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Abstract: With the increasing application of surveillance cameras, vehicle
re-identi�cation (Re-ID) has attracted more attention in the �eld of public
security. Vehicle Re-ID meets challenge attributable to the large intra-class
differences caused by different views of vehicles in the traveling process and
obvious inter-class similarities caused by similar appearances. Plentiful exist-
ing methods focus on local attributes by marking local locations. However,
these methods require additional annotations, resulting in complex algorithms
and insufferable computation time. To cope with these challenges, this paper
proposes a vehicle Re-ID model based on optimized DenseNet121 with joint
loss. This model applies the SE block to automatically obtain the importance
of each channel feature and assign the corresponding weight to it, then features
are transferred to the deep layer by adjusting the corresponding weights, which
reduces the transmission of redundant information in the process of feature
reuse in DenseNet121. At the same time, the proposed model leverages the
complementary expression advantages of middle features of the CNN to
enhance the feature expression ability. Additionally, a joint loss with focal
loss and triplet loss is proposed in vehicle Re-ID to enhance the model’s
ability to discriminate dif�cult-to-separate samples by enlarging the weight
of the dif�cult-to-separate samples during the training process. Experimental
results on the VeRi-776 dataset show that mAP and Rank-1 reach 75.5% and
94.8%, respectively. Besides, Rank-1 on small, medium and large sub-datasets
of Vehicle ID dataset reach 81.3%, 78.9%, and 76.5%, respectively, which
surpasses most existing vehicle Re-ID methods.
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1 Introduction

In recent years, vehicle re-identi�cation (Re-ID) has received more attention, and it can be
broadly employed in video surveillance, intelligent traf�c, and other �elds [1,2]. Especially when
the license plate is blocked, removed, or even forged, vehicle Re-ID will evolve into the exclusive
approach for traf�c control departments to �nd escape vehicles. Vehicle Re-ID can be understood
as a sub-problem of image retrieval, whose purpose is to detect and track the target vehicle in
a cross-camera monitoring system [3]. Compared with person Re-ID [4], the vehicle Re-ID is a
more challenging task in the following two aspects: (1) in the case of uncontrolled natural lighting,
viewing angle, low resolution, and complex background, the visual appearance of the same car
under different camera viewpoint changes greatly, which shows distinct intra-class differences, as
shown in Fig. 1a. (2) vehicles with the same model have similar visual appearances, such as
the same color and model characteristics, leading to obvious inter-class similarity, as shown in
Fig. 1b [5].

Figure 1: Examples of vehicle Re-ID dif�culties (a) the same vehicle in a row (b) different vehicles
in a row

In order to solve the mentioned challenges, most of the current research adopt deep learning
methods to automatically extract vehicle image features. To re-identify the vehicle from a whole
perspective, many methods directly extract the global characteristics of the vehicle through a
convolutional network [6,7]. Further, literature [8,9] proves the superiority of DenseNet in the
Re-ID task. In earlier research, each layer of DenseNet uses all previous layers as input, which
can strengthen the propagation and utilization of features. However, these methods directly use
DenseNet as the backbone network, and features in each layer are completely passed to the next
layer without distinction. As a result, the features obtained in the end contain some useless feature
information, which may lead to misjudgment and affect the accuracy of recognition.

Although the calculation of global features is simple and less time consuming., it is easy to
cause misjudgment due to the large posture variation and the occlusion of vehicles. Therefore,
some researchers began to focus on the local information of the vehicle. The studies [10,11]
extract local features, such as car windows, car lights, and etc. Then, the network can pay
attention to more discriminative local features in the learning process. Although these methods can
effectively cope with the challenges caused by partial occlusion and posture change of vehicles,
they need to mark the positions of windows and lights in advance, leading to extra marking and
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a large amount of calculation. Yu et al. [12] proved that the deep network itself includes some
domain-invariant local characteristic information with discrimination abilities in the middle layer.
Therefore, considering reducing manual labeling costs and simplifying the calculation, there is no
need to use additional labeling methods to extract the local features of the vehicle. The same
recognition effect can be achieved directly by using the extracted middle-level features.

