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Abstract: The inverse problem of reconstructing the time-dependent thermal
conductivity and free boundary coef�cients along with the temperature in
a two-dimensional parabolic equation with initial and boundary conditions
and additional measurements is, for the �rst time, numerically investigated.
This inverse problem appears extensively in the modelling of various phe-
nomena in engineering and physics. For instance, steel annealing, vacuum-arc
welding, fusion welding, continuous casting, metallurgy, aircraft, oil and gas
production during drilling and operation of wells. From literature we already
know that this inverse problem has a unique solution. However, the problem
is still ill-posed by being unstable to noise in the input data. For the numerical
realization, we apply the alternating direction explicit method along with the
Tikhonov regularization to �nd a stable and accurate numerical solution of
�nite differences. The root mean square error (rmse) values for various noise
levels p for both smooth and non-smooth continuous time-dependent coef�-
cients Examples are compared. The resulting nonlinear minimization problem
is solved numerically using the MATLAB subroutine lsqnonlin. Both exact
and numerically simulated noisy input data are inverted. Numerical results
presented for two examples show the ef�ciency of the computational method
and the accuracy and stability of the numerical solution even in the presence
of noise in the input data.

Keywords: Inverse identi�cation problem; two-dimensional parabolic
equation; free boundary; Tikhonov regularization; nonlinear optimization

1 Introduction

Free boundary problems for the parabolic partial differential equations have signi�cant appli-
cations in various �elds of engineering, physics, chemistry, see [1–5] to mention only a few.
A Stefan problem is a moving boundary value problem that concerns the distribution of heat
in a period of transforming medium. The authors of [6] considered two fairly different free
boundary problems of nonlinear diffusion. Chen et al. [7] recast the formulation of various
shock diffraction/re�ection problems as a free boundary problem. Shidfar et al. [8] studied the
inverse moving boundary problem using the least-squares method. In [9], the authors investigated
the numerical solution of inverse Stefan problems using the method of fundamental solutions.
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Recently, the authors of [10] numerically solved the inverse heat problems of determining the
time-dependent coef�cients with free boundaries.

There is also an analysis of a one-dimensional inverse problem of reconstructing the timewise
heat source with a moving boundary [11]. The authors in [12] estimated free boundary coming
from two new scenarios, aggregation processes and nonlocal diffusion. Snitko [13,14], theoretically,
and Huntul [15], numerically, investigated the inverse problem of determining the time-dependent
reaction coef�cient in a two-dimensional parabolic problem with a free boundary.

The challenge associated with free boundary problems arises from the �nding that the solu-
tion domain is unknown. Only a few studies focus on the time-dependent free boundary in
higher dimensions [16–19]. These papers are theoretical and very important because they present
conditions for the unique solvability of the unknown coef�cients.

This work examines the inverse problem to recover the time-dependent thermal conductivity
coef�cient and free boundaries from the heat �ux and the nonlocal integral observations as over-
speci�cation conditions. The inverse problem presented in this paper has already been showed
to be locally uniquely solvable by Barans’ka et al. [20], but no numerical determination has
been realised so far, therefore, the main goal of this work is to attempt numerical solution of
this problem.

The arrangement of this paper is systematized as follows. Section 2 describes the formulations
of the inverse problem. The solution of the direct problem using the alternating direction explicit
(ADE) method is presented in Section 3. The ADE direct solver is coupled with the Tikhonov reg-
ularization method in Section 4. In Section 5, computational results and discussions are presented.
Finally, Section 6 highlights the conclusions.

2 Formulation of the Inverse Problem

Consider the inverse problem of reconstructing time-dependent thermal conductivity coef-
�cient a(t) > 0, and the free boundaries l(t) > 0 and h(t) > 0 in the two-dimensional
parabolic equation

ut(x1, x2, t)= a(t)(ux1x1 + ux2x2)+ f (x1, x2, t), (x1, x2, t) ∈�T , (1)

where f (x1, x2, t) is a known heat source, u= u(x1, x2, t) is the unknown temperature in the mov-
ing domain �T := {(x1, x2, t) | 0< x1 < l(t), 0< x2 < h(t), 0< t<T <∞}, with the initial condition

u(x1, x2, 0)= ϕ(x1, x2), (x1, x2) ∈ [0, l0]× [0, h0], (2)

where l0 = l(0) and h0 = h(0) are given positive numbers, the Dirichlet boundary conditions

u (0, x2, t)=µ1 (x2, t) , u (l (t) , x2, t)=µ2 (x2, t) , x2 ∈ [0, h (t)] , t ∈ [0, T ] , (3)

u (x1, 0, t)=µ3 (x1, t) , u (x1, h (t) , t)=µ4 (x1, t) , x1 ∈ [0, l(t)], t ∈ [0, T ], (4)

and the over-speci�cation conditions

a(t)ux1(0, Y0, t)=µ5(t), t ∈ [0, T ], (5)

where Y0 is belong to the interval Y0 ∈ (0, h(t)),∫ l(t)

