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Abstract: This work presents a memetic Shuffled Frog Leaping Algorithm
(SFLA) based tuning approach of an Integral Sliding Mode Controller
(ISMC) for a quadrotor type of Unmanned Aerial Vehicles (UAV). Based
on the Newton–Euler formalism, a nonlinear dynamic model of the stud-
ied quadrotor is firstly established for control design purposes. Since the
main parameters of the ISMC design are the gains of the sliding sur-
faces and signum functions of the switching control law, which are usually
selected by repetitive and time-consuming trials-errors based procedures, a
constrained optimization problem is formulated for the systematically tun-
ing of these unknown variables. Under time-domain operating constraints,
such an optimization-based tuning problem is effectively solved using the
proposed SFLA metaheuristic with an empirical comparison to other evo-
lutionary computation- and swarm intelligence-based algorithms such as
the Crow Search Algorithm (CSA), Fractional Particle Swarm Optimiza-
tion Memetic Algorithm (FPSOMA), Ant Bee Colony (ABC) and Harmony
Search Algorithm (HSA). Numerical experiments are carried out for various
sets of algorithms’ parameters to achieve optimal gains of the sliding mode
controllers for the altitude and attitude dynamics stabilization. Compara-
tive studies revealed that the SFLA is a competitive and easily implemented
algorithm with high performance in terms of robustness and non-premature
convergence. Demonstrative results verified that the proposed metaheuristics-
based approach is a promising alternative for the systematic tuning of the
effective design parameters in the integral sliding mode control framework.
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1 Introduction

The quadrotor is the most popular type of Unmanned Aerial Vehicles (UAV) thanks to its
multiple applications in various areas of engineering and civilian domains [1,2]. The capacities
of Vertical and Take-Off Landing (VTOL) and maneuverability prove the growing use of these
vehicles. The flight dynamics stabilization of a quadrotor is a significant and hard task as it
is an underactuated, nonlinear, and large-scale system [3–5]. External disturbances and model
uncertainties of quadrotors further increase the complexity of these aerial vehicles. All these
physical and environmental features require powerful and robust controllers’ design and tuning
with systematic and low time-consuming procedures.

In the literature, various control strategies have been proposed to cover this kind of issue.
In the work of Ma et al. [6], an optimal control method of an unmanned aerial helicopter
with unknown disturbances has been designed based on the Hamilton-Jacobi-Bellman equation.
A linear model predictive controller has been proposed for a tilt-rotor tricopter to handle the
angular dynamics and vertical body velocity in [7]. In the work of Argentim et al. [8], a
comparison between different linear controllers, i.e. ITAE-tuned PID, classical LQR, and LQR
loop-shaping-tuned PID, has been established for the vertical attitude stabilization of a quad-
copter platform. For these linear approaches, the stabilization cannot be guaranteed when the
vehicle moves away from its flight domain. Since the nonlinear control approaches can rise above
some of the restrictions and drawbacks of the linear case, various nonlinear control methods have
been developed. In the work of Stebler et al. [9], a nonlinear output feedback controller has been
designed leading to an asymptotic altitude and attitude tracking of a quadrotor UAV under model
uncertainties and unknown external disturbances. In the work of Ben Ammar et al. [10], the
stabilization of a quadrotor vehicle has been achieved thanks to a proposed fuzzy gains-scheduling
integral sliding mode controller. The main advantage of the proposed fuzzy-tuned sliding mode
controller is the complete compensation of the matched disturbances when the quadrotor is in the
sliding phase. Since the sliding mode control approaches have been successfully applied for various
complex systems, i.e. robot manipulators [11], electrical motors [12], underwater vehicles [13], and
so on, the Integral Sliding Mode Control (ISMC) variant is adopted in this paper to stabilize
the altitude and attitude dynamics of a quadrotor UAV. The ISMC is a robust variant of the
canonical sliding mode control approach where an integral action is added to the general form of
the sliding surface shape [14,15]. Such a control approach allows eliminating the reaching phase
and guarantees the invariance from initial conditions.

