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Abstract: The detection of error and its correction is an important area of
mathematics that is vastly constructed in all communication systems. Further-
more, combinatorial design theory has several applications like detecting or
correcting errors in communication systems. Network (graph) designs (GDs)
are introduced as a generalization of the symmetric balanced incomplete block
designs (BIBDs) that are utilized directly in the above mentioned applica-
tion. The networks (graphs) have been represented by vectors whose entries
are the labels of the vertices related to the lengths of edges linked to it.
Here, a general method is proposed and applied to construct new networks
designs. This method of networks representation has simplified the method
of constructing the network designs. In this paper, a novel representation of
networks is introduced and used as a technique of constructing the group
generated network designs of the complete bipartite networks and certain
circulants. A technique of constructing the group generated network designs
of the circulants is given with group generated graph designs (GDs) of certain
circulants. In addition, the GDs are transformed into an incidence matrices,
the rows and the columns of these matrices can be both viewed as a binary
nonlinear code. A novel coding error detection and correction application is
proposed and examined.

Keywords: Network decomposition; network designs; network edge
covering; circulant graphs

1 Introduction

Graph (Network) designs are introduced as a generalization of symmetric balanced incomplete
block designs (BIBDs) (see, e.g., [1,2]) which are decompositions of complete graphs (networks) to
subgraphs (subnetworks) satisfying certain conditions (see [1]). There are several research papers
on the subject of graph decompositions; for more details see [3]. Through the paper we use the
word (graph) to mean (network).
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As defined in [1], a symmetric graph design, or SGD, with parameters (n,G,λ;F), where n, λ
are positive integers and G and F are graphs with n vertices, is a set {G1, . . . ,Gn} of spanning
subgraphs of the complete graph Kn such that

(a) Gi ∼=G for i= 1, . . . ,n;
(b) any edge of Kn is contained in exactly λ subgraphs Gi, and
(c) Gi ∩Gj ∼= F for i, j= 1, . . . ,n, i �= j.

In [4], Dalibor Fronček and Alex Rosa determined all graphs F and all orders for which there
exists an (n,G,λ;F)-SGD where G∼= Fn−1

2 ,3, the friendship graph on n vertices.

In this paper, a generalization of symmetric BIBDs is investigated and we introduce a new
graph representation that will help in constructing new graph designs (GDs).

Definition 1.1 Let H be a r-regular Cayley graph of order n and B be a non-empty set of spanning
subgraphs of H. A(H,B,λ;F)-GD(GraphDesign, GD) is a collection � = {G0,G1, . . . ,Gs} of spanning
subgraphs of H such that

(1) all graphs G in B have the same size e= |E(G)| ≤ r,
(2) any graph of � is isomorphic to one graph of B,
(3) every edge of H belongs to exactly λ elements of �,
(4) for any two different subgraphs Gi and Gj of �, we have Gi ∩Gj ∼= F .

If H ∼= Kn,n, λ = 2, |G| < n and |F| = 1 or 0, then the (Kn,n, {G}, 2;F)-GD is equivalent to
the sub-orthogonal double covers (SODCs) of the complete bipartite graph by G. SODC’s have
been studied by many authors (for SODCs of Kn,n by G, see [5–7] and for SODCs of Kn by G,
see, [8–10]. The (H, {G}, 2;K2)-GD with |G| = r is equivalent to the orthogonal double covers
(ODCs) of Cayley graphs which have been studied in [11]. Also, the (Kn,n, {G}, 2;K2)-GD with
|G| = n is equivalent to ODCs of Kn,n by G that have been investigated by many authors (see,
e.g., [12–15]). Studying the case when H ∼= Kn,n, λ > 2, |G| = n and F ∼= K2 is equivalent to
studying the mutually orthogonal graph squares which have been studied by many authors (see,
e.g., [7,16–19]) and for more details see the survey [20]. Since SODCs and ODCs can be considered
as graph designs, its construction tools can be used to construct new graph designs as will be
done in this work.

Here, all graphs are assumed to be finite, simple and with non-empty edge set. We use the
usual notations: Zn = {0, 1, . . . ,n− 1} for the group of all residual classes modulo n, ∅ for the
empty set, Kn,n for the complete bipartite graphs, Kn for the complete graph, Pn+1 for the path
graph with n edges, Sn for the star of size n, En the empty graph of order n, the circulant graph
H =Circ(Zn,A) is defined by V(H)=Zn and E(H)= {(i, i+ l) : i ∈Zn, l ∈A}, see [21].

In our current study, we concentrate on the case when H ∼= Kn,n or Circ(Zn,A) and F ∼= K2
or F ∼=En. Note that, if |G|< n, then |�| > n.

From now on, all addition and subtraction shall be done modulo n.

The vertices of Kn,n shall be labeled by the elements of Zn×Z2. Namely, for (v, i) ∈ Zn×Z2
we shall write vi for the corresponding vertex and define {ui, vj} ∈E(Kn,n) if and only if i �= j, for
all u, v∈Zn and i, j ∈Z2. To avoid ambiguity, the edge {u0, v1} shall be written as (u, v).

All designs can be represented by a corresponding incidence matrix [22]. Following the method
produced in [23], the incidence matrices can be used in coding error detection and corrections.
Here, the suggested codes are not linear codes.
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The arrangement of our paper is as follows: In Section 2, a new representation of graphs
is introduced. In Section 3, a technique of constructing the group generated graph designs of
Kn,n is studied. In Section 4, detection of error and its correction is suggested as an application
of the codes generated by the constructed graph designs. In Section 5, we construct new group
generated graph designs of Kn,n. In Section 6, a technique of constructing the group generated
graph designs of the circulants is given with group generated graph designs of certain circulants.
The conclusion shall be in Section 7.

2 New Representation of Graphs

In this section, we introduce a new representation of graphs following the method that has
been introduced in [13]. In [13], the graphs have been represented by a vector whose entries are
the labels of the vertices related to the lengths of edges linked to it. This method of graph
representation has simplified the method of constructing the graph designs. Here, a general
method is proposed and applied to construct new graph designs.

Let G be a spanning subgraph of H and let α ∈Zn. Then the graph G with

E(G+α)= {(u+α, v+α) : (u, v)∈E(G)}
is called the α-translate of G. The length of an edge e= (u, v)∈E(G) is defined by l(e)= v− u.

For any subgraph G of Kn,n, let (G)= {y−x : (x,y) ∈E(G)}
be the multiset containing the length of every edge in G. For any two subgraphs G1 and G2

of H, let

D(G1,G2)= {u−x : (x,y)∈E(G1), (u, v)∈ E(G2),y−x= v− u}
be the multiset containing the distance of every pair of equal length edges in G1 and G2. Note
that the distance set D(G,G) means the set of distances between the different edges in G which
have the same lengths. For any collection of graph Ω= {Gi : 0≤ i≤ k− 1}, we define rd-matrix as
a k× k matrix whose entries are rdΩ(i, j)=D(Gi,Gj) for 0≤ i≤ j ≤ k− 1.