0

∫ h(t)

0
u(x1, x2, t)dx2dx1 =µ6(t), t ∈ [0, T ], (6)
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∫ l(t)

0

∫ h(t)

0
x2u(x1, x2, t)dx2dx1 =µ7(t), t ∈ [0, T ], (7)

where ϕ and µi for i = 1, 7 are given functions. The function µ5(t) in Eq. (5) represents
heat �ux boundary condition. The function µ6(t) in Eq. (6) corresponds to the speci�cation
of mass/energy, [21,22], whilst the function µ7(t) in Eq. (7) represents the �rst-order moment
speci�cation, [23].

Introducing the new variables y1 = x1/l(t) and y2 = x2/h(t), see [20], we recast the problem
given by Eqs. (1) to (7) into the problem given below for the unknowns l(t), h(t), a(t) and
v(y1, y2, t) := u(y1l(t), y2h(t), t), namely,

vt (y1, y2, t)= a (t)
(

1
l2 (t)

vy1y1 +
1

h2 (t)
vy2y2

)
+

y1l′ (t)
l (t)

vy1 +
y2h′ (t)

h (t)
vy2

+ f (y1l(t), y2h(t), t), (y1, y2, t) ∈QT , (8)

in the �xed domain QT = {(y1, y2, t) | 0< y1 < 1, 0< y2 < 1, 0< t<T},

v(y1, y2, 0)= ϕ(y1l0, y2h0), (y1, y2) ∈ [0, 1]× [0, 1], (9)

v(0, y2, t)=µ1(y2h(t), t), v(1, y2, t)=µ2(y2h(t), t), y2 ∈ [0, 1], t ∈ [0, T ], (10)

v(y1, 0, t)=µ3(y1l(t), t), v(y1, 1, t)=µ4(y1l(t), t), y1 ∈ [0, 1], t ∈ [0, T ], (11)

a(t)
l(t)

vy1(0, Y0h−1(t), t)=µ5(t), t ∈ [0, T ], (12)

l(t)h(t)
∫ 1

0

∫ 1

0
v(y1, y2, t)dy2dy1 =µ6(t), t ∈ [0, T ], (13)

l(t)h2(t)
∫ 1

0

∫ 1

0
y2v(y1, y2, t)dy2dy1 =µ7(t), t ∈ [0, T ]. (14)

The existence and uniqueness of solution of the inverse problem Eqs. (8) to (14) has been
established in [20] and read as follows.

Theorem 1 Suppose that the following assumptions are satis�ed:

(A1) ϕ ∈C([0,∞)× [0,∞)), µi ∈C([0,∞)× [0, T ]) for i= 1, 4, f ∈C([0,∞)× [0,∞)× [0, T ]);

(A2) 0<ϕ0 ≤ ϕ (x1, x2)≤ ϕ1 <∞, (x1, x2) ∈ [0,∞)× [0,∞) , µi (t) > 0 for i= 5, 7,

t ∈ [0, T ] , 0<µi0 ≤µi (x2, t)≤µi1 <∞ for i= 1, 2, (x2, t) ∈ [0,∞)× [0, T ] ,

0<µi0 ≤µi (x1, t)≤µi1 <∞ for i= 3, 4, (x1, t) ∈ [0,∞)× [0, T ] ,

0≤ f (x1, x2, t)≤ f1 <∞, (x1, x2, t) ∈ [0,∞)× [0,∞)× [0, T ] ,

µix1 (x1, t) > 0, (x1, t) ∈ [0,∞)× [0, T ] for i= 3, 4, ϕx1 (x1, x2) > 0,

(x1, x2) ∈ [0, l0]× [0, h0] ;

(A3) ϕ ∈C2([0, l0]× [0, h0], µ5 ∈C[0, T ], µi ∈C1[0, T ] for i= 6, 7,

µi ∈C2, 1 ([0,∞)× [0, T ]) , i= 1, 2, µi ∈C2, 1 ([0,∞)× [0, T ]) for i= 3, 4,
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f ∈C1, 0 ([0,∞)× [0,∞)× [0, T ]) ;

(A4) compatibility conditions of the zeroth and �rst orders.