Unfortunately, the ISMC approach claims the choice and tuning of several effective con-
trol parameters which make difficult the controller’s design procedure. These effective control
parameters are often selected by repetitive trials-errors based methods which become hard and
time-consuming for complex and large-scale systems. To overcome this drawback, several attempts
have been proposed in the literature. In the work of Dydek et al. [16], an adaptive fuzzy sliding
mode controller has been designed for the attitude stabilization of an unmanned vehicle under
parametric uncertainties and disturbances. Such a proposed fuzzy sliding controller has allowed
the reduction of the undesirable chattering phenomenon but at the expense of slow response
of the system dynamics. In the work of Chang [17], fuzzy inference systems have been used to
approximate the unknown attitude dynamics of the quadrotor and eliminate the reaching phase
under external disturbances and uncertainties. In the work of Zhang et al. [18], an adaptive
mechanism has been designed to estimate the integral sliding mode controllers’ gains to elimi-
nate chattering behavior. All these design methods remain time-consuming, non-systematic, and
difficult in terms of real-world prototyping and experimentation. So, looking for an effective and



CMC, 2021, vol.67, no.3 4083

systematic tuning technique becomes a necessity instead of tedious and expensive trials-errors
based methods. For this purpose, the theory of global metaheuristics and hard optimization can
present a promising solution.

Several metaheuristics have been proposed in the literature and received much interest in
dealing with hard and large-scale optimization problems [19]. Recently, memetic metaheuristics
have shown remarkable superiority in terms of exploitation/exploration capabilities for a robust
and non-premature convergence compared to the classical ones. Initially proposed by Eusuff
et al. [20,21], the Shuffled Frog Leaping Algorithm (SFLA) is one of the most powerful memetic
metaheuristics. In this formalism, a set of virtual frogs are partitioned into different groups called
memeplexes. Within each memeplex of the swarm, the individual frogs hold ideas that can be
influenced by the behavior of other frogs with better fitness and evolve through a process of
memetic evolution. After a defined number of memetic evolution steps, ideas are passed among
memeplexes, which are considered as different cultures of frogs. Given the high performance
of this algorithm, several improvements [22–25] and applications [26–28] have been proposed in
the literature.

In this paper, the selection and tuning procedure of all effective parameters of an internal
sliding mode controller for a quadrotor UAV is formulated as a constrained optimization problem.
The operational constraints are specified in terms of time-domain performance criteria. Such a
nonlinear and large-scale optimization problem is efficiently solved based on the proposed SFLA
metaheuristic compared to other global swarm intelligence algorithms. The main contribution of
the proposed approach is the systematic and fast way of tuning many effective sliding mode
controllers’ parameters for a nonlinear and complex system. The classical trials-errors based
methods, which often lead to local solutions of the tuning problem, are no longer used and the
design time is further reduced. All control performances and operational constraints are implicitly
specified into the formulated optimization problem which will be solved in a single run and
without recourse to a repetitive test-check procedure.

The remainder of this paper is organized as follows. In Section 2, a nonlinear model of the
studied quadrotor is established thanks to the Newton–Euler formalism. Section 3 describes the
formulation of the integral sliding mode controllers’ gains tuning as an optimization problem
under operational constraints. Section 4 is devoted to the description of the proposed memetic
shuffled frog leaping metaheuristic to solve at best the formulated tuning problem. In Section 5,
demonstrative results are carried out to show the superiority and effectiveness of the proposed
SFLA-tuned sliding mode control approach. Conclusions are drawn in Section 6.

2 Quadrotor Dynamics Modeling

A quadrotor UAV is equipped with four rotors that are independently controlled as shown
in Fig. 1. The motion of such a vehicle results from changes in the rate of the rotors. The body
is symmetrical, and the propellers are rigid. The thrust and drag forces are proportional to the
square of the propeller’s speeds denoted as ωi, i ∈ {1, 2, 3, 4}.



4084 CMC, 2021, vol.67, no.3

Figure 1: Mechanical structure of the quadrotor and related frames

In the flight space, the orientation of the quadrotor is accomplished by the rotation matrix
R : FE →FB defined as follows [29,30]:

R (φ, θ ,ψ)=

⎡
⎢⎢⎢⎣
cosψ cos θ sinφ sin θ cosψ − sinψ cos θ cosφ sin θ cosψ + sinψ sinφ

sinψ cos θ sinφ sin θ sinψ + cosψ cos θ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

⎤
⎥⎥⎥⎦ (1)

where −π/2 ≤ φ ≤ π/2, −π/2 ≤ θ ≤ π/2, and −π ≤ ψ ≤ π are the roll, pitch, and yaw Euler
angles, respectively, FE = {

Oe,xe,ye, ze
}

and FB = {
Ob,xb,yb, zb

}
are the earth- and body-

frames, respectively.

