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Abstract: This paper presents a novel scheme for joint frequency and direction
of arrival (DOA) estimation, that pairs frequencies and DOAs automatically
without additional computations. First, when the property of the Kronecker
product is used in the received array signal of the multiple-delay output
model, the frequency-angle steering vector can be reconstructed as the product
of the frequency steering vector and the angle steering vector. The frequency
of the incoming signal is then obtained by searching for the minimal eigenvalue
among the smallest eigenvalues that depend on the frequency parameters but
are irrelevant to the DOAs. Subsequently, the DOA related to the selected
frequency is acquired through some operations on the minimal eigenvector
according to the Rayleigh–Ritz theorem, which realizes the natural pairing
of frequencies and DOAs. Furthermore, the proposed method can not only
distinguish multiple sources, but also effectively deal with other arrays. The
effectiveness and superiority of the proposed algorithm are further analyzed
by simulations.

Keywords: Array signal processing; DOA estimation; automatic pairing;
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1 Introduction

Frequency estimation and DOA estimation for an antenna array are the basic but key prob-
lems in the area of array signal processing [1–3], e.g., in the applications of direction �nding,
radar, sonar, wireless communications, and especially location service [4,5] under the scenario of
multiple incoming signals with different frequencies. The maximum likelihood (ML) method [6] is
often applied but brings a great computational load. To reduce the computational effort required,
the multiple signal classi�cation (MUSIC) algorithm [7], some ESPRIT-based joint angle and
frequency estimation methods [8,9] and the propagator method (PM) [10] have been proposed.
However, the MUSIC method [7] requires spectral peak searching in both the frequency range
and angle range, and this is still computationally expensive, particularly for 2-dimensional arrays.
The PM [10] has low complexity, but its parameter estimation performance is poorer than that
of the ESPRIT algorithm. Unfortunately, ESPRIT is only applicable to a uniform linear array.

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.015969


3908 CMC, 2021, vol.67, no.3

In [11], the iterative least-squares method was used for joint frequency and DOA estimation with
L-shaped arrays, and many iterations were needed for convergence.

Using multiple-delay outputs, the authors in [12] proposed a joint angle and frequency estima-
tion method based on ESPRIT; this approach outperforms the conventional ESPRIT algorithm,
but it not only requires additional pairing operations [13] but is also only suitable for uniform
linear arrays. In addition, the angle estimation procedure only utilizes part of the received signals.
The ESES method proposed in a recent study [14] has the same procedure for estimating frequency
as the method in [12], but unlike in [12], all of the received signals are used to estimate the angle
in [14]; thus, the performance is better than the method developed in [12]. The ESES approach [14]
can also be employed for other array structures. However, the ESES method in [14] carelessly
neglects that the eigenvalues of two matrices from the different permutations of one matrix may
not be in the same order, so the frequencies and angles obtained from the eigenvalues require
some additional computations for pairing those parameters (as in [13]), and the process cannot
always arrive at the correct pairings under some conditions.

To pair the frequency and angle estimations automatically and avoid potential pairing mis-
takes, relative to the multiple-delay output model used in [12,14], this paper is an improvement
and presents a novel joint frequency and angle estimation algorithm without additional pair-
ings owing to the Rayleigh–Ritz theorem [15, Section 4.2]. Frequencies can be calculated by a
one-dimensional search, and angles can be obtained as closed-form solutions. Furthermore, the
proposed algorithm can work with other arrays, such as nonuniform linear arrays. Hence, a uni�ed
framework for joint frequency and angle estimations is established by the proposed algorithm. In
addition, the proposed method has better estimation performance than that of the ESES method
in [14] and has acceptable computational complexity, which is con�rmed by simulation results.

An outline of this paper is as follows. Section 2 describes the data model. Section 3 addresses
the algorithmic issues encountered with some remarks. Section 4 shows the simulation results,
which are followed by conclusions in Section 5.

Notations: (·)T , (·)H , and (·)† denote the transpose, conjugate transpose and pseudoinverse
operations, respectively; diag(v) stands for a diagonal matrix whose ith diagonal element is the ith
entry in vector v; IM is an M×M identity matrix; ⊗ represents the Kronecker product; Rank (·)
is the rank of the chosen matrix; angle (·) returns the phase angle of the chosen element; and
argmax and argmin stand for the maximum and minimum arguments, respectively.