As a means to enhance the model to recognize dif�cult-to-recognize samples, some Re-ID
models attempt to improve the network loss function [13–15]. These models generally adapt triplet
loss or cross-entropy loss. Nevertheless, the traditional cross-entropy loss function only constrains
a single class corresponding to the real identity tag, and they tend to be insuf�cient to take notice
of the dif�cult-to-recognize samples during the training process. Consequently, these models fail
to solve the problem of low recognition rate due to enormous inconsistency in the classi�cation
dif�culty of dissimilar samples.

To solve above challenges, this paper proposes a straightforward yet ef�cient vehicle Re-ID
model. By adding the SE block, the traditional DenseNet121 network structure is optimized to
reduce the impact of useless features during the feature reuse and obtain more effective features.
This proposed model leverages the complementary expression advantage of middle features on
CNN and fuses these features of the middle layer with the last layer, learning more comprehensive
and characteristic features. At the same time, the focal loss is introduced to pay more attention
to dif�cult-to-samples during the training process and to improve the model’s ability to recognize
dif�cult-to-separate samples.

The main contributions of the present study are as follows:

(1) A straightforward yet effective optimized DenseNet121 is proposed as the backbone net-
work. Due to feature reuse, there is an excess of ineffectual features extracted by the
original DenseNet121. Thus, through adding SE blocks, the corresponding weight of each
channel feature can be assigned according to the respective importance. The weighted
channel features are passed to the deep layer, and the channel features with the largest
weight are prioritized, thereby reducing redundant channel feature information. Addition-
ally, we exploit middle-layer features besides the last layer features to exert complementary
advantages of every-layer features in the network, which obtains effective global features
and distinctive local features without additional annotation.

(2) The joint loss of focal loss and triplet loss is used to supervise the network to improve
the accuracy of vehicle Re-ID. Focal loss can enlarge the weight of dif�cult-to-separate
samples and reduce the weight of the simple samples. Hence, in the course of training,
more attention can be paid to the dif�cult-to-separate vehicle samples, which improves the
model’s recognition accuracy of dif�cult-to-separate samples. To some extent, it effectively
addresses the problem of low recognition accuracy resulting from the similarity of vehicles.

(3) Also, to improve the robustness of the model against partial occlusion of vehicle images, a
random erasing strategy is proposed. During the training, a rectangular region is randomly
selected from the original image, and the pixel values of the region are randomly replaced.
Images participating in the training will be occluded to different degrees, which can reduce
the risk of over�tting and improve the robustness of the model. A large number of experi-
ments on VeRi-776 and VehicleID datasets are implemented, which veri�es the effectiveness
of the proposed method.
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The rest of the paper is organized as follows: Section 2 reviews the relevant work and
Section 3 introduces the proposed model of vehicle Re-ID. Extensive experimental results are
presented and analyzed in Section 4 and �nally, the conclusions are summarized in Section 5.

2 Related Work

With the prosperity of deep learning, vehicle Re-ID has achieved some progress in recent
years. Broadly speaking, these approaches could be classi�ed into two classes, i.e., feature
extraction and loss design.

2.1 Feature Extraction
A series of methods attempt to identify vehicles based on feature extraction. Wu et al. [5]

applied ResNet50 to extract global features of vehicle images and used spatiotemporal infor-
mation to further improve the recognition results. Shen et al. [6] endeavored to extract global
features for evaluation on multiple datasets by utilizing mobilenet. With the proposal of DenseNet,
DenseNet121 is applied in Re-ID task [8,9]. DenseNet is proposed by Huang et al. [16], which
is a convolutional neural network with dense connections, combining the model ResNet [17], and
the advantages of Highway [18]. Each layer of DenseNet accepts all the preceding layers as its
additional input, which can achieve feature reuse and improve ef�ciency. However, feature reuse
will also cause many unimportant features to be repeatedly transmitted, which results in the �nal
feature containing redundant features and affect the accuracy of Re-ID. All of the above methods
belong to the extraction of global features, allowing the network to extract a feature from the
entire image. Nevertheless, when the pose changes greatly and the image is occluded, the global
features are easy to result in misjudgment.