The quadrotor’s position and attitude are defined as ξ = [x,y, z]Tand η = [φ, θ ,ψ ]T , respec-
tively. Let a vector ν = (u, v,w)Tdenotes the linear velocity of the quadrotor in the earth-frame
FE , while ϑ = (p,q, r)T represents its angular velocity in the body-frame FB. The kinematic
equations of the rotational and translational motions are obtained, respectively, as follows [29,30]:⎛
⎜⎝
φ̇

θ̇

ψ̇

⎞
⎟⎠=

⎛
⎜⎝
1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

⎞
⎟⎠
⎛
⎜⎝
p

q

r

⎞
⎟⎠ (2)

νe =R (φ, θ ,ψ)νB (3)

where νe and νB denote the linear velocities of the drone in the earth- and body-frames,
respectively.

While using the Newton–Euler formalism, a complete model of the vehicle is given as follows:{
mξ̈ = Fth+Fd +Fg

J�̇=M −Mgp−Mgb−Ma
(4)

where Fth = R (φ, θ ,ψ)
[
0, 0,

∑4
i=1 Fi

]T
is the thrust force of the rotors, Fd = diag (κ1,κ2,κ3) ξ̇

T
is

the air drag force, Fg = [0, 0,mg]T is the gravity force, M = [
τφ, τθ , τψ

]Tdenotes the total rolling,



CMC, 2021, vol.67, no.3 4085

pitching, and yawing moments, Mgp and Mgb are the propellers’ and quadrotor’s body gyro-

scopic torques, respectively, and Ma = diag (κ4,κ5,κ6)
[
φ̇2, θ̇2, ψ̇2]T is the moment resulting from

the aerodynamic frictions [29,30].

Substituting the position vector and the forces expressions into Eq. (4), the following transla-
tional dynamics of the quadrotor is obtained:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẍ= 1
m
(cosφ cosψ sin θ + sinφ sinψ) u1− κ1

m
ẋ

ÿ= 1
m
(cosφ sinψ sin θ − sinφ cosψ)u1− κ2

m
ẏ

z̈= 1
m

cosφ cos θu1− g− κ3

m
ż

(5)

From the second part of Eq. (4), the rotational dynamics can be computed as:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ̈ =
(
Iy− Iz

)
Ix

θ̇ ψ̇ − Jr
Ix

Ωrθ̇ − κ4

Ix
φ̇2+ 1

Ix
u2

θ̈ = (Iz− Ix)
Iy

φ̇ψ̇ − Jr
Iy

Ωrφ̇− κ5

Iy
θ̇2+ 1

Iy
u3

ψ̈ =
(
Ix− Iy

)
Iz

θ̇ φ̇− κ6

Iz
ψ̇2 + 1

Iz
u4

(6)

where Ωr=ω1−ω2+ω3−ω4 is the overall residual rotor speed, Ix, Iy and Iz are the body inertia,
Jr is the rotor inertia and κi, i = 1, 2, . . . , 6 are the aerodynamic friction and translational drag
coefficients.

The control inputs of the quadrotor are defined as u1, u2, u3, and u4 which represent the
total thrust force in the z-axis, roll, pitch, and yaw torques, respectively:

u=

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

b b b b

0 −lb 0 lb

−lb 0 lb 0

d −d d −d

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where b and d are the thrust and drag coefficients, respectively.
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Finally, taking X = (
φ, φ̇, θ , θ̇ ,ψ , ψ̇ ,x, ẋ,y, ẏ, z, ż

)T ∈ R
12 as a state vector, a state-space

representation of the studied quadrotor is obtained as follows [29,30]:

Ẋ = f (X,u)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = a1x4x6+ a3Ωrx4+ a2x22 + b1u2

ẋ3 = x4

ẋ4 = a4x2x6+ a6Ωrx2+ a5x24 + b2u3

ẋ5 = x6

ẋ6 = a7x2x4+ a8x26 + b3u4

ẋ7 = x8

ẋ8 = a9x8 + 1
m
(cosφ cosψ sin θ + sinφ sinψ) u1

ẋ9 = x10

ẋ10 = a10x10+ 1
m
(cosφ sin θ sinψ − sinφ cosψ) u1

ẋ11 = x12

ẋ12 = a11x12+ cosφ cos θ
m

u1− g

(8)

where a1 = (
Iy− Iz

)
/Ix, a2 = −κ4/Ix, a3 = −Jr/Ix, a4 = (Iz− Ix) /Iy, a5 = −κ5/Iy, a6 = −Jr/Iy,

a7 =
(
Ix− Iy

)
/Iz, a8 = −κ6/Iz, a9 = −κ1/m, a10 = −κ2/m, a11 = −κ3/m, b1 = 1/Ix, b2 = 1/Iy and

b3 = 1/Iz.