Then, it is possible to indicate a time T0 ∈ (0, T ], determined by the input data, such that
there exists a solution (l(t), h(t), a(t), v(y1, y2, t)) ∈C1[0, T0]×C1[0, T0]×C[0, T0]×C2, 1(�T0) with
l(t) > 0, h(t) > 0, a(t) > 0 for t ∈ [0, T0], to problem Eqs. (8) to (14).

Theorem 2 Suppose that the following conditions are ful�lled:

(A5) 0<ϕ0 ≤ ϕ (x1, x2)≤ ϕ1 <∞, µ5 (t) 6= 0, µ6 (t) 6= 0, µ7 (t) 6= 0 for t ∈ [0, T ] ,

µ2 (x2, t) 6= 0, (x2, t) ∈ [0,∞)× [0, T ] , µ4 (x1, t) 6= 0, (x1, t) ∈ [0,∞)× [0, T ] ;

(A6) f ∈C1, 0 ([0,∞)× [0,∞)× [0, T ]) , µitx2 ∈C ([0,∞)× [0, T ]) for i= 1, 2,

µitx1 ∈C ([0,∞)× [0, T ]) for i= 3, 4.

Then, it is possible to indicate a time T1 ∈ (0, T ], determined by the input data, such
that problem Eqs. (8) to (14) has at most one solution (l(t), h(t), a(t), v(y1, y2, t)) ∈ C1[0, T1]×
C1[0, T1]×C[0, T1]×C2, 1(�T1) with l(t) > 0, h(t) > 0, a(t) > 0 for t ∈ [0, T1].

3 Numerical Solution of the Forward Problem

Consider the direct (forward) problem Eqs. (8) to (11). When l(t), h(t), a(t), f (x1, x2, t), µi(t),
for i = 1, 4 and ϕ(y1l0, y2h0) are given in the direct problem v(y1, y2, t) is to be found along
with the quantities of interest µi(t) for i = 5, 7. Denote v(y1, y2, tn) = vn

i, j, l(tn) = ln, h(tn) = hn,

a(tn) = an and f (y1l(tn), y2h(tn), tn) = f n
i, j, where y1i = i1y1, y2j = j1y2, tn = n1t, 1y1 = 1/M1,

1y2 = 1/M2, 1t=T/N, i= 0, 1, . . . , M1, j= 0, 1, . . . , M2, n= 0, 1, . . . , N.

The ADE method, [3,24], which is unconditionally stable, is described for solving numerically
the direct problem Eqs. (8) to (11). Let ṽn

i, j and ũn
i, j satisfy

ṽn+1
i, j =Anṽn

i, j +Bn

(
ṽn

i+1, j + ṽn+1
i−1, j

)
+Cn

(
ṽn

i, j+1+ ṽn+1
i, j−1

)
+Dn

(
ṽn

i+1, j − ṽn+1
i−1, j

)
+En(ṽn

i, j+1− ṽn+1
i, j−1)+G∗i, j, i= 1, M1− 1, j= 1, M2− 1, n= 0, N− 1, (15)

ũn+1
i, j =Anũn

i, j +Bn

(
ũn+1

i+1, j + ũn
i−1, j

)
+Cn

(
ũn+1

i, j+1+ ũn
i, j−1

)
+Dn

(
ũn+1

i+1, j − ũn
i−1, j

)
+En(ũ

n+1
i, j+1− ũn

i, j−1)+G∗i, j, i=M1− 1, 1, j=M2− 1, 1, n= 0, N− 1, (16)

where

An =
1− λn

1+ λn
, Bn =

(1t)an

l2
n (1y1)

2 (1+ λn)
, Cn =

(1t)an

h2
n (1y2)

2 (1+ λn)
,

Dn =
(1t)y1iln′

2 (1y1) (1+ λn) ln
, En =

(1t)y2jhn′

2 (1y2) (1+ λn)hn
,

G∗i ,j =
1t

2
(

1+ λn
i, j

) (f n+1
i, j + f n

i, j

)
, λn =

(1t)an

l2
n (1y1)

2 +
(1t)an

h2
n (1y2)

2 .
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In the above expression, we approximate the derivatives of l(t) and h(t) as

l′n := l′(tn)≈
l(tn)− l(tn−1)

1t
=

ln− ln−1

1t
, n= 1, N, (17)

h′n := h′(tn)≈
h(tn)− h(tn−1)