2 Data Model

Consider an arbitrary array of M sensors on which K (assuming K is known in this study)
incident waves impinge; if the sources are all narrow-band signals without the same center
frequency, the signal received at the mth antenna can be expressed as

xm (t)=
K∑
k=1

e j2π fkτm,ksk (t)+ nm (t)

m= 1, 2, . . . , M, k= 1, 2, . . . , K,

(1)

where fk, sk (t) are the frequency and narrow-band signal of the kth source, respectively. nm (t)
represents spatially and temporally additive Gaussian white noise with zero mean. τm,k is the time
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delay of the mth sensor; therefore, it depends on the structure of the array and the kth incoming
angle of the received signal. Thus, τm,k of the uniform linear array can be denoted by

τm,k =
(m− 1)d

c
cos θk, m= 1, 2, . . . , M, k= 1, 2, . . . , K, (2)

where d is the distance between the adjoining sensors, c is the velocity of light, and θk is the
incoming angle of the kth source. The output of the array is

X0 = [x1(t), x2(t), . . . , xM(t)]T . (3)

The received signal of array antennas can be shown in matrix form as

X0 =AS+N0, (4)

where

S= [s1, s1, . . . , sK ]T ∈CK×N ,

N0 = [n1, n1, . . . , nM ]T ∈CM×N ,

A= [a1, a2, . . . , aK ]

=



ej2π fkτ1, 1 ej2π fkτ1, 2 . . . ej2π fkτ1,K

ej2π fkτ2, 1 ej2π fkτ2, 2 . . . ej2π fkτ2,K

...
...

. . .
...

ej2π fkτM, 1 ej2π fkτM, 2 · · · ej2π fkτM,K


The angle steering vector is

ak (θ)=
[
e2π fkτ1,k , e2π fkτ2,k , . . . , e2π fkτM,k

]T
,

and the delayed signal for (1) with δ can be written as

xm (t− δ)=
K∑
k=1

ej2π fkτm,ksk (t− δ)+ n
′
m (t)

=

K∑
k=1

ej2π fkτm,ksk (t) e
−j2π fkδ + n′m (t) , (5)

m= 1, 2, . . . , M.

Afterwards, the delayed signal for (5) with δ can be denoted as

X1 =AϒS+N1, (6)

where ϒ = diag [ω1, ω2, . . . , ωK ], ωK = e−j2π fkδ, k= 1, 2, . . . , K.
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Therefore, the delayed signal for (1) with pδ can be expressed as

Xp =AϒpS+Np, p= 0, 1, 2, . . . , P− 1, (7)

where P is the number of delays.

According to (4), (6) and (7), the multiple-delay output model [12,14] can be described as

X=


X0

X1

...

XP−1

=

A

Aϒ

...

Aϒp−1

S+

N0

N1

...

NP−1



=


a1 a2 · · · aK

ω1a1 ω1a1 · · · ωKaK
...

...
. . .

...

ωP−1
1 a1 ωP−1

2 a2 · · · ωP−1
K aK

S+

N0

N1

...

NP−1

 .

(8)

De�ne the frequency steering vector βk (f ) =
[
1, ωk, ω2

k, ω3
k, . . . , ωP−1

k

]T
, k = 1, 2, . . . , K.

Then, (8) can be reconstructed as

X = [β1 (f )⊗ a1 (θ) β2 (f )⊗ a2 (θ) · · · βK (f )⊗ aK (θ)]S+N, (9)

where β (f )⊗ a (θ) is the frequency-angle steering vector.

3 Joint Frequency and Angle Estimation

From (9), we know that the frequency fk and angle θk can be estimated by attaining βk and
ak from the received array signal. The covariance matrix of the received signal can be calculated
via Rxx =XXH . Using the eigenvalue decomposition of Rxx, we can obtain En, which is the noise
space spanned by the (MP−K) eigenvectors corresponding to the minimal (MP−K) eigenvalues
of the covariance matrix Rxx. Hence, the frequency fk and angle θk can be obtained by the
MUSIC algorithm [1,7] as

(fk, θk)= arg max
(f , θ)

S (f , θ)

= arg max
(f , θ)

1

(β (f )⊗ a (θ))H EnEHn (β (f )⊗ a (θ))
, (10)

k= 1, 2, . . . , K.