3 Control Problem Statements

The control objective is to design a robust controller, with a systematic and easy tuning
method of its effective design parameters, for the attitude and altitude dynamics stabilization.
Desired trajectories are defined as Xd = [φd , θd ,ψd , zd ]

T for the outputs X = [φ, θ ,ψ , z]T , assumed
to be accessible.

3.1 Preliminary Results
In the ISMC framework, the expression of the sliding surface is defined as follows [31]:

si (X, t)=
(
d
dt

+λi
)
ei (X, t)+βi

∫ ∞

0
ei (X, τ )dτ (9)

where X denotes the controlled variables, ei (·) is the tracking error defined as ei (t)=Xd (t)−X (t),
λi are positive constants and βi are the integral gains, i ∈ {φ, θ ,ψ , z}.
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The Lyapunov candidate scalar functionV (X, t) = 1/2s2 (X, t) > 0 and the reaching
conditions (X, t) ṡ (X, t) < 0 lead to the following integral sliding mode control law for the altitude
dynamics [10]:

u1 = m
cosφ cos θ

[−a11x12−λzż−βz (z− zd)− g]−Kzsgn (sz) (10)

where cosφ cos θ �= 0, λz > 0, βz > 0, and Kz > 0 are the effective design parameters.

Following the same steps, the control laws u2, u3, and u4 responsible for generating the roll,
pitch, and yaw rotations, respectively, are calculated as follows:

u2 = 1
b1

[
−a1x4x6 − a3Ωrx4− a2x

2
2−λφx2−βφeφ

]
−Kφsgn

(
sφ
)

(11)

u3 = 1
b2

[
−a4x2x6 − a6Ωrx2− a5x24−λθx4 −βθeθ

]
−Kθ sgn (sθ ) (12)

u4 = 1
b3

[
a7x2x4+ a8x

2
6 −λψx4−βψeψ

]
−Kψsgn

(
sψ
)

(13)

where λj > 0, βj > 0, and Kj > 0, j ∈ {φ, θ ,ψ}, are the effective design parameters of the integral
sliding mode controllers for the attitude dynamics.

3.2 Optimization-based Problem Formulation
As shown in Eqs. (10)–(13), the design of integral sliding controllers for the drone dynamics

involves the tuning of several parameters, i.e., slopes of the sliding surfaces λi, integral and sign
functions gains βi and Ki, i ∈ {φ, θ ,ψ , z}. The selection of such a large number of effective control
parameters is not a straightforward problem. Indeed, the classical trials-errors based procedures
become ineffective, time-consuming, and do not guarantee an optimal solution to the problem.
So, such a tuning procedure can be effectively solved thanks to proposed metaheuristics while
considering the following formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize fi (x, t)

x= [
λφ ,λθ ,λψ ,λz,βϕ,βθ ,βψ ,βz,Kφ,Kθ ,Kψ ,Kz

]T ∈S ⊆R
12+

Subject to :
g1 (x)= tφr − tφ,max

r ≤ 0;g2 (x)= tθr − tθ ,max
r ≤ 0

g3 (x)= tψr − tψ ,max
r ≤ 0;g4 (x)= tzr − tz,max

r ≤ 0

(14)

where x ∈ S ⊆ R
12+ is the vector of decision variables which contains all controllers’ gains,

R
12+ denotes the 12-dimensional set of the positive real numbers, fi : R

12 → R, i ∈ {z,φ, θ ,ψ}
are the cost functions to be minimized under operational time-domain constraints, S ={
x ∈ R

12+ ,xlow ≤ x≤ xup
}
denotes the bounded search space, gm : R

12 → R, m = 1, 2, . . . , 4 are the

operational constraints. The terms tφr , tθr , t
ψ
r , and tzr denote the step-response rise times of the

controlled dynamics. The terms tφ,max
r tθ ,max

r , tψ ,max
r , and tz,max

r denote their pre-specified maximum
values.
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The cost functions of the problem (14) are chosen, for each controlled dynamics as the
Integral of Absolute Error (IAE) performance criteria, defined as follows:

fi (x)=
∫ +∞

0
|ei (x, τ )|dτ (15)

where e (x, t)= {ei (x, t)}i=φ,θ ,ψ ,z denotes the tracking errors between the references Xd (t) and the
controlled process variables X (x, t), i.e., eφ (x, t)= φd −φ (x, t), eθ (x, t)= θd − θ (x, t), and so on.

Since the optimization problem (14) is a multi-objective type, the following aggregation
function is used [19]:

f (x, t)=
4∑
i=1

δifi (x, t) (16)

where δi > 0 are the weighting coefficients of the aggregation function ensuring
∑4

i=1 δi = 1.