Let G be a graph of order n and its vertices are the elements of Zn, G can be represented by a
map ψ(G) from Zn to its power set (i.e., ψ(G) : Zn −→P(Zn)) where for all i ∈Zn, ψi(G)=Ai ⊆Zn
such that for all a ∈Ai, the edge (a,a+ i)∈E(G). ψ(G) can be written in the form of n-tuple where

ψi(G)= {u ∈Zn : (u,u+ i)∈E(G)}
for all 0≤ i ≤ n− 1 (a vector whose ith entry is a set of vertices, from Zn, incident to the edges
with length equal i). Then the following are clear.

ψ(Kn,n)= (Zn,Zn,Zn, . . . ,Zn),ψ(Kn)= (∅,Zn,Zn, . . . ,Zn)

and for all i ∈Zn, |ψi(Sn)| = 1 and ψi(En)=∅.

Let H =Circ(Zn, A=A+ ∪−A+) where A+ =A∩ {1, 2, . . . , 
n/2�}. Then

ψi(H)=ψ−i(H)=
{

Zn for all i ∈A,
∅ otherwise.

Let G and H be two spanning subgraphs of Kn,n, G and H are said to be orthogonal if
they share at most one edge (i.e., |E(G)∩E(H)| ≤ 1), see [8,10] or [24]. Then the collection Ω is
mutually orthogonal if and only if all cells of rdΩ matrix are sets.
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For H = r-regular Circ(Zn,A), the existence of (H,B,λ;K2)-GD immediately implies the
following two necessary conditions that is recorded as

Lemma 2.1 Let � = {G0,G1, . . . ,Gs} be a (H,B,λ;K2)-GD and e is the size of any element
of B. Then{
λnr/2= 0mod{e}
s≥ λn.

Proof. From Definition 1.1 of the (H,B,λ;K2)-GD, we have

|E(G1)| + |E(G2)| + · · · + |E(Gs)| = λ |E(H)| = λnr/2.
Since all elements of � are isomorphic to one element of B and all elements of B have

the same size e, this implies that λnr/2= se. Also, we have e≤ n by Definition 1.1, which imply
that s≥ λn.

3 Group Generated Graph Designs of Kn,n

Definition 3.1 Let Ω= {G0,G1, . . . ,Gk) be a collection of spanning subgraphs of Kn,n. We call Ω

a (Kn,n,B,λ;K2)-GD generator if it satisfies the following conditions:

(1) Every element of Zn appears exactly λ times in the sum of the multisets

L(Gi), i= 0, 1, 2, . . . ,k− 1.

(2) For all pairs i, j with 0≤ i≤ j≤ k− 1, the cells of the rdΩ matrix are sets, that is D(Gi,Gj) are
all sets.

The elements of the generator Ω are called (Kn,n,B,λ;K2)-GD pre-starters graphs.

Theorem3.2 Let Ω= {G0,G1, . . . ,Gk) be a (Kn,n,B,λ;K2)-GDgenerator. Then for all 0≤ i≤ k−1,
the collection of all the translates of Gi+α for all α ∈Zn, forms a (Kn,n,B,λ;K2)-GD by B.

Proof. It is clear that the collection of all translates covers every edge of Kn,n exactly λ times.
Now, It is to show that the collection of all translates are mutually orthogonal, that is any two
graphs of the collection of all translates share at most one edge. Consider two translates Gi + α
and Gj + β where α,β ∈ Zn and assume that they share two edges e1 = (x,y) with length l1 =
y− x and e2 = (u, v) with length l2 = v− u. Then the two edges (x− α,y− α), (u− α, v− α) ∈Gi
with lengths l1, l2 respectively and (x− β,y− β), (u− β, v− β) ∈Gj with lengths l1, l2 respectively.
Then the distance between the two edges with length l1 in Gi and Gj is α − β, and also the
distance between the two edges with length l2 in Gi and Gj is α− β and then D(Gi,Gj) is not a
set. This is a contradiction of the second condition in the Definition 3.1 of the (Kn,n,B,λ;K2)-
GD generator. Consequently, all subgraphs in the collection of all translates of GD-generator are
mutually orthogonal, that is a (Kn,n,B,λ;K2)-GD.

Lemma 3.3 Let Ω= {G0,G1, . . . ,Gk−1) be a (Kn,n,B,λ;K2)-GD generator, then

(i) the number of pre-starters in Ω isk= λn/e.
(ii) For all 0≤ i≤ k− 1, if d ∈D(Gi,Gi) then −d /∈D(Gi,Gi),
(iii) For all 0≤ i≤ k− 1, if n is even then n/2 /∈D(Gi,Gi).

Proof. (i) � = {G0,G1, . . . ,Gs) = (Kn,n,B,λ;K2)-GD. Since s = kn then kne = λn2 and hence
k= λn/e.
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(ii) Let D(Gi,Gi) contains ±d. then Gi contains four edges each pair of them has the same
length l1 and l2, that is (x,x+ l1), (x+ d,x+ d+ l1), (u,u+ l2), (u− d,u− d+ l2) ∈Gi.

Then Gi+d contains (x+d,x+d+ l1), (x+2d,x+2d+ l1), (u+d,u+d+ l2), (u,u+ l2) which
imply that |Gi ∩Gi+ d|> 1 which is a contradiction. Hence, for all 0≤ i ≤ k− 1, if d ∈D(Gi,Gi)
then −d /∈D(Gi,Gi).

(iii) For any 0≤ i≤ k− 1, let n/2 ∈D(Gi,Gi).
So there exist two edges e1 = (x,x+ l), e2 = (x+ n/2,x+ n/2+ l) belong to E(Gi) with the

same length l and D(e1, e2)= n/2.

Then Gi + n/2 contains also e1 = (x,x + l), e2 = (x + n/2,x + n/2 + l) that means
|Gi ∩Gi+ n/2| > 1 which is a contradiction. Hence, for all 0 ≤ i ≤ k − 1, if n is even then
n/2 /∈D(Gi,Gi).

Therefore, λn ≡ 0mod{e} is a necessary condition of the existence of the (Kn,n,B,λ;K2)-
GD generator.

Lemma 3.4 Let ψ(G)= (A0,A1, . . . ,An−1) is a pre-starter of (Kn,n,B,λ;K2)-GD and

Max{|Ai| : 0≤ i≤ n− 1} =m.