However, to obtain all source parameters (fk, θk) from (10), an exhaustive search in the
two-dimensional space is generally required, thereby resulting in a heavy computational burden.
Here, by the property of the Kronecker product, a novel implementation of the two-dimensional
parameter estimation process without the exhaustive two-dimensional search is developed based
on the Rayleigh–Ritz theorem [15, Section 4.5].
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3.1 Method 1: EVEV
By the property of the Kronecker product, the frequency-angle steering vector can be

reformulated in the following form

β (f )⊗ a (θ)= β (f )⊗ IMa (θ) . (11)

From (11), it is obvious that the frequency-angle steering vector is decomposed into the
product of one matrix (β (f )⊗ IM) that is only related to the frequency steering vector and the
other matrix (a (θ)) that is only concerned with the angle steering vector; this product lays a
foundation for estimating fk and θk separately and enables us to avoid a two-dimensional search.

Inserting (11) into (10), we can obtain

(fk, θk)= arg max
(f , θ)

1

a (θ)H (β (f )⊗ IM)H EnEHn (β (f )⊗ IM)a (θ)
, k= 1, 2, . . . , K (12)

De�ne

T (f )= (β (f )⊗ IM)H EnEHn (β (f )⊗ IM) , (13)

where T (f ) is an M×M Hermitian matrix dependent on f and independent of θ . Thus, (12) can
be rewritten as

(fk, θk)= arg max
(f , θ)

1

a (θ)H T (f )a (θ)

= arg min
(f , θ)

a (θ)H T (f )a (θ)
(14)

Since T (f ) is a Hermitian matrix, the Rayleigh quotient of T (f ) is a scalar that can be
de�ned as

Q (f , θ)=
a (θ)H T (f )a (θ)

a (θ)H a (θ)
(15)

Notice that a (θ) 6= 0 and a (θ)H a (θ) ≡ M; thus, (14) can be converted into a Rayleigh
quotient problem:

(fk, θk)= arg max
(f , θ)

1

a (θ)H T (f )a (θ)

= arg min
(f , θ)

a (θ)H T (f )a (θ) (16)

= arg min
(f , θ)

Q (f , θ)= arg min
(f , θ)

a (θ)H T (f )a (θ)

a (θ)H a (θ)

If f does not correspond to one of the true values, and if

Rank=
(
EnEHn

)
=MP−K ≥M⇔K ≤M (P− 1) , (17)
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then, T (f ) is invertible, and its eigenvalues are all greater than zero. According to the Rayleigh–
Ritz theorem in [15], the minimum value of the objective in (16) is the minimum eigenvalue of
T (f ), and in this case, a (θ) should be proportional to the minimum eigenvector of T (f ); thus,
the frequency fk satis�es

fk = arg min
f

ρmin (T (f )) , k= 1, 2, . . . , K, (18)

and θk has the following relationship with T (fk):

a (θk)= hemin (T (fk)) , k= 1, 2, . . . , K, (19)

where ρmin (T (f )) is the minimal eigenvalue of the matrix T (f ), emin (T (fk)) is the eigenvector
corresponding to the minimal eigenvalue of the matrix T (fk), and h is a constant. There are
many fast algorithms, such as [16], for �nding the minimal eigenvalue and eigenvector of a
Hermitian matrix.

To solve for θk from (19), let ξm (fk) denote the kth phase angle of the mth element
of the eigenvector emin (T (fk)), that is, ξm (fk) = angle

(
emin,m (T (fk))

)
(ξm (fk) ∈ (−π , π ]), where

emin,m (T (fk)) is the mth element of emin (T (fk)). Then, it follows that

2π fk
(
τq+1, k− τq,k

)
= ξq+1 (fk)− ξq (fk)+ 2kqπ ,

kq ∈ {0, ±1, ±2, . . .} , q= 1, 2, . . . , M − 1,
(20)

in which
(
ξq+1 (fk)− ξq (fk)

)
∈ (−π , π ] .