To handle the constraints of the problem (14), the following static penalty function is
used [19]:

Λ (x, t)= f (x, t)+
ncon∑
q=1

μqmax
{
0,gq (x, t)

}2 (17)

where μq are the scaling penalty parameters and ncon denotes the number of inequality constraints.

4 Proposed Memetic Shuffled Frog Leaping Algorithm

4.1 Overview
In the shuffled frog leaping algorithm, a population of npop frogs is randomly initialized in

the feasible search space S ⊆ R
m and portioned into nmem memeplexes. Each memeplex contains

n frogs. At each iterationk, the position of the ith frog in the jth memeplex is denoted as xji =(
xji,1,x

j
i,2, . . . ,x

j
i,m

)
, where 1 ≤ i ≤ npop and 1 ≤ j ≤ nmem. Then, all frogs are sorted in descending

order according to their fitness following the given ranking strategy [21]. In each memeplex, the
frog with the global best fitness value, evaluated in terms of the cost function, is expressed as xgk.

Those with the best and the worst fitness values are identified as xbk and xwk , respectively. Then, a
process of local search for each memeplex is performed to improve only the frogs with the worst
fitness through the memetic evolution [21]. At each iteration k, the new position of the frog with
the worst fitness leaps towards the position of the best one according to the following motion
equations:

Δw
i,k = rk

(
xbi,k−xwi,k

)
(18)

xwi,k+1 = xwi,k+Δw
i,k, Δw

min ≤Δw
i,k ≤Δw

max (19)

where rk is a random number uniformly distributed in [0,1], Δw
i,k is the change in the ith frog

position, Δw
min and Δw

max are the minima and maximum allowed changes.
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As mentioned in [22–25], if this memetic process produces a better solution, i.e., xwi,k+1 is

better than xwi,k, the new frog is then used to replace the old one in the memeplex. Otherwise,

the motion Eqs. (18) and (19) are recalculated but concerning the global best frog xgk instead of

xbk. If there is no improvement, the worst frog xwk will be replaced by a new randomly generated
solution. The memetic evolution process is then continued for a predefined number of iterations
denoted as kls. The new memeplexes are reformed according to the new order ranked by the
fitness value again.

4.2 Pseudo-Code
The main control parameters of the SFLA are: numbers of memeplexes nmem, frogs in a

memeplex n, memetic generations kls, and shuffling iterationskshuff . A pseudo-code for the SFLA
is given by [22–28]:

Step 1: Initialize all control parameters: npop, nmem, kls, kshuff , kmax, etc.

Step 2: Randomly generate the initial population and evaluate the npop solutions.

Step 3: Sort the population in descending order of fitness.

Step 4: Divide the population into nmem memeplexes.

Step 5: Call the local search mechanism for the memetic evolution process;

• Determine the best and worst solutions xbk and xwk , respectively• Improve the worst frog position according to Eqs. (18) and (19) and repeat iterations

Step 6: Shuffle the evolved memeplexes and sort the new population

Step 7: Test the termination criterion and return the best solution.

4.3 Numerical Experimentations and Discussion
To evaluate the performance of the proposed SFLA, various standard test functions of

Appendix A are used for numerical experimentation. The metaheuristics CSA, HSA, FPSOMA,
and ABC are used as comparison tools. The termination criterion is set as the maximum number
of iterations reaches 10000, the population size is 50 and specific control parameters are set as
follows:

• SFLA [20,21]: memeplexes 5, frogs in a memeplex 10 and generations before shuffling 5.
• CSA [32]: flight length 2 and awareness probability 0.1.
• HSA [33]: harmony memory rate 0.9 and pitch adjusting rate 0.3.
• FPSOMA [34]: inertia weight 0.729, derivative 0.9, cognitive and social coefficients 0.9.
• ABC [35]: limit of abandonments 60.

The proposed metaheuristics are implemented and evaluated using a CPU Core i3, 1.70 GHz
computer. The convergence histories of all reported algorithms are depicted in Fig. 2.

Tab. 1 summarizes the optimization results for independent 20 runs of test functions. Best,
Worst, and Mean denote the best, worst and mean results for the minimization, respectively.
STD is the standard deviation and ET denotes the elapsed time (in seconds). Results of rank-
based Friedman’s analysis for all proposed metaheuristics are summarized in Tab. 2. From these
analyses, one can note that the proposed SFLA has worthily attained the lowest average ranks
compared to the remaining methods. Furthermore, it is shown that the SFLA achieved the first
best computation time for test functions f1−5 and the second one for the benchmark f6.