Due to the limitations of global features, local information on vehicles is widely applied.
Wang et al. [19] marked 20 key-points for vehicle images to extract local features of different
positions. Khorramshahi et al. [20] tackled the problem of false attention by adaptively choosing
the key-points to focus on, based on the orientation of the vehicle. Some works [21,22] learned
the local features of each piece, they divided features into blocks to learn �ne-grained features. He
et al. [10] took pre-trained YOLO to detect areas of interest such as car windows, lights, license,
and plates, etc. Zhang et al. [11] proposed the adoption of a local attention module to learn the
weight of each candidate region for obtaining the local region with the most distinguishing degree.
Meng et al. [23] generated view masks (front, back, top and side) by training an U-shape parsing
network and then strengthened local features from various perspectives. Yet, these methods require
additional annotations, such as key point annotations and local location annotations, etc.

2.2 Loss Design
Apart from designing better features, a series of losses is also exploited to achieve higher

performance. In some recent researches [24,25], each car was treated as a class and the id loss
was calculated based on its class label. The constraint of id loss is too simple, so Wang et al. [26]
applied the attribute information about extra marked vehicle pictures, such as vehicle type, color,
etc., to train the network by calculating attribute loss with suf�cient annotation information. These
methods treat the Re-ID task as a classi�cation problem, which belongs to representational learn-
ing. The model is relatively simple and easy to train, but it is apt to over�t in the training process.
Moreover, the training will be dif�cult, when the number of IDs increases to a certain extent.

Due to some de�ciencies in representational learning, some studies focus on another type of
loss function, called metric learning. Liu et al. [13] proposed a DRDL method to improve triplet
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loss into a cluster coupling loss (CCL), which alleviates the slow convergence of traditional triplet
and the sensitivity of anchor point selection. Zhang et al. [14] proposed an optimized sampling
method of triples, which reduces the randomness of sampling. Bai et al. [15] proposed a group-
sensitive triplet embedding method, which can signi�cantly reduce the negative impact of inter-
class similarity and the intra-class difference in vehicle Re-ID.

Metric learning directly learns characteristic similarity through the network. The purpose
of metric learning is to make the distance between vehicles with the same ID in the feature
space smaller than the distance between vehicles with different IDs. There is no requirement that
metric learning to adjust the network structure according to the number of IDs, and it can be
easily extended to new datasets. However, only using the metric loss function has too simple
constraints on the sample distance, and it is dif�cult to adapt to re�ned recognition. Consequently,
metric learning is usually combined with representation learning. Different loss functions are
constrained to each other so that the network can learn more representative characteristics. The
current researches [13–15] mostly applied the loss function combined cross-entropy with a triple
loss function. However, the traditional cross-entropy loss function is incapable of paying enough
attention to the dif�cult-to-separate samples in the training set, i.e., such samples are dif�cult
to distinguish and easy to be misclassi�ed, so it cannot overcome the problem of enormous
inconsistency in the classi�cation dif�culty.

3 Proposed Method

The present research introduces the SE block module combined with the features of the mid-
dle layer to optimize the traditional DenseNet121. SE block (Squeeze-and-Excitation block) [27]
weights the channels then transfers the weighted channel features to the deep layer, which reduces
the transmission of redundant information and pays more attention to the channel features with
the largest amount of information. Concurrently, by using the method in [12], the present study
leverages the complementary expression advantages of the middle and deep features of CNN,
directly uses the invariant local identi�cation features of the middle layer to fuse with the �nal
layer feature map. It is proposed that the middle-level features of CNN are more obvious to the
local feature of the image as well as highlight the features of local locations with discrimination.
Hence, without additional annotation and calculation, the local response features can be directly
extracted from the middle layer, which is convenient for fusion with the features of the last layer,
so as to further improve the feature expression ability of the model.