For an unambiguous uniform linear array, the interspacing between two adjacent elements
d is not greater than λ/2 (λ is the wavelength of the signal), so −π < 2π fk

(
τq+1, k− τq,k

)
≤ π and

kq = 0. Afterwards, recall the fk obtained by (18), and the accurate value of θk can be estimated
by solving the equation set of (20) using the least-squares method.

It should be pointed out that θk is obtained by inserting fk into (19) and solving the equation
set of (20); thus, it is inferred that fk and θk are paired naturally.

The proposed method can also address the case in which multiple signals have the same
frequency but different DOAs by distinguishing the number of minimal eigenvalues with respect
to fk in (18) and their corresponding eigenvectors in (19).

Because the frequency is obtained via an eigenvalue and the angle is obtained via an
eigenvector, this method is named the EVEV algorithm.

3.2 Method 1: ESEV
It is worth noting that to obtain the frequency fk from (18), a one-dimensional search in the

frequency space is required. If the true frequency lies in a set with few values, there is little com-
putational expense. In contrast, if the estimated frequency depends on a wide range of frequencies,
this may lead to a great computational load. To pursue a more convenient implementation of
joint frequency and angle estimation than the EVEV algorithm, the DOA θk can be found from
(20) subsequent to the frequency fk estimated by the ESPRIT algorithm, as in [12,14].

By the eigenvalue decomposition of Rxx, the signal subspace Es is spanned by the K eigen-
vectors corresponding to the �rst K maximal eigenvalues. Then, we divide Es into E1 (the �rst
M (P− 1) rows of Es) and E2 (the last M (P− 1) rows of Es). De�ne

ΨK×K =E
†
1E2 (21)
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Then we can obtain the eigenvalues ρk (k= 1, 2, . . . , K) of the matrix Ψ. Finally, the
frequency fk is estimated by (see [12,14] for more information)

fk =
1

2πδ
angle (ρk) k= 1, 2, . . . , K (22)

Subsequently, based on the Rayleigh–Ritz theorem, T (f ) is constructed with (13), and then
the DOA is obtained by substituting the fk obtained from (22) into (20), as in the previous
subsection. This method, which is named the ESEV algorithm, is a combination of the ESES
method in [14] and the EVEV method proposed in this study, and it provides joint frequency and
angle estimations in closed-form solutions.

3.3 Complexity Analysis
In this section, we analyze the computational complexities of the EVEV and ESEV

algorithms and compare them with that of the ESES method [14]. For the EVEV algo-
rithm, obtaining the covariance matrix estimation Rxx requires O

(
LM2P2

)
�ops, obtaining En

through the eigendecomposition of Rxx costs O
(
M3P3

)
�ops, and the estimation of T (f ) and

obtaining the minimal eigenvalue of T (f ) and its eigenvector via several iterative methods
requires O

(
M2P2 (MP−K)+ 2r

(
M2P2

+M2
))

�ops. Thus, the total computational complexity

of the EVEV algorithm is O{LM2P2
+M3P3

+M2P2 (MP−K)+ r
(
2M2P2

+M2
)
} �ops, where

r is the number of search grids within the search frequency region. To pair the frequency
and DOA, the ESES method needs O

(
2K3
+K2

)
�ops. Hence, the ESES algorithm requi-

res O
{
LM2P2

+M3P3
+
[
2K2M (P− 1)+ 2K3

+K3
]
+
[
2K2 (M − 1)P+ 2K3

+ 2K3
]
+
(
2K3
+K2

)}
�ops in total. Therefore, the proposed ESEV algorithm needs O{LM2P2

+M3P3
+ [2K2M (P− 1)+

2K3
+K3]+M2P2 (MP−K)+K

(
2M2P2

+M2
)
} �ops.

It can be concluded that the EVEV method has the largest computational complexity among
these three methods if the number of search grids r is large. Furthermore, both the ESEV and
ESES methods provide frequency and DOA estimations in closed-form solutions, as mentioned
previously, so their computational complexities with respect to r are irrelevant. In addition, the
ESEV method has almost the same computational complexity as that of the ESES method.