4090 CMC, 2021, vol.67, no.3

Figure 2: Convergence histories of the reported algorithms for the test functions
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Table 1: Optimization results of the test functions over independent 20 runs

SFLA CSA HSA FPSOMA ABC

f1 Best 1.526e-37 1.530e–09 2.3110 7.042e–08 0.0020
Mean 8.625e–37 0.2170 6.3840 9.546e–08 0.0040
Worst 2.083e–36 2.0480 11.8240 1.261e–07 0.0060
STD 6.229e–37 0.6430 2.8040 2.378e–08 0.0010
ET 44.9090 76.3620 93.5580 50.0140 91.690

f2 Best 0.1013 0.05411 0.0956 2.966e–04 0.8710
Mean 0.1288 0.0960 0.1054 4.282e–04 1.4940
Worst 0.1862 0.1304 0.1237 5.436e–04 2.1150
STD 0.0330 0.0286 0.0123 1.182e–04 0.4900
ET 50.6840 70.9230 62.2660 84.5130 99.9980

f3 Best 16.9143 19.8991 24.8739 36.2184 26.8639
Mean 35.8180 39.2012 54.3240 54.8999 40.9958
Worst 60.6922 60.6923 106.4600 73.7089 56.7304
STD 17.0888 17.6810 35.0820 13.4003 10.8007
ET 52.5380 82.9330 78.3260 57.8310 92.6870

f4 Best 0.0006 0.4147 0.0080 0.0030 9.3515
Mean 0.8250 0.4604 1.6030 0.0090 10.0300
Worst 4.0519 0.4888 3.9872 0.0140 11.2237
STD 1.8037 0.0315 2.1750 0.0050 0.7640
ET 36.1440 66.2670 58.1770 72.7530 54.5440

f5 Best 2.688e–06 3.916e–07 0.0372 1.280e–05 0.1270
Mean 4.168e–06 1.811e–06 0.3735 3.852e–05 0.3432
Worst 5.221e–06 3.916e–06 0.4888 7.114e–05 0.4716
STD 1.063e–06 1.595e–06 0.1905 2.577e–05 0.1395
ET 54.2860 90.5220 78.4476 80.7872 102.6490

f6 Best 1.460e–27 1.588e–50 7.696e–51 3.690e–12 3.309e–12
Mean 2.282e–25 1.037e–44 1.808e–42 2.311e–11 1.071e–11
Worst 7.647e–25 4.200e–44 9.041e–42 5.033e–11 2.530e–11
STD 3.148e–25 1.810e–44 4.043e–42 2.427e–11 8.877e–12
ET 68.947 56.241 70.982 120.332 98.150

Table 2: Rank-based statistical analysis of best performances

SFLA CSA HSA FPSOMA ABC

f1 Score 1.526e–37 1.530e–09 2.3110 7.042e–08 0.0020
Rank 1 2 5 3 4

f2 Score 0.1013 0.05411 0.0956 2.966e–04 0.8710
Rank 4 2 3 1 5

f3 Score 16.9143 19.8991 24.8739 36.2184 26.8639
Rank 1 2 3 5 4

f4 Score 0.0006 0.4147 0.0080 0.0030 9.3515
Rank 1 4 3 2 5

f5 Score 2.688e–06 3.916e–07 0.0372 1.280e–05 0.1270
Rank 2 1 4 3 5

f6 Score 1.460e–27 1.588e–50 7.696e–51 3.690e–12 3.309e–12
Rank 3 2 1 4 5

Average rank 2 2.166 3.166 3 4.66
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5 Application to the ISMC Gains’ Tuning

The numeric values of the studied quadrotor’s parameters are given in Appendix B. The
proposed model of such a vehicle has been validated in our previous works [10,29,30].

5.1 Simulation Results and Discussion
The reported algorithms were independently executed 20 times for the problem (14) over 100

iterations and using a population size of 50. Such a set of control parameters is deduced after
various runs, where the number of iterations is raised for different values of the population size
as shown in Tab. 3. Increasing the number of population and iterations allows for better results
but with prohibitive computation times. Tab. 4 shows the statistical results over the independent
20 runs. The convergence histories of all proposed algorithms are given in Fig. 3.