Then

n> 2
(
m
2

)
if n even,

n≥ 2
(
m
2

)
+ 1 if n odd.

Proof. Case 1. For n is even;

for n≤ 2
(
m
2

)
,

then n/2≤
(
m
2

)
(the number of differences of the edges of length i), then D(G,G) is a multiset

set. This is a contradiction, then n> 2
(
m
2

)
.

Case 2. For n is odd;

for n< 2
(
m
2

)
+ 1,

then (n − 1)/2 <
(
m
2

)
(the number of differences of the edges of length i), then D(G,G) is a

multiset set. This is a contradiction, then n≥ 2
(
m
2

)
+ 1.

Proposition 3.5 Let m≥ 2 and n≥ 1 be any integers, B is a set of graphs of size e. If there exists
a (Km,m,B,λ;K2)-GD generator of Km,m by B, then there exists a (Kmn,mn,B,λ;K2)-GD generator of
Kmn,mn by B.

Proof. Here, the element (s, t) ∈ Zm × Zn is written as st. Let Ω = {G0,G1, . . . ,Gk−1} be a
(Km,m,B,λ;K2)-GD generator of Km,m by B with respect to Zm that is every edge in Km,m appears
λ times in Ω and D(Gp,Gq) for all 0≤ p≤ q≤ k− 1, are sets, and k= λm/e.
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For all i ∈Zm and 0≤ s≤ k−1, let ψ(Gs)= (As0,As1, . . . ,As(m−1)) is a pre-starter graph Gs ∈Ω,

that is ψi(Gs)=Asi and E(Gs)= {(a,a+ i) : a ∈Asi }.
Let the set D(Gp,Gp)=D1 and the set D(Gp,Gq)=D2 and p �= q.

For all i ∈ Zm, and for all j, t∈ Zn, define Ω∗ = {G0j,G1j, . . . ,Gkj} by

ψij(Gst)=
{
Asi ×{0} if j= t,
∅ otherwise.

Then E (Gst)=
{
(a0,a0+ it) : a ∈Asi

}
. Then every edge in Kmn,mn (its vertices are Zm×Zn×Z2)

appears λ times in Ω∗. For any two graphs G,H ∈Ω∗,D(G,G)=D1 ×{0} ⊆ Zm×Zn× {0} which
is a set and D(G,H)=D2×{0} ⊆Zm×Zn×{0} which is a set then �∗ is a (Kmn,mn,B,λ;K2)-GD
generator of Kmn,mn by B with respect to Zm×Zn.

4 Coding Error Detection and Correction Application

The rows or columns of the incedence matrix of the GDs can be used as binary codes because
all of its entries are 0 or 1. Let us define the GD’s Incedence matrix J as follows.

For the (Kn,n,G,λ;K2)-GD, since Kn,n has n2 edges and we have s blocks (GD subgraphs),
define J as s× n2 integer matrix where its elements are 0 or 1 and displays the relation between
the edges and the blocks where every row corresponds to a block (GD subgraph Gi) and every
column corresponds to an edge (ej) in the graph Kn,n.

Jij =
{
1 if ej ∈Gi
0, otherwise.

GD Incidence Matrix has the following properties:

As the incidence matrix J of a (Kn,n,G,λ;K2)-GD has the following properties.

1. Every row has n number of 1s,
2. Every column has λ number of 1s,
3. Two distinct columns both have 1s in at most 1 rows.

For illustration, the following example is produced.

The blocks of (K3,3,S3, 2;K2)-GD is constructed as:

{G1 = {00, 01, 02}, G2 = {10, 11, 12}, G3 = {20, 21, 22},
G4 = {00, 10, 20}, G5 = {01, 11, 21}, G6 = {02, 12, 22}}
where ab is an edge between vertex a0 and vertex b1, see Fig. 1. The incedence matrix of
this GD is

J =

G0
G1
G2
G3
G4
G5

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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Figure 1: (K3,3,S3, 2;K2)-GD

When a GD is transformed into an incidence matrix, the rows and the columns can be
both viewed as a binary nonlinear code. The binary codes formed from the row denoted as
Srow and binary codes from the column will be referred as Scolumn. As mentioned previously, by
conversion of GD to incidence matrix, the incidence matrix of a GD retains certain properties
that are inherited from GD. Using these properties, results can be obtained to evaluate the
minimum Hamming distance (number of different bits in two codes) between codes from Srow
or Scolumn. Where

Srow = {111000000, 000111000, 000000111, 100100100, 010010010, 001001001}
and

Scolumn= {100100, 100010, 100001, 010100, 010010, 010001, 001100, 001010, 001001} .
The minimum Hamming distance δ(Srow)= 4 and δ(Scolumn)= 2.

Distance in binary codes detects the number of errors a code can detect or correct [25].
As proved in [26], we have

• a binary code S can be detected up to q errors iff the minimum distance δ is greater or
equivalent to q+ 1.

• a binary code S can be corrected up to q errors iff the minimum distance δ is greater or
equivalent to 2q+ 1.

Then for our example Srow can detect upto 3 errors and correct upto one error.

Efficiency factor E is the the quality estimation of the design efficiency. The efficiency factor
E is a numerical value lies between 0 and 1. The quality of a design is “good” if E is greater

than 0.75 The efficiency of the (v,b, r,k,λ)-BIBD design codes [27] is calculated as E = v(k− 1)
k(v− 1)

which can be simplified for our graph design as E = n2(n− 1)
n(n2− 1)

= n
n+ 1

(put v= n2, the size of Kn,n

and k = n, the size of G) which will be always greater than 0.75 where n is the size of the GD
blocks. Then the efficiency of the codes from the GDs are very good and can be safely used in
coding processes. For more details about the design efficiency, see [27]. For more applications of
networks, see [28–30].



3408 CMC, 2021, vol.67, no.3

To clear the proposed application, we use the above Srow for coding the following words shown
in Tab. 1 and assuming that there is a possibility of occurring an error in at most two positions.
From the structure of the corresponding GD, the number of ones must be 3 in any code.

Table 1: Words’ codes

Words Codes

Go 111000000
Stop 000111000
Forward 000000111
Back 100100100
Left 010010010
Right 001001001

If the code 111100001 is received. Since number of ones must be 3, the error is detected.
To correct the error, the code with the minimum Hamming distance from the received one can be
chosen that is 111000000. Then the message is “go,” and so on.

5 Graph Designs (Kn,n,B,λ;K2)-GD’s

Here, we use the above representation of graphs to construct (Kn,n,B,λ;K2)-GD for
λ∈ {2, 3, 4} by certain graph classes B.