1t
=

hn− hn−1

1t
, n= 1, N. (18)

Furthermore, let the ṽn
i, j and ũn

i, j also satisfy the initial and boundary conditions Eqs. (9) to

(11), namely,

ṽ0
i, j = ũ0

i, j = ϕ(yil0, yjh0), i= 0, M1, j= 0, M2, (19)

ṽn
0, j = ũn

0, j =µ1(y2jhn, tn), ṽn
M1, j = ũn

M1, j =µ2(y2jhn, tn), j= 0, M2, n= 1, N, (20)

ṽn
i, 0 = ũn

i, 0 =µ3(y1iln, tn), ṽn
i, M2
= ũn

i, M2
=µ4(y1iln, tn), i= 0, M1, n= 1, N. (21)

Once ṽn+1
i, j and ũn+1

i, j have been obtained, the solution for the direct problem Eqs. (8) to (11)

is computed by

vn+1
i, j =

ṽn+1
i, j + ũn+1

i, j

2
. (22)

The heat �ux in Eq. (12) can be approximated using the second-order FDM as follows.

µ5(t)=
an

ln

(
4v(1, Y0h−1

n , tn)− v(2, Y0h−1
n , tn)− 3v(0, Y0h−1

n , tn)

21y1

)
, n= 1, N. (23)

The integrals in Eqs. (13) and (14) can be calculated using the trapezoidal rule as follows:

l (tn)h (tn)

∫ 1

0

∫ 1

0
v (y1, y2, tn)dy2dy1 =

lnhn

4M1M2
[v(0, 0, tn)+ v(1, 0, tn)+ v (0, 1, tn)+ v (1, 1, tn)

+ 2
M1−1∑

i=1

v (y1i, 0, tn)+ 2
M1−1∑

i=1

v (y1i, 1, tn)+ 2
M2−1∑

j=1

v
(
0, y2j, tn

)

+ 2
M2−1∑

j=1

v
(
1, y2j, tn

)
+ 4

M2−1∑
j=1

M1−1∑
i=1

v
(
y1i, y2j, tn

)
], n= 1, N,

(24)

l (tn)h2 (tn)

∫ 1

0

∫ 1

0
y2v (y1, y2, tn)dy2dy1 =

lnh2
n

4M1M2
[y2(0)v(0, 0, tn)+ y2(0)v(1, 0, tn)

+ y2 (1) v (0, 1, tn)+ y2 (1) v (1, 1, tn)

+ 2
M1−1∑

i=1

y2 (0) v (y1i, 0, tn)+ 2
M1−1∑

i=1

y2 (1) v (y1i, 1, tn)
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+ 2
M2−1∑

j=1

y2jv
(
0, y2j, tn

)
+ 2

M2−1∑
j=1

y2jv
(
1, y2j, tn

)

+ 4
M2−1∑

j=1

M1−1∑
i=1

y2jv
(
y1i, y2j, tn

)
], n= 1, N. (25)

4 Numerical Solution of the Inverse Problem

In this section, our aim is to obtain stable and accurate reconstructions of the free boundary
l(t), h(t), the thermal conductivity a(t) together with the temperature v(y1, y2, t), satisfying Eqs. (8)
to (14). The inverse problem can be formulated as a nonlinear least-squares minimization of the
least-squares objective function given by

F (l, h, a)=

∥∥∥∥a (t)
l (t)

vy2

(
0, Y0h−1 (t) , t

)
−µ5 (t)

∥∥∥∥2

+

∥∥∥∥∥l (t)h (t)
∫ 1

0

∫ 1

0
v (y1, y2, t)dy2dy1−µ6 (t)

∥∥∥∥∥
2

+

∥∥∥∥∥l(t)h2(t)
∫ 1

0

∫ 1

0
y2v(y1, y2, t)dy2dy1−µ7(t)

∥∥∥∥∥
2

, (26)

or, in discretizations form

F (l, h, a)=
N∑

n=1

[
an

ln
vy2

(
0, Y0h−1

n , tn

)
−µ5 (tn)

]2

+

N∑
n=1

[
lnhn

∫ 1

0

∫ 1

0
v (y1, y2, tn)dy2dy1−µ6 (tn)

]2

+

N∑
n=1

[
lnh2

n

∫ 1

0

∫ 1

0
y2v(y1, y2, tn)dy2dy1−µ7(tn)

]2

, (27)

where v(y1, y2, t) solves Eqs. (8) to (11) for given (l(t), h(t), a(t)), respectively. The minimization
of the function Eq. (27) is performed using the MATLAB subroutine lsqnonlin [25].