Table 3: Optimization results of (14) for different number of iterations and generations

Max. Iterations Pop. size Algorithms

SFLA CSA HSA FPSOMA ABC

50 20 3.2574 5.6237 7.2634 6,6460 12.8952
30 3.2103 4.5084 3.2697 2.1829 12.3616
50 1.2041 3.1752 2.2309 1.4312 10.8258

100 20 0.1219 1.3558 1.0087 0.1956 6.3534
30 0.0877 0.0962 0.1038 0.2828 5.0768
50 0.0697 0.0755 0.0964 0.3892 4.1504

200 20 0.0702 0.0754 0.1254 0.3881 4.1499
30 0.0701 0.0751 0.0952 0.3764 4.2186
50 0.0684 0.8001 0.0936 0.4002 4.2664

Table 4: Optimization results of the problem (14) over independent 20 runs

Best Mean Worst STD ET

SFLA 0.0632 0.0702 0.0813 0.0124 2294.485
CSA 0.0752 0.1101 0.1545 0.0391 5660.380
HSA 0.0985 0.0999 0.1446 0.0452 4592.608
FPSOMA 0.2208 0.4186 0.4273 0.0128 3917.282
ABC 4.0324 4.4617 5.6352 0.9982 8148.796

From these numerical experimentations and demonstrative results, the best performance in
terms of solutions quality, fastness, and exploitation/exploration capabilities is always obtained
with the SFLA-based tuning approach. Such a memetic algorithm greatly outperforms all other
reported metaheuristics especially against the well-known premature convergence problem as
depicted by convergence curves of Fig. 3. The STD metric of the SFLA-tuned ISMC case is
the best compared to those of all reported CSA, HSA, FPSOMA, and ABC algorithms. This
highlights the interest of the local search operator and the memetic aspect of such a global
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metaheuristic. The computation time is always the least in the case of SFLA which further proves
the contribution of such a control tuning method. For the closed-loop performance evaluation, the
effectiveness of the SFLA-tuned ISMC approach is shown in Fig. 4 for the attitude and altitude
dynamics stabilization. For the given initial conditions [φ0, θ0,ψ0, z0] = [0, 0, 0, 0], the quadrotor
dynamics are successfully stabilized around the desired references [φd , θd ,ψd , zd ] = [0.9, 0.5, 0.5, 4]
with comparative performance. The system responses are further damped in the SFLA-tuned
controllers. The rise and settling times are improved and the disturbance rejection at simulation
time 10 sec is guaranteed with a fast and smooth behavior against all other algorithms. A large
overshoot with remarkable oscillations is shown for the CSA- and FPSOMA-tuned controllers.

Figure 3: Convergence histories of the reported algorithms for problem (14)

5.2 Comparison with Classical ISMC Approaches
A comparative study based on the closed-loop time-domain performance is performed for

the SFLA-tuned ISMC and classical ones without optimization. The cases of classical sliding
mode control (SMC) [29,30], integral sliding mode control with the sign and saturation types of
functions (ISMC-sign and ISMC-sat) [10] are considered.

The simulation results of Fig. 5 indicate the superiority of the SFLA-tuned controller com-
pared to other algorithms. Indeed, all proposed methods stabilize the attitude and attitude
dynamics, but the step responses are further damped and improved in the case of SFLA-based
tuning algorithms. All other performance metrics are summarized for each controlled dynamics
in Tabs. 5 to 8. In terms of control signal dynamics and chattering behaviors, the SFLA-tuned
controllers present the best reductions of the undesirable chattering phenomenon as depicted in
Fig. 6. The control signals are smoother and the oscillations as in the case of cases sign-SMC,
sign-ISMC, and sat-ISMC are eliminated.
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Figure 4: Time-domain performances of the controlled dynamics

Table 5: Time-domain performances comparison: altitude dynamics

Control approach Rise time (sec) Settling time (sec) Overshoot (%) Steady-state error

SMC [29,30] 1.50 2.50 0.00 0.00
ISMC-SFLA 1.00 1.50 0.00 0.00
ISMC-sat [10] 1.50 4.00 15.00 0.00
ISMC-sign [10] 1.50 5.00 25.00 0.00
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Table 6: Time-domain performances comparison: pitch dynamics

Control approach Rise time (sec) Settling time (sec) Overshoot (%) Steady-state error

SMC [29,30] 0.52 0.99 0.00 0.00
ISMC-SFLA 0.52 0.98 0.00 0.00
ISMC-sat [10] 1.40 6.00 20.00 0.00
ISMC-sign [10] 1.40 10.00 35.00 0.00

Table 7: Time-domain performances comparison: roll dynamics

Control approach Rise time (sec) Settling time (sec) Overshoot (%) Steady-state error

SMC [29,30] 1.40 2.20 0.00 0.00
ISMC-SFLA 0.60 1.00 0.00 0.00
ISMC-sat [10] 1.20 7.00 22.50 0.00
ISMC-sign [10] 1.30 6.00 20.50 0.00

Table 8: Time-domain performances comparison: yaw dynamics

Control approach Rise time (sec) Settling time (sec) Overshoot (%) Steady-state error