5.1 Graph Designs (Kn,n, {Cm},2;K2)-GD’s
Lemma 5.1 Let t≥1 be a positive integer. There exists (K6t,6t, {C6}, 2;K2)-GD.

Proof. For n= 6, define Ω= {G0,G1} by

ψ(G0)= ({0, 1}, {1, 5}, {1},∅, {5},∅) and ψ(G1)= (∅,∅, {1}, {0, 2}, {2}, {0, 1})
Then all graphs in Ω are isomorphic to C6 and

rdΩ-matrix=
[{1, 4} {0, 3}
{0, 3} {1, 2}

]

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a (K6,6, {C6}, 2;K2)-
GD generator. Applying Proposition 3.5 completes the proof. �

Lemma 5.2 Let t≥ 1 be a positive integer. There exists (K10t,10t, {C10}, 2;K2)-GD.

Proof. For n= 10, define Ω= {G0,G1} by

ψ (G0)= ({0, 9} , {8} , {0} , {9} , {6} ,∅, {8} , {6} , {5} , {5}) ,
ψ (G1)= (∅, {0} , {0} , {7} , {5} , {5, 7} , {8} , {6} , {5} , {5})

Then all graphs in Ω are isomorphic to C10 and

rdΩ-matrix=
[{1, 9} {0, 6, 7, 9, 5, 4, 2, 8}
{0, 6, 7, 9, 5, 4, 2, 8} {2, 8}

]
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Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a
(K10t,10t, {C10}, 2;K2)-GD generator. Applying Proposition 3.5 completes the proof. �

5.2 Graph Designs (Kn,n,B,3;K2)-GD’s
The existence of (K4,4, {P5},λ;K2)-GD still open for λ ≥ 3. Nevertheless, we can record the

following result as:

Lemma 5.3 For λ≥ 3. There is no (K4,4, {P5},λ;K2)-GD generator.

Proof. Let P5 is a spanning subgraph of K4,4. Then the following vectors and all of its
translates are the all possible pre-starter vectors of P5 shown in Tab. 2. By careful inspection,
we find that there are no λ≥ 2 mutually orthogonal pre-starter vectors inside this collection, then
the proof is complete.

Table 2: All possible pre-starter vectors of P5

({0, 1}, {0}, {1},∅) ({0, 1}, {1}, {0},∅) ({1, 1}, {0}, {2},∅)
({0, 1},∅, {3}, {1}) ({0, 1},∅, {2}, {2}) ({0, 1}, {3}, {3},∅)
({0}, {0, 1},∅, {1}) ({1}, {0, 1},∅, {0}) (∅, {0, 1}, {0}, {1})
(∅, {0, 1}, {1}, {0}) ({1}, {0, 1},∅, {3}) (∅, {0, 1}, {0}, {2})
({1}, {0}, {0, 1},∅) ({0}, {1}, {0, 1},∅) ({3}, {1}, {0, 1},∅)
({2},∅, {0, 1}, {0}) ({3},∅, {0, 1}, {3}) ({2}, {2}, {0, 1},∅)
({2}, {0, 1}, {2},∅) (∅, {0, 1}, {3}, {3}) ({0}, {1},∅, {0, 1})
({1}, {0},∅, {0, 1}) (∅, {0}, {1}, {0, 1}) (∅, {1}, {0}, {0, 1})
(∅, {3}, {1}, {0, 1}) (∅, {2}, {2}, {0, 1}) ({3}, {3},∅, {0, 1})
({0}, {0}, {3}, {1}) ({0}, {3}, {3}, {0}) ({0}, {3}, {1}, {0})

�
Proposition 5.4 Let n≥ 3 be a positive integer. There exists a (Kn,n, {P4}, 3;K2)-GD.

Proof. Define Ω= {G0,G1, . . . ,Gn−1} as follows.

For all i, j ∈Zn.

ψi(Gj)=
⎧⎨
⎩
{0, 1} if i= j,
{0} if i= j+ 1,
∅ otherwise.

Then all graphs in Ω are isomorphic to P4 and E(Gj)= {(0, i), (i, i), (0, i+ 1)}, and

D(Gi,Gj)=
⎧⎨
⎩
{1} if i= j,
{0, 1} if j= i+ 1,
∅ otherwise.

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a (Kn,n, {P4}, 3;K2)-
GD generator. �

Lemma 5.5 Let t≥ 1 be a positive integer. There exists a (K8t,8t, {C4}, 3;K2)-GD.
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Proof. For n= 8, define Ω= {G0,G1,G2,G3,G4,G5} as.

ψ (G0)= ({0, 1} , {0} ,∅,∅,∅,∅,∅, {1}) , ψ (G1)= (∅, {1} , {0, 1} , {0} ,∅,∅,∅,∅) ,

ψ (G2)= (∅,∅,∅, {1} , {0, 1} , {0} ,∅,∅) , ψ (G3)= (∅,∅,∅,∅,∅, {1} , {0, 1} , {0}) ,
ψ (G4)= ({0} , {5} ,∅, {5} ,∅,∅, {0} ,∅) , ψ (G5)= (∅,∅, {0} ,∅, {0} , {5} ,∅, {5}) .

Then all graphs in Ω are isomorphic to C4 and

rdΩ-matrix=

⎡
⎢⎢⎢⎢⎢⎢⎣

{1} {1} ∅ {7} {0, 7, 5} {4}
{1} {1} {1} ∅ {4, 5} {0, 7}
∅ {1} {1} {1} {4} {0, 7, 5}
{7} ∅ {1} {1} {0, 7} {4, 5}
{0, 7, 5} {4, 5} {4} {0, 7} ∅ ∅

{4} {0, 7} {0, 7, 5} {4, 5} ∅ ∅

⎤
⎥⎥⎥⎥⎥⎥⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a (K8,8, {C4}, 3;K2)-
GD generator. Applying Proposition 3.5 completes the proof. �

Lemma 5.6 Let t≥ 1 be a positive integer. There exists (K6t,6t, {P7}, 3;K2)-GD.

Proof. For n= 6, define Ω= {G0,G1,G2} as.

ψ (G0)= ({0, 1} , {0, 4} ,∅, {3} , {1} ,∅) , ψ (G1)= ({1} ,∅, {0, 1} , {0, 2} ,∅, {2}) ,
ψ (G2)= (∅, {5} , {0} ,∅, {4, 5} , {4, 0}) .

Then all graphs in Ω are isomorphic to P7 and

rdΩ-matrix=
⎡
⎣{1, 4} {1, 0, 3, 5} {1, 5, 2, 3}
{1, 0, 3, 5} {1, 2} {0, 1, 2, 4}
{1, 5, 2, 3} {0, 1, 2, 4} {1, 4}

⎤
⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a (K6,6, {P7}, 3;K2)-
GD generator, Applying Proposition 3.5 completes the proof. �

Lemma 5.7 Let t≥ 1 be a positive integer. There exists a (K6t,6t, {C4∪S2}, 3;K2)-GD.