The inverse problem given by Eqs. (8) to (14) is solved subject to both analytical and
noisy (perturbed) measurements Eqs. (12) to (14). The perturbed data are numerically formulated
as follows

µεi (tn)=µi(tn)+ εn, n= 1, N, i= 5, 7, (28)

where εn are random variables with mean zero and standard deviations σi, given by

σi = p× max
t∈[0, T ]

|µi(t)|, i= 5, 7, (29)
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where p represents the percentage of noise. We use the MATLAB function normrnd to generate
the random variables ε = (εn)n=1, N as follows:

ε = normrnd(0, σi, N), i= 1, 2, 3. (30)

In the case of perturbed data Eq. (28), we replace in Eq. (27) µi(tn) by µεi (tn) for i= 5, 7.

5 Numerical Results and Discussion

The accuracy is measured by rmse:

rmse(l)=

[
T
N

N∑
n=1

(lnumerical(tn)− lexact(tn))
2

]1/2

, (31)

rmse(h)=

[
T
N

N∑
n=1

(hnumerical(tn)− hexact(tn))
2

]1/2

, (32)

rmse(a)=

[
T
N

N∑
n=1

(anumerical(tn)− aexact(tn))
2

]1/2

. (33)

Let us take T = 1, for simplicity. The lower bounds and upper bounds for l(t) > 0, h(t) > 0
and a(t) > 0 are 10−9 for (LB) and 102 for (UB), respectively.

5.1 Example 1
Consider the inverse problem given by Eqs. (1) to (7), with the smooth unknown timewise

terms l(t), h(t) and a(t), and we solve it with:

ϕ (x1, x2)= 1+ cos
(π

8
+
πx2

2

)
+ sin (x1) , µ1 (x2, t)= 1+ t+ cos

(π
8
+
πx2

2

)
,

µ2 (x2, t)= 1+ t+ cos
(π

8
+
πx2

2

)
+ sin (1+ t) , Y0 =

1
2
(1+ t) ,

µ3 (x1, t)= 1+ t+ cos
(π

8

)
+ sin (x1) , µ4 (x1, t)= 1+ t+ cos

(
π

8
+

1
2
π (1+ t)

)
+ sin(x1),

f (x1, x2, t)= 1+
1
4
π2(2− t) cos

(π
8
+
πx2

2

)
+ (2− t) sin(x1), (34)

µ5 (t)= 2− t, µ6 (t)=
1
π
(1+ t) [π(2+ t(2+ t))−π cos(1+ t)+ 2 cos(

1
8
(π + 4π t))− 2 sin

(π
8

)
],

µ7(t)=
1

2π2 (1+ t)[π2(1+ t)(2+ t(2+ t))− 8 cos(
π

8
)+π(1+ t)(−π cos(1+ t)+ 4 cos

(
1
8
(π + 4π t)

)
− 8 sin

(
1
8
(π + 4π t)

)
]. (35)
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We observe that the conditions (A1)–(A6) of Theorems 1 and 2 are ful�lled and thus, the
uniqueness condition of the solution is guaranteed. It can be easily veri�ed that the analytical
solution of Eqs. (1) to (4) is

u(x1, x2, t)= 1+ t+ sin(x1)+ cos
(π

8
+
πx2

2

)
, (x1, x2, t) ∈�T , (36)

and

l(t)= 1+ t, h(t)= 1+ t, a(t)= 2− t, t ∈ [0, 1]. (37)

Also,

v (y1, y2, t)= u (y1l (t) , y2h (t) , t)= 1+ t+ sin ((1+ t)y1)+ cos
(
π

8
+

1
2
π (1+ t)y2

)
,

(y1, y2, t) ∈QT . (38)

First, let us solve the forward problem Eqs. (1) to (4) with the input data (34) when l(t), h(t),
a(t) are known and given by Eq. (37). Tab. 1 reveals that the exact and approximate solutions for
Eqs. (12) to (14), which exactly is given by Eq. (35), obtained with number of grids M1 =M2 = 10
and N ∈ {20, 40, 80}, are in good agreement. The analytical Eq. (38) and approximate solutions
for v(y1, y2, t) is plotted in Fig. 1. It is clear from Tab. 1 and Fig. 1 that the accuracy of the
approximate solution increases, as the mesh sizes decreases.