3.4 Remarks
From these aforementioned derivations, some remarks can be made:

Remark 1: From (17), the number of resolvable sources satis�es K ≤M (P− 1); however, (18)
indicates that K must not be greater than the dimension of the matrix T (f ), that is, K ≤M.
In general, the number of delays satis�es P ≥ 2, so the maximum number of resolvable sources
satis�es K ≤ M for the EVEV method. The ESES method only estimates the frequency and
DOA if K ≤M; therefore, the maximum numbers of resolvable sources for the ESES and ESEV
methods also satisfy K ≤M. The abilities of these three methods to resolve multiple sources, based
on the multiple-delay output model, exceed those of conventional algorithms [6–11], which can
resolve at most (M − 1) sources.

Remark 2: Both the EVEV algorithm and ESEV algorithm can achieve the automatic pairing
of the estimation parameters. The angle θk is obtained by inserting fk into (19); thus, the frequency
fk and direction of arrival θk can be paired naturally with both the EVEV and ESEV methods.
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Remark 3: Both the EVEV algorithm and ESEV algorithm can be applied to arbitrary arrays.
Obtaining the frequency from (18) or (22) is irrelevant to the array geometry, and angle estimation
can be realized from (20) based on prior information about the array structure. Therefore, the two
proposed methods have no dependencies on the array con�gurations and can be used with any
array, for example, a nonuniform linear array.

Remark 4: From the delay segment ej2π fkδ in (5), it is easy to see that the delay time must
satisfy 0< δ < 1/max (fk) to avoid ambiguity in the estimation of the frequency fk; this is a milder
requirement for δ than 0< (P− 1) δ < 1/max (fk) in [12].

Remark 5: The EVEV, ESEV and ESES methods can all deal with the case in which two or
more signals have the same frequency but are from different incoming DOAs. In contrast, none
of these methods can work effectively in a coherent source environment.

4 Numerical Results

The performances of the proposed methods are evaluated with some Monte Carlo simulations.
In the following experiments, assume that M is the number of antennas, P is the number of
delays, L is the number of snapshots, and K is the number of sources. The distance between
two adjacent elements in the uniform linear array is half of the wavelength of the maximum
estimated frequency, and the other parameters are M = 10, P = 3, L= 200, signal-to-noise ratio
SNR = 20 dB, sampling frequency fs = 2000000 HZ and delay time δ = 1/ (fs/2). The following
results are evaluated by the estimated root mean square errors (RMSEs) obtained from the
average results of 2000 Monte Carlo simulations. Frequency RMSE stands for the RMSE of the
estimated frequencies, and DOARMSE stands for the RMSE of the estimated DOAs. If there is
no additional instruction, these parameters all hold in the simulations. In addition, we compare
EVEV and ESEV with ESES [14], which has the same data model as the one in this study.

Simulation 1. The performance of ESES is investigated. Tab. 1 indicates the results of the
ESES, EVEV and ESEV methods when the angles are 20◦, 50◦ and 80◦, and their carrier
frequencies are 200000, 400000 and 800000 HZ, respectively. From Tab. 1, it is easy to see that the
ESES method has estimation ambiguity with respect to the angles, and there are two DOAs for
200000HZ and three DOAs each for 400000 and 800000 HZ. For example, there are three DOAs
69.7◦, 61.9◦ and 50.0◦ corresponding to the frequency 400000 HZ, so additional computations [13]
are needed for determining the true frequency and angle pair. In contrast, neither the EVEV nor
the ESEV method requires additional pairing computations.

Table 1: DOA estimation of ESES, EVEV and ESEV

Frequency (Hz) ESES EVEV ESEV

Angle 1 Angle2 Angle 3 Angle Angle

200,000 46.0 20.0 – 20.0 20.0
400,000 69.7 61.9 50.0 50.0 50.0
800,000 80.0 76.4 71.3 80.0 80.0

Simulation 2. The performances of the proposed algorithms (EVEV and ESEV) are examined.
Figs. 1 and 2 display the outcomes of the EVEV method and ESEV method when the angles
of the 10 incoming signals are 20◦, 40◦, and 60◦ with the same frequency of 200000 HZ; 15◦,
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30◦, 40◦, and 50◦ with the same frequency of 400000 HZ; and 40◦, 60◦ and 80◦ with the same
frequency of 800000 HZ. From Figs. 1 and 2, we �nd that the EVEV and ESEV methods can
not only obtain the frequency and angle estimations correctly without pairing ambiguity but can
also resolve K = 10 (K =M) sources. However, the ESES method cannot handle this case.