Proof. For n= 6, define Ω= {G0,G1,G2} by

ψ (G0)= ({0, 5} ,∅, {0, 4} ,∅, {4} , {5}) , ψ (G1)= ({1} , {0, 5} ,∅, {3, 5}},∅, {3})
ψ (G2)= (∅, {4} , {3} , {0} , {0, 5} , {5}) .

Then all graphs in Ω are isomorphic to C4 ∪S2 and

rdΩ-matrix=
⎡
⎣{4, 5} {1, 2, 4} {3, 5, 2, 1, 0}
{1, 2, 4} {2, 5} {4, 5, 3, 1, 2}
{3, 5, 2, 1, 0} {4, 5, 3, 1, 2} {5}

⎤
⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a (K6,6, {C4 ∪
S2}, 3;K2)-GD generator. Applying Proposition 3.5 completes the proof. �
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Lemma 5.8 Let t≥ 1 be a positive integer. There exists a (K6t,6t, {C6,P4 ∪P3 ∪P2}, 3;K2)-GD.

Proof. For n= 6, define Ω= {G0,G1,G2} by

ψ (G0)= ({0, 1} ,∅, {5} ,∅, {0} , {1, 5}) , ψ (G1)= ({1} , {0, 1} ,∅, {0} , {4} , {4}) ,
ψ (G2)= (∅, {4} , {0, 1} , {0, 2} , {3} ,∅) .

Then {G0,G1} are isomorphic to C6, G2 is isomorphic to P4 ∪P3 ∪P2 and

rdΩ-matrix=
⎡
⎣{1, 4} {1, 0, 4, 3, 5} {1, 2, 3}
{1, 0, 4, 3, 5} {1} {4, 3, 0, 2, 5}
{1, 2, 3} {4, 3, 0, 2, 5} {1, 2}

⎤
⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a (K6,6, {C6,P4 ∪
P3 ∪P2}, 3;K2)-GD generator. Applying Proposition 3.5 completes the proof.

Lemma 5.9 Let t≥ 1 be a positive integer. There exists a (K6t,6t, {C6,P5 ∪ 2P2}, 3;K2)-GD.

Proof. For n= 6, define Ω= {G0,G1,G2} by

ψ (G0)= ({4} , {1} , {0, 1} ,∅, {0} , {4}) , ψ (G1)= ({0} ,∅,∅, {0, 1} , {5} , {1, 5}) ,
ψ (G2)= ({5} , {1, 4} , {5} , {1} , {2} ,∅) .

Then {G0,G1} are isomorphic to C6, G2 is isomorphic to P5 ∪ 2P2 and

rdΩ-matrix=
⎡
⎣{1} {2, 5, 3, 1} {1, 0, 3, 5, 4, 2}
{2, 5, 3, 1} {1, 4} {5, 1, 0, 3}
{1, 0, 3, 5, 4, 2} {5, 1, 0, 3} {1, 2}

⎤
⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a(
K6,6, {C6,P5∪ 2P2} , 3;K2

)
-GD generator. Applying Proposition 3.5 completes the proof. �

Lemma 5.10 Let t≥ 1 be a positive integer and G is the class of the spanning sub-graphs isomorphic
to the graph with vertices {a,b, c,d, e, r, s} and the 6 edges {(a,b), (c,b), (c,d), (e,b), (e,d), (r, s)}. There
exists a (K6t,6t, {C6,G}, 3;K2)-GD.

Proof. For n= 6, define Ω= {G0,G1,G2} by

ψ (G0)= ({4} , {1} , {0, 1} ,∅, {0} , {4}) , ψ (G1)= ({0} ,∅,∅, {0, 1} , {5} , {1, 5}) ,
ψ (G2)= ({1} , {0, 1} , {2} , {4} , {4} ,∅) .

Then {G0,G1} are isomorphic to C6, G2 is isomorphic to G and

rdΩ-matrix=
⎡
⎣{0, 1} {2, 5, 3, 1} {3, 5, 0, 2, 1, 4}
{2, 5, 3, 1} {1, 4} {1, 4, 3, 5}
{3, 5, 0, 2, 1, 4} {4, 3, 0, 2, 5} {1}

⎤
⎦

Since every cell of the rdΩ−matrix is a set satisfying Lemma 3.3, then Ω is a(
K6,6, {C6,G} , 3;K2

)
-GD generator. Applying Proposition 3.5 completes the proof. �
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Lemma 5.11 Let t≥ 1 be a positive integer. There exists a (K8t,8t, {C6}, 3;K2)-GD.

Proof. For n= 8, define Ω= {G0,G1,G2,G3} as.

ψ (G0)= (∅,∅, {6} ,∅,∅, {0} , {1} , {0, 1, 6}) , ψ (G1)= ({0, 1, 6} , {0} , {6} ,∅,∅, {1} ,∅,∅) ,

ψ (G2)= (∅, {0} , {1} , {0, 1, 6} ,∅,∅, {6} ,∅) , ψ (G3)= (∅, {1} ,∅,∅, {0, 1, 6} , {0} , {6} ,∅) .
Then all graphs in Ω are isomorphic to C6 and

rdΩ-matrix=

⎡
⎢⎢⎣
{1, 2, 3} {0, 1} {5,−5} {0, 5}
{0, 1} {1, 2, 3} {0, 5} {1,−1}
{5,−5} {0, 5} {1, 2, 3} {0, 1}
{0, 5} {1,−1} {0, 1} {1, 2, 3}

⎤
⎥⎥⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a
(
K8,8, {C6} , 3;K2

)
-

GD generator. Applying Proposition 3.5 completes the proof. �
Lemma 5.12 Let t≥ 1 be a positive integer and G is a graph containing a cycle C4 in addition to

an edge K2such that they share a vertex. There exists (K5t,5t, {C4∪K2,G}, 3;K2)-GD.

Proof. For n= 5, define Ω= {G0,G1,G2} as:

ψ (G0)= ({0, 3} ,∅, {3} , {0} , {2}) , ψ (G1)= ({3} , {2, 3} , {2, 0} ,∅,∅) ,

ψ (G2)= (∅, {2} ,∅, {3, 4} , {2, 4}) .
Then {G0,G1} are isomorphic to C4, G2 is isomorphic to G and

rdΩ-matrix=
⎡
⎣{3} {3, 0, 4, 2} {3, 4, 0, 2}
{3, 0, 4, 2} {1, 3} {0, 4}
{3, 4, 0, 2} {0, 4} {1, 2}

⎤
⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a(
K5,5, {C4∪K2,G} , 3;K2

)
-GD generator. Applying Proposition 3.5 completes the proof. �

Lemma 5.13 Let t≥ 1 be a positive integer. There exists a (K5t,5t, {P6}, 3;K2)-GD.