Table 1: The numerical and analytical Eq. (35) solutions for µi(t), i = 5, 7, with M1 =M2 = 10
and various N ∈ {20, 40, 80}, for direct problem

t 0.1 0.2 0.3 . . . 0.8 0.9 N rmse (µi)

µ5 (t) 1.9011 1.8021 1.7032 . . . 1.2043 1.1059 20 1.3E−3
1.9001 1.8002 1.7003 . . . 1.2002 1.1001 40 9.3E−4
1.9000 1.8000 1.7000 . . . 1.2000 1.1000 80 3.6E−5
1.9000 1.8000 1.7000 . . . 1.2000 1.1000 exact 0

µ6 (t) 2.2571 2.7787 3.3689 . . . 7.5195 8.6382 20 5.8E−3
2.2589 2.7800 3.3783 . . . 7.5147 8.6318 40 2.3E−3
2.2596 2.7810 3.3781 . . . 7.5128 8.6294 80 8.1E−4
2.2611 2.7817 3.3700 . . . 7.5125 8.6280 exact 0

µ7 (t) 1.0712 1.4233 1.8530 . . . 5.6705 6.9071 20 4.4E−3
1.0710 1.4231 1.8525 . . . 5.6651 6.9001 40 7.1E−3
1.0711 1.4232 1.8527 . . . 5.6728 6.9023 80 9.3E−4
1.0746 1.4278 1.8583 . . . 5.6738 6.9079 Exact 0

In the problem Eqs. (8) to (14), we take the initial guesses for l, h and a, as follows:

l0 (tn)= l0 = 1, h0 (tn)= h0 = 1, a0 (tn)= a (0)= 2, n= 1, N. (39)

We take a mesh size with M1 =M2 = 10, N = 40 and we start the examination for recovering
the timewise terms l(t), h(t) and a(t), when p = 0 in the measurements Eqs. (12) to (14), as in
Eq. (31). The function Eq. (27) is illustrated in Fig. 2a, where a convergence, which is mono-
tonically decreasing, is obtained in 10 iterations to achieve a low speci�ed tolerance of O(10−28).
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Figs. 2b–2d illustrates the corresponding approximate results for the functions l(t), h(t) and a(t).
A good agreement between the analytical Eq. (37) and approximate solutions can be observed
from these �gures with rmse(l)= 4.4E−3, rmse(h)= 3.8E−3 and rmse(a)= 6.4E−3.

Figure 1: The solutions v(y1, y2, 1) and absolute errors with M1 = M2 = 10 for: (a) N = 20,
(b) N = 40 and (c) N = 80, for direct problem
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Figure 2: (a) The objective function Eq. (27) vs. the number of iterations, and the exact Eq. (37)
and numerical solutions for: (b) l(t), (c) h(t) and (d) a(t), with no noise, for Example 1

Next, the stability of the numerical solution is investigated with respect to the noisy data
Eq. (28). We include p ∈ {0.1%, 0.5%, 1%, 2%} noise to the over-determination conditions µ5, µ6
and µ7, as in Eq. (28) to test the stability. The function Eq. (27) is plotted in Fig. 3a and
convergence is again rapidly achieved. The approximate results for l(t), h(t) and a(t) are depicted
in Fig. 3. Accurate and stable results are obtained for l(t), h(t) and a(t) by observing Figs. 3b–
3d and the rmse values, the minimum value of Eq. (27) at �nal iteration and the number of
iterations are given in Tab. 2. As noise p is increased the approximate results for l(t), h(t) and
a(t) start to build up oscillations. In order to retrieve stability, we penalise the function Eq. (27)

by adding λ
(∥∥l′(t)

∥∥2
+
∥∥h′(t)

∥∥2
+‖a(t)‖2

)
to it since the theory provide l ∈C1[0, T ], h ∈C1[0, T ]

and a ∈ C[0, T ], where λ > 0 is the Tikhonov’s regularization parameter to be chosen. Then, in
discretised form of Tikhonov functional recasts as

Fλ(l, h, a)= F(l, h, a)+ λ

(
N∑

n=1

(
ln− ln−1

1t

)2

+

N∑
n=1

(
hn− hn−1

1t

)2

+

N∑
n=1

a2
n

)
. (40)
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(a) (b)

(c) (d)

Figure 3: (a) The objective function Eq. (27) vs. the number of iterations, and the exact Eq. (37)
and numerical solutions for: (b) l(t), (c) h(t) and (d) a(t), with p ∈ {0.1%, 0.5%, 1%, 2%} noise, for
Example 1