Figure 1: Frequency and DOA estimation performance of EVEV

Figure 2: Frequency and DOA estimation performance of ESEV

Simulation 3. The performances of ESES, ESEV and EVEV under different SNRs and dif-
ferent numbers of snapshots are studied in this simulation. All the simulation conditions are the
same as those in Simulation 1 except for the following descriptions. The number of snapshots for
each experiment is set to 200, and the SNR is changed from 0 to 30 dB for the three sources.
Figs. 3 and 4 show the simulation results of the frequency and DOA parameters when the SNR
changes, respectively. Then, the SNR is �xed to 20 dB, and the number of snapshots is varied
from 100 to 800. In this case, the simulation results of the frequency and DOA parameters are
illustrated in Figs. 5 and 6, respectively.

From Figs. 3–6, it can be observed that all three methods are effective for joint frequency
and angle estimation. In addition, when the SNR or the number of snapshots increases, the
RMSEs of both the frequency and angle estimations decrease. Figs. 3 and 5 illustrate that the
frequency estimation performance of the EVEV method is better than that of the ESES method.
Additionally, it can be seen from Figs. 4 and 6 that the angle estimation performance of the
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ESEV method is slightly better than that of the ESES method. In addition, note that the ESEV
method has the same frequency estimation result as that of the ESES method and the same angle
estimation result as that of the EVEV method. Therefore, from Figs. 4 and 6, it is inferred that
the angle estimation performance of the EVEV method is better than that of the ESES method.

Figure 3: The RMSEs of the frequency estimations vs. the SNR

Figure 4: The RMSEs of the DOA estimations vs. the SNR

Figure 5: The RMSEs of the frequency estimations vs. the number of snapshots
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Figure 6: The RMSEs of the DOA estimations vs. the number of snapshots

Simulation 4. The computational complexities of these three methods are compared in this
subsection. Suppose M = 10, P = 3 and K = 3, as in Simulations 1 and 3. For simplicity of
comparison with other methods, the number of search grids r= 20 for the EVEV method. When
the number of snapshots is varied from L = 100 to L = 2000, Fig. 7 shows the computational
complexities of the three methods. The EVEV algorithm has the largest computational complexity
under this condition. In fact, the computational burden of EVEV becomes heavier as r increases.
It can also be seen from Fig. 7 that the ESEV algorithm has almost the same computational com-
plexity as that of the ESES method. In summary, these results coincide with the aforementioned
theoretical analysis.

Figure 7: Computational complexity of ESES, ESEV and EVEV

Simulation 5. The effectiveness of ESES, ESEV and EVEV in handling a nonuniform linear
array is studied. Assume that eight sensors are located at positions [00.81.72.83.44.55.16.5] and
normalized by half of the wavelength. The three sources are from 80◦, 50◦ and 20◦ with different
frequencies for different methods. From Fig. 8, it is veri�ed that all three methods can work well
with the nonuniform linear array.
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Figure 8: Frequency and DOA estimation for a nonuniform linear array

5 Conclusion

This paper has considered the problem of joint frequency and DOA estimation in array
signal processing. By applying the Rayleigh–Ritz theorem to the multiple-delay output model, the
proposed methods can achieve automatically paired frequency and DOA estimations without an
exhaustive two-dimensional search. The investigations, which were demonstrated in theory and
through the use of extensive simulations, have shown that the proposed methods have better
estimation performances than those of the ESES and ESEV methods, making a good compromise
between estimation accuracy and computational complexity compared with EVEV and ESES.
Furthermore, the proposed two methods can always resolve no fewer sources than can ESES. In
addition, these methods can also be used for other arrays, including but not limited to nonuniform
linear arrays. Future research might be expected to extend the applications of these methods to
situations in the presence of multiple coherent sources, array gain-phase errors or mutual coupling
effects among the examined sensors.
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