Proof. For n= 5, define Ω= {G0,G1,G2} as:

ψ (G0)= ({0, 3} , {3, 4} ,∅, {0} ,∅) , ψ (G1)= (∅, {2} , {0, 2} ,∅, {0, 4}) ,
ψ (G2)= ({4} ,∅, {4} , {0, 3} , {0}) .

Then all graphs in Ω are isomorphic to P6 and

rdΩ-matrix=
⎡
⎣{3, 1} {4, 3} {4, 1, 0, 3}
{4, 3} {2, 4} {4, 2, 0, 1}
{4, 1, 0, 3} {4, 2, 0, 1} {3}

⎤
⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a
(
K5,5, {P6} , 3;K2

)
-

GD generator. Applying Proposition 3.5 completes the proof.
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Lemma 5.14 Let t≥ 1 be a positive integer. There exists a (K5t,5t, {P6,P4 ∪ 2K2}, 3;K2)-GD.

Proof. For n= 5, define Ω= {G0,G1,G2} as.

ψ (G0)= ({0, 1} , {0} , {1} ,∅, {4}) , ψ (G1)= (∅, {3} , {1} , {0, 1} , {3}) ,
ψ (G2)= ({4} , {1} , {3} , {0} , {4}) .

Then {G0,G1} are isomorphic to P6, G2 is isomorphic to P4 ∪ 2K2 and

rdΩ-matrix=
⎡
⎣{1} {3, 0, 4} {4, 3, 1, 2, 0}
{3, 0, 4} {1} {3, 2, 0, 4, 1}
{4, 3, 1, 2, 0} {3, 2, 0, 4, 1} ∅

⎤
⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a(
K5,5, {P6,P4∪ 2K2} , 3;K2

)
-GD generator. Applying Proposition 3.5 completes the proof. �

5.3 Graph Designs (Kn,n,B,4;K2)-GD’s
Lemma 5.15 Let t≥ 1 be a positive integer. There exists a (K5t,5t, {P4 ∪P3,P5∪K2}, 4;K2)-GD.

Proof. For n= 5, define Ω= {G0,G1,G2,G3} as:

ψ (G0)= ({0, 2} ,∅, {4} , {2, 3} ,∅) , ψ (G1)= ({0, 1} , {2, 4} , {1} ,∅,∅) ,

ψ (G2)= (∅, {4, 0} ,∅, {4} , {0, 3}) , ψ (G3)= (∅,∅, {0, 2} , {2} , {0, 4}) .
Then {G0,G1,G2} are isomorphic to P4 ∪P3, G3 is isomorphic to P4 ∪P3 and

rdΩ-matrix=

⎡
⎢⎢⎣
{2, 1} {0, 3, 1, 4, 2} {2, 1} {1, 3, 0, 4}
{0, 3, 1, 4, 2} {1, 2} {2, 0, 3, 1} {2, 4}
{2, 1} {2, 0, 3, 1} {1, 3} {4, 0, 2, 1, 3}
{1, 3, 0, 4} {2, 4} {4, 0, 2, 1, 3} {2, 4}

⎤
⎥⎥⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a(
K5,5, {P4 ∪P3,P5∪K2} , 4;K2

)
-GD generator. Applying Proposition 3.5 completes the proof. �

Lemma 5.16 Let t≥ 1 be a positive integer. There exists a (K5t,5t, {P4 ∪K2}, 4;K2)-GD.

Proof. For n= 5, define Ω= {G0,G1,G2,G3} as:

ψ (G0)= ({0, 2} ,∅,∅, {1, 2} ,∅) , ψ (G1)= ({0, 1} ,∅,∅,∅, {1, 3}) ,
ψ (G2)= (∅, {2, 3} ,∅, {0, 2} ,∅) , ψ (G3)= (∅,∅, {0, 2} ,∅, {0, 4}) ,
ψ (G4)= (∅, {0, 2} , {1, 2} ,∅,∅) .

Then all graphs in Ω are isomorphic to P4 ∪K2 and

rdΩ-matrix=

⎡
⎢⎢⎢⎢⎣

{2, 1} {0, 3, 1, 4} ∅ ∅ ∅

{0, 3, 1, 4} {1, 2} ∅ {4, 2, 3, 1} ∅

∅ ∅ {1, 2} ∅ {3, 2, 0, 4}
∅ {4, 2, 3, 1} ∅ {2, 4} {1, 4, 2, 0}
∅ ∅ {3, 2, 0, 4} {1, 4, 2, 0} {2, 1}

⎤
⎥⎥⎥⎥⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 3.3, then Ω is a(
K5,5, {P4 ∪K2} , 4;K2

)
-GD generator. Applying Proposition 3.5 completes the proof. �
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6 Graph Designs (H,B,λ;K2)-GD’s

Definition 6.1 Let Ω = {G0,G1, . . . ,Gg) be a collection of spanning subgraphs of H = r-regular
Circ(Zn,A=A+ ∪−A+) where A+ =A∩{1, 2, . . . , 
n/2�}. We call Ω a (H,B,λ;K2)-GD generator if
it satisfies the following conditions:

(1) Every element of A+ appears exactly λ times in the sum of the multisets L(Gi),
i= 0, 1, 2, . . . ,g− 1.

(2) For all pairs i, j with 0≤ i≤ j≤ g− 1, the cells of the rdΩ matrix are sets, that is D(Gi,Gj) are
all sets.

The elements of the generator Ω are called (H,B,λ;K2)-GD pre-starters graphs.

Theorem 6.2 Let Ω= {G0,G1, . . . ,Gg) be a (H,B,λ;K2)-GD generator. Then for all 0≤ i≤ g− 1,
the collection of all the translates of Gi+α for all x ∈Zn, forms a (H,B,λ;K2)-GD by B.

