosomes resulting
from the mutation operation is: noChromMut= (MutationProbability∗PopulationSize)/100.

The evaluation function of each chromosome from the population is presented in detail
and with different examples in Section 3.2. (explanation of evaluation function). The evaluation
function (fitness) is accomplished as follows:

1. Input: Current population of chromosomes.
2. Output: Current population of chromosomes each having attached the value of the evaluation

function.
Start
while not done do

Select one chromosome from the current population.
for each gene (which is actually a program instruction) i from the selected chromosome

verify the dependencies between parallel instructions (executed in parallel on
different processors)
if there are dependencies

dependencies= dependencies+ 1
verify the dependencies between two instructions on the same processor
if there are dependencies

dependencies= dependencies+ 1
verify the dependencies an instruction on a processor and other instructions on
different processors
if there are dependencies

dependencies= dependencies+ 1
end for each gene
verify the number of non-parallelized instructions (comparing the gene values)

if there are non-parallelized instructions
rest= rest+ 1
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verify the running order of the instructions (the gene that cannot be parallelized)
if there are non-parallelized instructions

valid= valid+ 1
Compute the fitness for the selected chromosome using Eq. (1)

end while
Stop

For this problem, the contribution to the evaluation function of one gene from a chromosome
depends on the value and the position of other genes from the same chromosome.

The algorithm shown in Fig. 2 is repeated until the completion criteria are met: Either the
desired optimum is achieved or the number of generations required is met.

4 Experimental Results and Discussion

This section presents testing and experimental results of the proposed genetic algorithm used
for the parallel optimization of software program instructions. In this section, we test our genetic
algorithm in two experiments, using different input files that contains program instructions.

The first scenario: Program with five instructions. For this scenario, the input file has a block of
five program instructions, and the application main interface is presented in Fig. 3.

Figure 3: Application main interface—first scenario

Once all input data has been transformed into the required format, the genetic algorithm
with the parameters specified in Fig. 3, in the general settings tab, is executed. The genetic algo-
rithm parameters are as follows: Population size = 150, maximum number of generations = 70,
crossover probability= 50%, and mutation probability= 5%.
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The data from Tab. 2 presents the results obtained after one iteration of the genetic algorithm
and shows the chromosomes components and the corresponding fitness values. In Tab. 2, only a
selection of the initial population is presented because there are a total of 150 chromosomes.

Table 2: Initial population—generation 0 (selection)

Chromosome number Chromosome genes Chromosome fitness value

0 8 6 2 9 7 0 5 1 4 3 F= 3
1 5 9 6 2 3 8 1 0 7 4 F= 3
2 2 5 0 7 3 1 9 4 8 6 F= 5
3 1 0 9 8 6 2 7 5 4 3 F= 7
4 2 0 3 6 5 4 1 9 8 7 F= 9
5 2 4 3 1 9 7 0 8 5 6 F= 15
. . . . . . . . .

147 9 3 0 1 4 8 2 6 7 5 F= 25
148 5 6 8 2 1 9 7 3 0 4 F= 27
149 7 2 0 4 8 3 5 6 1 9 F= 29

In Tab. 2, the fitness value was calculated according to the Paragraph 3.2 and the subpara-
graph named “Explanation of evaluation function”—(F = x ∗ dependencies + y ∗ rest+ z ∗ valid).
For the instructions presented in Fig. 3, the desired optimum is obtained after 3 iterations (F= 1)
and the chromosome corresponding to this optimum is: “8 6 7 2 4 5 0 9 1 3”.

Fig. 4 shows the distribution of instructions to the processors. In this figure, the symbol
“–” means that there is no instruction to be executed. In the compressed solution, these symbols
were removed.

Figure 4: Results obtained for first scenario

The evolution of fitness (best fitness) through the generations is depicted in Fig. 5. According
to this figure, the desired fitness is obtained after three generations. The fitness value reflects the
fact that all instructions were parallelized on the available processors.
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Figure 5: Fitness evolution through generations

The second scenario: Programwith nine instructions (as presented in Section 3.1). For this scenario,
the input file has a block of nine instructions and the application main interface is presented
in Fig. 6.

Figure 6: Application main interface—second scenario
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For the instructions presented in Fig. 6, the desired optimum was obtained after 53 iterations
(F= 1) and the chromosome corresponding to this optimum is: “ 0 4 10 6 7 9 8 15 16 1 2 13 5
3 17 11 14 12”.

Fig. 7 shows, accordingly with the chromosome shown above, the distribution of the instruc-
tions to the processors.

Figure 7: Results obtained for second scenario

The algorithms were coded in C# programming language, version 2015, and run on a Dell
XPS L502X system with a configuration based on an i7-2630QM processor (frequency 2 GHz)
and 8 GB RAM, and using the Microsoft Windows 10 PRO 64-bit operating system.

The evolution of fitness (best fitness) through the generations is depicted in Fig. 8. This
figure indicates that the genetic algorithm achieves the desired fitness in an acceptable number
of generations.

Figure 8: Fitness evolution through generations
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Discussion. The problem of the optimal distribution of a set of instructions on the avail-
able processors, especially in today’s complex processors, is part of the NP-complete category.
We showed through experiments that our genetic algorithm method is simple and efficient for
implementation, because it is able to be scaled to a larger or smaller number of instructions that
must be parallelized. Compared to the cellular automata variant presented in [27], our proposed
solution is more efficient, because it is very difficult to use the knowledge acquired during the
learning phase and transform it into cellular automata rules. As stated in [27], some questions
are still open: e.g., What is the optimal cellular automata general structure? and How do we use
the rules for new instances of the instruction scheduling task? In case of the local instruction
scheduling presented in [18], the main problem was that the group of transformations that were
applied to the data dependency graph imply adding edges, which adds constraints to the data
dependency graph, and increases the runtime. The logic proposed in [19], injection of randomness
in instruction scheduling list, can improve the efficiency in some cases, but there are also cases
when the algorithm fails to produce efficient parallelization of instructions. In addition, this
approach adds significant overhead to the process. All in all, the genetic algorithm-based method
proposed in this research is generally scalable to a large number of instructions. The fact that
instruction parallelizing works on varying number of instructions that must be scheduled means
that the genetic algorithm is scalable. Our experimental results show that our method improves
the exploration of the search space.

5 Conclusion and Possible Extensions to This Research

In this paper, we proposed a genetic algorithm to perform the parallelization of the instruc-
tions of a software program. The applicability and the efficiency of the proposed genetic algorithm
in instruction scheduling is demonstrated by the experimental evaluation. The simulation results
demonstrate that the solution based on genetic algorithms is suitable for this kind of problems
and this approach can be used by compiler designers.

The steps we took to build our algorithm provide insight on how to further improve explo-
ration of the search space. The results we obtained show that genetic algorithms are definitely
worth investigating and represent a promising approach for future research. The logic used here
to develop the genetic algorithm may be helpful with a few modifications to address other
complicated parallelizing problems, such as parallelizing complex arithmetic instructions, and the
treatment of cycles and decisions. In addition, it is possible to create a parallel version of the
described algorithm, e.g., in a message passing interface, by using multiple computers or the IoT.
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