SMC [29,30] 0.94 1.10 0.00 0.00
ISMC-SFLA 0.91 1.00 0.00 0.00
ISMC-sat [10] 1.20 3.00 20.00 0.00
ISMC-sign [10] 1.20 5.00 10.00 0.00

5.3 Sensitivity Analysis
As with all metaheuristics, the control parameters selection is critical for SFLA performance

improvement. The sensitivity of such a memetic algorithm concerning the variation of its main
parameters is studied for the problem (14). Fig. 7 gives the different convergence dynamics of
SFLA under arbitrary variation of n and kls parameters, respectively. In all these scenarios, the
convergence of the algorithm is always guaranteed but with degraded performance in terms of
the exploitation/exploration capacities and the computing time. The proposed SFLA metaheuristic
finds better results for problem (14) with the control parameters’ values of n = 10 and kls = 5.
Indeed, and as shown in [21], the number of memeplexes nmem is also an important control
parameter. As the population size increases, the function evaluations increase. Besides, when
selectingnmem, it is important to make sure that n is not too small. If there are too few frogs
selected in a sub-memeplex, the information exchange is slow, resulting in longer solution times.
The other main parameter is kls which can take any value greater than 1. If kls is small, the
memeplexes will be shuffled frequently, reducing idea exchange on the local scale. However, if kls
is large, each memeplex will be shrunk into a local optimum.
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Figure 5: Performances comparison of the proposed SFLA-tuned controllers
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Figure 6: SFLA-based designed control laws for dynamics stabilization

Figure 7: Convergence robustness of the SFLA under control parameters variations

6 Conclusions

In this paper, a systematic tuning strategy of all effective design parameters of the integral
sliding mode control is proposed and successfully applied for the stabilization of a quadrotor UAV.
The tuning parameters’ procedure has been formulated as a constrained optimization problem and
efficiently solved thanks to the proposed memetic SFLA metaheuristic. The classical trials-errors
methods are no longer used, and the design time is further reduced. Numerical experiments were
first performed to evaluate the proposed metaheuristics on standard test function benchmarks.
Rank-based statistical analyses have been then presented to conclude on the performance of
the different metaheuristics. While using the Newton–Euler formalism, a nonlinear model of the
studied quadrotor UAV has been established and used in the altitude and attitude controllers’
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design and tuning. Demonstrative results, in terms of solutions optimality and time-domain
performance, show the superiority and effectiveness of the proposed SFLA-tuned ISMC approach
in comparison with other CSA, FPSOMA, HSA, and ABC competitive algorithms. With a local
search mechanism, the robustness and insensitivity of the proposed SFLA metaheuristic are
further improved. The use of such a memetic algorithm as an alternative to design more advanced
control approaches is promising in the UAV framework.

Future works deal with the real-world experimentation of the SFLA-tuned ISMC approach
using an embedded hardware/software board. The formulation of the proposed metaheuristics
algorithms in an online tuning framework is also investigated.
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Appendix A: Benchmark test functions

Functions Search space Min.

Sphere f1 (x)=
∑d

i=1 x
2
i [−100,100]d 0

Ackley f2 (x)=−20exp
(
−0.2

√
1
d
∑d

i=1 x
2
i

)
− exp

(
1
d
∑d

i=1 cos (2πxi)
)
+ 20+ exp (1) [−32,32]d 0

Rastrigin f3 (x)= 10d +∑d
i=1

(
x2i − 10cos (2πxi)

)
[−5.12,5.12]d 0

Rosenbrock f4 (x)=
∑d−1

i=1

(
100

(
xi+1 −x2i

)2+ (xi − 1)2
)

[−10,10]d 0

Schaffer 2 f5 (x)= 0.5+ sin2
(
x21−x22

)−0.5(
1+0.001

(
x21+x22

))2 [−100,100]2 0

Matyas f6 (x)= 0.26
(
x21+ x22

)
− 0.48x1x2 [−10,10]2 0

Appendix B: Quadrotor’s model parameters

Symbol Description Value/unit

b Lift coefficient 2.984× 10−5 N · s2/rad2
d Drag coefficient 3.30× 10−7N · s2/rad2
m Mass 0.5 Kg
l Arm length 0.50 m
Jr Motor inertia 2.8385× 10−5 Kgm2

J Quadrotor inertia diag (0.005, 0.005, 0.010)
κ1,2,3 Aerodynamic friction coefficients 0.3729
κ4,5,6 Translational drag coefficients 5.56× 10−4

g Acceleration of the gravity 9.81 m · s−2