Proof. It is clear that the collection of all translates covers every edge of H exactly λ times.
Now, It is to show that the collection of all translates are mutually orthogonal, that is any two
graphs of the collection of all translates share at most one edge. Consider two translates Gi + α
and Gj + β where α,β ∈ Zn and assume that they share two edges e1 = (x,y) with length l1 =
y− x and e2 = (u, v) with length l2 = v− u. Then the two edges (x− α,y− α), (u− α, v− α) ∈Gi
with lengths l1, l2 respectively and (x− β,y− β), (u− β, v− β) ∈Gj with lengths l1, l2 respectively.
Then the distance between the two edges with length l1 in Gi and Gj is α − β, and also the
distance between the two edges with length l1 in Gi and Gj is α − β and then D(Gi,Gj) is not
a set. This is a contradiction of the second condition in the Definition 6.1 of the (H,B,λ;K2)-
GD generator. Consequently, all subgraphs in the collection of all translates of GD-generator are
mutually orthogonal, that is a (H,B,λ;K2)-GD. �

Lemma 6.3 Let Ω= {G0,G1, . . . ,Gg−1) be a (H,B,λ;K2)-GD generator, then

(i) the number of pre-starters in Ω isg= λnr/2e,
(ii) For all 0≤ i≤ g− 1, if d ∈D(Gi,Gi) then− d /∈D(Gi,Gi),
(iii) For all 0≤ i≤ g− 1, if n is even then n/2 /∈D(Gi,Gi).

Proof. (i) � = {G0,G1, . . . ,Gs)= (H,B,λ;K2)-GD. Since the s= gn then gne= λnr/2 and hence
g= λr/2e.

(ii) Let D(Gi,Gi) contains ±d then Gi contains four edges each pair of them has the same
length l1 and l2, that is (x,x+ l1), (x+ d,x+ d + l1), (u,u+ l2), (u− d,u− d+ l2) ∈Gi.

Then Gi+d contains (x+d,x+d+ l1), (x+2d,x+2d+ l1), (u+d,u+d+ l2), (u,u+ l2) which
imply that |Gi ∩Gi+ d|> 1 which is a contradiction. Hence, for all 0≤ i ≤ g− 1, if d ∈D(Gi,Gi)
then −d /∈D(Gi,Gi)

(iii) For any 0≤ i≤ g, let n/2 ∈D(Gi,Gi).
So there exist two edges e1 = (x,x+ l), e2 = (x+ n/2,x+ n/2+ l) belong to E(Gi) with the

same length l and D(e1, e2)= n/2.

Then Gi + n/2 contains also e1 = (x,x + l), e2 = (x + n/2,x + n/2 + l) that means
|Gi ∩Gi+ n/2| > 1 which is a contradiction. Hence, for all 0 ≤ i ≤ g − 1, if n is even then
n/2 /∈D(Gi,Gi).

Therefore, λr/2 ≡ 0mod{e} is a necessary condition of the existence of the (H,B,λ;K2)-
GD generator. �
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Proposition 6.4 Let m≥ 2 and n≥ 2m+ 1 be integers and let H = 2m-regular Circ(Zn,A) where

A=A+ ∪−A+)

where A+ =A∩ {1, 2, . . . , 
n/2�} = {l0, l1, . . . , lm−1}. Then there exists (H, {P4}, 3;K2)-GD.

Proof. Define Ω= {G0,G1, . . . ,Gm−1} as:

For all j ∈Zm and for all i ∈Zm

ψli(Gj)=

⎧⎪⎨
⎪⎩
{0, lj+1} if i= j,

{lj} if i= j+ 1,

∅ otherwise.

Then all graphs in Ω are isomorphic to P4 and

D(Gi,Gj)=

⎧⎪⎨
⎪⎩

{
lj+1

}
if i= j,{−lj, lj+2− lj

}
if i= j− 1,

∅ otherwise.

Since every cell of the rdΩ-matrix is a set satisfying Lemma 6.3, then Ω is a (H, {P4}, 3;K2)-
GD generator. �

Proposition 6.5 Let n ≥ 9 be an integer and let H = 8-regular Circ(Zn,A) where A = A =
A+ ∪−A+) where A+ =A∩ {1, 2, . . . , 
n/2�} = {l1, l2, l3, l4}. Then there exists (H, {P5}, 3;K2)-GD.

Proof. Define Ω= {G0,G1,G2} as:

ψi(G0)=
⎧⎨
⎩
{0, l1, l4− l1} if i= l1,
{0} if i= l4,
∅ otherwise.

ψi(G1)=
⎧⎨
⎩
{0, l2, l3− l2} if i= l2,
{0} if i= l3,
∅ otherwise.

ψi(G2)=
⎧⎨
⎩
{0, l3+ l4} if i= l3,
{0, l3} if i= l4,
∅ otherwise.

Then all graphs in Ω are isomorphic to P5 and

rdΩ-matrix=
⎡
⎣{l1, l4− l1, l4− 2l1} ∅ {0, l3}

∅ {1} {0, l3+ l4}
{0, l3} {0, l3+ l4} ∅

⎤
⎦

Since every cell of the rdΩ-matrix is a set satisfying Lemma 6.3, then Ω is a (H, {P5}, 3;K2)-
GD generator. �

Proposition 6.6 Let n ≥ 7 be a positive integer and H be 4-regular Circ(Zn,A) where A = A =
A+∪−A+) where A+ =A∩{1, 2, . . . , 
n/2�} = {l1, l2} such that {l2, l1− l2, l1−2l2}, {l1, l1+ l2, 2l1+ l2},
{0,−l1, l1+ l2, l1, l1− l2, l2}, {l1− l2, l1, 0, l2, 2l2} and {−l1, 0, l1, l1+ l2, 2l1+ l2} are all sets (i.e., all have
different elements).Then there exists (H, {P5}, 4;K2)-GD.
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Proof. Define Ω= {G0,G1} as

ψi(G0)=
⎧⎨
⎩
{0,−l1, l1+ l2} if i= l1,
{l1} if i= l2,
∅ otherwise.

ψi(G1)=
⎧⎨
⎩
{0} if i= l1
{0, l2, l1− l2} if i= l2,
∅ otherwise.

Since {l1 − l2, l1, 0, l2, 2l2} and {−l1, 0, l1, l1 + l2, 2l1 + l2} are sets then all graphs in Ω are
isomorphic to P5 and

rdΩ-matrix=
[{l2, l1− l2, l1− 2l2} {0,−l1, l1+ l2, l1, l1− l2, l2}
{0,−l1, l1+ l2, l1, l1− l2, l2} {l1, l1+ l2, 2l1+ l2}

]

Since every cell of the rdΩ-matrix is a set satisfying Lemma 6.3, then Ω is a (H, {P5}, 4;K2)-
GD generator. For illustration, at n= 7 take l1 = 1 and l2 = 3.