Table 2: The values of rmse Eqs. (31) to (33), the function Eq. (27) at �nal iteration and the
number of iterations, for p ∈ {0, 0.1%, 0.5%, 1%, 2%} noise, for Example 1

p (%) rmse (l) rmse(h) rmse(a) Minimum value of (27) Iter

0 0.0044 0.0038 0.0064 2.5E−28 10
0.1 0.0093 0.0079 0.0122 3.2E−28 10
0.5 0.0427 0.0358 0.0571 3.8E−28 10
1 0.0847 0.0717 0.1141 3.0E−28 21
2 0.1698 0.1448 0.1141 2.3E−28 21
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For p = 5% noise, Fig. 4 illustrates the analytical solution Eq. (37) and the approx-
imate solutions obtained by minimizing the functional Eq. (40) for various regulariza-
tion parameters. The rmse(l, h, a) values are {0.4822, 0.4313, 0.3049, 0.1574, 0.0566, 0.1040},
{0.4388, 0.3720, 0.2857, 0.1575, 0.0646, 0.1039} and {0.6357, 0.5994, 0.4222, 0.2375, 0.1503, 0.2363}
for λ ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1

}, see Tab. 3 for more information. It can be observed that
the approximate unregularized solution obtained with λ= 0 demonstrates instability, however, on
including regularization with λ= 10−3 to λ= 10−2, we get a stable solution which is consistent in
accuracy with the p= 5% noise desecrating the input data Eq. (28).

Figure 4: The numerical and analytical Eq. (37) solutions for: (a) l(t), (b) h(t) and (c) a(t), for
p= 5% noise, with various λ ∈ {0, 10−2, 10−1

}, for Example 1
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Table 3: The values of rmse Eqs. (31) to (33) and the number of iterations, for p = 5% noise,
without and with regularization, for Example 1

p (%) λ rmse (l) rmse (h) rmse (a) Iter

5 0 0.4822 0.4388 0.6357 50
5 10−5 0.4313 0.3720 0.5994 10
5 10−4 0.3049 0.2857 0.4222 10
5 10−3 0.1574 0.1575 0.2375 10
5 10−2 0.0566 0.0646 0.1503 10
5 10−1 0.1040 0.1039 0.2363 10

5.2 Example 2
The smooth timewise coef�cients l(t), h(t), a(t) given by Eq. (37) has been recovered in

previous example. In this example, let us examine the numerical scheme for recovering a non-
smooth test:

l(t)=
1

√
1+ t

, h(t)=
1

√
1+ t

, a(t)= 1+ cos2(2π t), t ∈ [0, 1] (41)

and the analytical solution for the temperature u(x1, x2, t) given by Eq. (36). The rest of the input
data are given as

µ2 (x2, t)= 1+ t+ cos
(π

8
+
πx2

2

)
+ sin

(
1

√
1+ t

)
, Y0 =

1

2
√

1+ t
,

µ4 (x1, t)= 1+ t+ cos
(
π

8
+

π

2
√

1+ t

)
+ sin (x1) , µ5 (t)= 1+ cos2 (2π t) ,

µ6 (t)=
1

π
√

1+ t
[π +π

√
1+ t−π cos(

1
√

1+ t
)− 2 sin(

π

8
)

+ 2 sin
(

1
8
π

(
1+

4
√

1+ t

))
],µ7(t)=

1

2π2
√
(1+ t)3

[π2(1+ t+
√

1+ t)

− 8 (1+ t) cos
(π

8

)
+ 8 (1+ t) cos

(
1
8
π

(
1+

4
√

1+ t

))
+π
√

1+ t(−π cos(
1

√
1+ t

)

+ 4 sin
(

1
8
π

(
1+

4
√

1+ t

))
)],

f (x1, x2, t)= 1+
1
4
π2(1+ cos2(2π t)) cos

(π
8
+
πx2

2

)
+ (1+ cos2(2π t)) sin(x1). (42)

Also,

v (y1, y2, t)= u (y1l (t) , y2h (t) , t)= 1+ t+ sin
(

y1
√

1+ t

)
+ cos

(
π

8
+

πy2

2
√

1+ t

)
, (y1, y2, t) ∈QT .

(43)
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With this data, the conditions (A1)–(A6) of Theorems 1 and 2 are holds, thus the uniqueness
of the solution is also ensured. The initial guesses for l, h and a, for this example has been taken
as in Eq. (39).

As in Example 1, we take 1y1 =1y2 = 0.1 and 1t= 0.025 and we �rst choose the case when
p = 0 in the data µ5, µ6 and µ7, in Eq. (28). The analytical Eq. (41) and numerical solutions
for l(t), h(t) and a(t) is illustrated in Fig. 5, where the reconstructed timewise terms are in
excellent agreement with their corresponding analytical solutions, obtaining with rmse(l)= 6.3E−3,
rmse(h)= 1.7E−3 and rmse(a)= 9.8E−3, see Tab. 4.

(a) (b)

(c)

Figure 5: The analytical Eq. (41) and numerical solutions for: (a) l(t), (b) h(t) and (c) a(t), with
no noise and no regularization, for Example 2

Next, we add p ∈ {0.5%, 1%, 2%} noise into the measured data Eqs. (12) to (14), in order to
investigate the stability of the numerical results. The approximate results for the free boundaries
l(t), h(t) and the thermal conductivity a(t) are illustrated in Fig. 6. From this �gure it can be
observed that reasonable and stable numerical results are obtained. The numerical solutions for
l(t), h(t) and a(t) obtained with the p= 5% noise have been found highly oscillatory and unstable
when no regularization was employed, i.e., λ= 0, obtaining rmse(l)= 0.1317, rmse(h)= 0.2439 and
rmse(a)= 0.2779, see Fig. 7. Therefore, regularization is required in order to restore the stability of
the solution in the components l(t), h(t) and a(t). Including regularization, i.e., λ ∈ {10−3, 10−2

},
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in Eq. (40) alleviates this instability, as shown in the regularized approximate results in Fig. 7
and Tab. 5. The absolute errors between the analytical Eq. (43) and approximate v(y1, y2, t) with
the p= 5% noise, and without and with regularization parameters, is illustrated in Fig. 8. From
this �gure and Tab. 5 it can be noticed that the temperature v(y1, y2, t) component is stable and
accurate. Overall, the same conclusions can be carried out about the stable determination for the
unknown time-dependent coef�cients.

Table 4: The values of rmse Eqs. (31) to (33), the function Eq. (27) at �nal iteration and the
number of iterations, for p ∈ {0, 0.5%, 1%, 2%} noise, for Example 2

p (%) rmse (l) rmse (h) rmse (a) Minimum value of (27) Iter

0 0.0063 0.0017 0.0098 3.5E−29 15
0.5 0.0146 0.0083 0.0276 1.8E−28 8
1 0.0385 0.0206 0.0704 9.4E−29 10
2 0.0625 0.0423 0.1180 5.8E−29 10

(a) (b)

(c)

Figure 6: The analytical Eq. (41) and numerical solutions for: (a) l(t), (b) h(t) and (c) a(t), with
p ∈ {0.5%, 1%, 2%} noise, for Example 2
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(a) (b)

(c)

Figure 7: The analytical Eq. (41) and numerical solutions for: (a) l(t), (b) h(t) and (c) a(t), for
p= 5% noise and without and with regularization, for Example 2

Table 5: The values of rmse Eqs. (31) to (33) and the number of iterations, for p = 5% noise,
without and with regularization, for Example 2

p (%) λ rmse (l) rmse (h) rmse (a) Iter

5 0 0.1317 0.2439 0.2779 18
5 10−5 0.0979 0.0730 0.2217 10
5 10−4 0.0628 0.0460 0.1815 10
5 10−3 0.0293 0.0208 0.1514 10
5 10−2 0.0712 0.0623 0.1776 10
5 10−1 0.2728 0.2964 0.5437 10
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(a) (b)

(c)

Figure 8: The absolute errors between the analytical Eq. (43) and numerical v(y1, y2, t) with
(a) λ= 0, (b) λ= 10−3 and (c) λ= 10−2, for p= 5%, for Example 2

6 Conclusions

The inverse problem concerning the reconstruction of the time-dependent thermal conduc-
tivity a (t) , and free boundary coef�cients l(t) and h(t) along with the temperature u(x1, x2, t)
in a two-dimensional parabolic equation from the over-speci�cation conditions has been solved
for the �rst time numerically. The forward solver based on the ADE was employed. The inverse
problem approach based on a nonlinear least-squares minimization problem using the MATLAB
optimization subroutine was developed. The Tikhonov regularization has been employed in order
to obtain stable and accurate solutions since the inverse problem is ill-posed. The numerical results
for the inverse problem shows that stable and accurate approximate results have been obtained.
Extension to three-dimensions is in principle straightforward.
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