Table 3: New graph designs

H B λ F H B λ F

K6t,6t {C6} 2 K2 K5t,5t {P6,P4 ∪ 2K2} 3 K2
K10t,10t {C10} 2 K2 K6t,6t {C6,P5 ∪ 2P2} 3 K2
K8t,8t {C4} 3 K2 K6t,6t {C6,G} 3 K2
K6t,6t {P7} 3 K2 K8t,8t {C6} 3 K2
K6t,6t {C4 ∪S2} 3 K2 Kn,n {P4} 3 K2
K6t,6t {C6,P4∪P3 ∪P2} 3 K2 K5t,5t {C4∪K2,G} 3 K2
K6t,6t {C6,P5∪ 2P2} 3 K2 K5t,5t {P6} 3 K2
K8t,8t {C6} 3 K2 K5t,5t {P6,P4 ∪ 2K2} 3 K2
Kn,n {P4} 3 K2 K5t,5t {P4 ∪P3,P5∪K2} 3 K2
K5t,5t {P6} 3 K2 K5t,5t {P4 ∪K2} 3 K2
K5t,5t {P6,P4 ∪ 2K2} 3 K2 H {P4} 3 K2
H {P5} 4 K2 H {P5} 3 K2

7 Conclusion

In this paper, we have studied the group generated graph designs. A new representation of
graphs has been proposed that help in constructing new graph designs (H, B,λ; F)-GD that can be
summerized in Tab. 3. Where H is certain circulant graph. In addition, an efficient coding method
has been proposed using the constructed graph designs which may open a new door to produce
more research in this area. Finally, we can state that the constructed GD’s can be efficiently used
to generate a code set.
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[4] D. Fronček and A. Rosa, “Symmetric graph designs on friendship graphs,” Journal of Combinatorial

Designs, vol. 8, pp. 201–206, 2000.
[5] M. Higazy and R. Scapellato, “Orthogonal double covers of complete bipartite graphs by paths and

cycles,” Advances and Applications in Discrete Mathematics, vol. 15, no. 1, pp. 9–20, 2015.
[6] M. Higazy, “Suborthogonal double covers of the complete bipartite graphs by all bipartite sub-

graphs with five edges over finite fields,” Far East Journal of Applied Mathematics, vol. 91, no. 1,
pp. 63–80, 2015.

[7] R. El-Shanawany, “Orthogonal double covers of complete bipartite graphs,” Ph.D. dissertation, Uni-
versity of Rostock, Germany, 2002.

[8] S. Hartmann, “A symptotic results on suborthogonal G-decompositions of complete digraphs,” Discrete
Applied Mathematics, vol. 95, pp. 311–320, 1999.

[9] S. Hartmann and U. Shumacher, “Suborthogonal double covers of complete graphs,” Congressus
Numerantium, vol. 147, pp. 33–40, 2000.

[10] U. Shumacher, “Suborthogonal double covers of complete graphs by stars,” Discrete Applied Mathe-
matics, vol. 95, no. 1–3, pp. 439–444, 1999.

[11] R. Scapellato, R. El Shanawany and M. Higazy, “Orthogonal double covers of Cayley graphs,” Discrete
Applied Mathematics, vol. 157, no. 14, pp. 3111–3118, 2009.

[12] R. Sampathkumar and S. Srinivasan, “Cyclic orthogonal double covers of 4-regular circulant graphs,”
Discrete Mathematics, vol. 311, no. 21, pp. 2417–2422, 2011.

[13] R. El-Shanawany, H. D. O. F. Gronau and M. Grüttmüller, “Orthogonal double covers of Kn,n by
small graphs,” Discrete Applied Mathematics, vol. 138, pp. 47–63, 2004.

[14] R. El-Shanawany and M. Higazy, “Orthogonal double covers of complete graphs by certain spanning
subgraphs,” Australasian Journal of Combinatorics, vol. 42, pp. 223–228, 2008.

[15] R. A. El-Shanawany, M. Higazy and R. Scapellato, “Orthogonal double covers of complete bipartite
graphs by the union of a cycle and a star,” Australasian Journal of Combinatorics, vol. 43, pp. 281–
293, 2009.

[16] R. Sampathkumar and S. Srinivasan, “Mutually orthogonal graph squares,” Journal of Combinatorial
Designs, vol. 17, no. 5, pp. 369–373, 2009.

[17] R. El-Shanawany and A. El-Mesady, “On cyclic orthogonal double covers of circulant graphs by
special infinite graphs,” AKCE International Journal of Graphs and Combinatorics, vol. 14, no. 3,
pp. 269–276, 2017.

[18] R. El-Shanawany, “On mutually orthogonal disjoint copies of graph squares,” Note di Matematica,
vol. 36, no. 2, pp. 89–98, 2016.

[19] R. El-Shanawany, “On mutually orthogonal graph-path squares,” Open Journal of Discrete Mathematics,
vol. 6, no. 1, pp. 7–12, 2016.

[20] H. D. O. F. Gronau, S. Hartmann, M. Grüttmüller, U. Leck and V. Leck, “On orthogonal double
covers of graphs,” Designs Codes and Cryptography, vol. 27, no. 1/2, pp. 49–91, 2002.



3418 CMC, 2021, vol.67, no.3

[21] J. Lauri and R. Scapellato, Topics in Graph Automorphisms and Reconstruction. London Mathematical
Society S.T. 54, London: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9781316669846.

[22] A. Boua, L. Oukhtite, A. Raji and O. A. Zemzami, “An algorithm to construct error correcting codes
from planar near-rings,” International Journal of Mathematical Engineering and Science, vol. 3, no. 1,
pp. 14–23, 2014.

[23] S. Joon and M. Hwang, “Application of balanced incomplete block designs in error detection and
correction,” 2016. [Online]. Available: https://www.researchgate.net/publication/319621339.

[24] H. D. O. F. Gronau, S. Hartman, M. Grüttmüller, U. Leck and V. Leck, “On orthogonal double covers
of graphs,” Designs Codes and Cryptography, vol. 27, no. 1/2, pp. 49–91, 2002.

[25] R. Merris, “Codes and designs,” in Combinatorics. 2nd ed., Hoboken, NJ: John Wiley, vol. 464, 2003.
[26] K. H. Rosen, “Coding theory, AT&T laboratories: 7,” Accessed 14 October 2015.
[27] R. Lidl and G. Pilz, “Further applications of fields and groups,” in Applied Abstract Algebra. 1st ed.,

New York: Springer-Verlag, vol. 256, 1984.
[28] Q. Wu, “Computer image processing and neural network technology for boiler thermal energy

diagnosis,” Thermal Science, vol. 24, no. 5, pp. 3059–3068, 2020.
[29] J. Zhang, “Computer image processing and neural network technology for thermal energy diagnosis of

boiler plants,” Thermal Science, vol. 24, no. 5, pp. 3221–3228, 2020.
[30] G. Yu, J. Sang and Y. Sun, “Thermal energy diagnosis of boiler plant by computer image processing

and neural network technology,” Thermal Science, vol. 24, no. 5, pp. 3367–3374, 2020.

https://doi.org/10.1017/CBO9781316669846
https://www.researchgate.net/publication/319621339