To overcome the shortcomings of the traditional cross-entropy loss function, Lin et al. [28]
proposed focal loss for the �rst time in the �eld of target detection, which is utilized to solve the
problem that the dense detector encounters the unbalance of the foreground-background during
the training. According to the study, a focal loss can amplify the weight of the loss of dif�cult-to-
separate samples in the total loss, and reduce the weight of the loss of easy-to-separate samples
in the total loss. Thus, the present study proposes applying focal loss instead of cross-entropy and
combine it with the triplet loss for supervised learning of the network. In the training process, the
model can pay more attention to the contribution of dif�cult-to-separate vehicle samples, reduce
the in�uence of simple samples, and improve the accuracy of the model’s judgment on dif�cult-
to-separate samples.

First, we de�ned each vehicle image as x, which has a unique identi�cation tag y correspond-

ing to it. Given a training set X t
=
{(
xtn, y

t
n
)}Nt

n=1, the main purpose of vehicle Re-ID is to obtain

a better feature extraction model φ
(
X t, θ

)
through training set learning. θ is the parameter set
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of the model φ. In the test, given a query vehicle image xq and gallery set Xg
=
{(
xgn, ygn

)}Ng

n=1, by

comparing φ (xq, θ) with each φ
(
xgn, θ

)
, we can �nd the image with the same identity ID as the

query from the gallery set.

3.1 Overall Network
We proposed a straightforward yet ef�cient vehicle Re-ID network, speci�cally the improve-

ment of the DenseNet121 network structure and the loss function: (1) the traditional DenseNet121
network structure has been optimized using the combination of SE block and middle layer
features. SE block is adopted to make the model pay more attention to the channel features
with the largest amount of information in the process of feature transmission. Concurrently,
the features of the middle layer and the last layer are fused to improve the feature expression
ability of the model (2) the joint loss apply focal loss instead of cross-entropy loss to fuse with
triplet loss, which reduces the weight of easy-to-separate samples and increases the weight of
dif�cult-to-separate samples so as to improves the model’s ability to judge dif�cult samples.

The overall network framework is presented in Fig. 2. Input P × K vehicle images at a
time and each image is cropped to 256× 256 pixels. The vehicle image features after randomly
erasing are extracted by optimized DenseNet121, which is shown in the upper part of Fig. 1. The
corresponding SE block is added after the dense block of DenseNet121. Features extracted by SE
block3 and SE block4 are mid-level features fmid and high-level features f high, respectively, com-
bine these two features to get �nal feature f . A batch normalization (BN) layer is added after f
to get the normalized features fb. In the training phase, f and fb are used to calculate triplet loss
and focal loss, respectively. BN layer can make feature distribution more compact, reduce mutual
interference between triplet loss and focal loss, and achieve the effect of simultaneous convergence.

Figure 2: The overall structure of the proposed model

3.2 Optimized DenseNet121
DenseNet is a convolutional neural network with dense connections. The basic idea is to

ensure the maximum transmission of information between layers in the network, thereby directly
connecting all layers. The main peculiarity is that each layer of the network is not only connected
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to the next layer but also directly connected to each layer in front. The input of each layer comes
from the output of all the previous layers, as shown in Fig. 3.

The output at layer l of the network can be expressed as

xl =Hl
(
[x0, x1, . . . , xl−1]

)
(1)

Hl (.) represents a non-linear transformation function, which is a combined operation.

C C C C

C :channel-wise concatenation

Figure 3: Forward propagation of DenseNet

Each layer of DenseNet accepts all the previous layers as its additional input, which can
realize feature reuse and improve ef�ciency. But at the same time, it will bring many unimportant
features repeated transmission. SE block enables the model to pay more attention to the channel
features with the largest amount of information in the process of feature transmission. Therefore,
we adopted the SE block to improve the DenseNet121 network structure to reduce the impact of
unimportant features.

As shown in the upper part of the network structure in Fig. 1, an SE block is added after
each dense block module of DenseNet121, and the SE block structure is shown in Fig. 4. For
feature X with height H, width W , and channel C, global average pooling is used as a squeeze
operation, followed by two fully-connected layers to model the correlation between channels.
Given a reduction ratio r, feature dimension reduction is carried out through a full connection
layer, and after ReLU activation, it will be upgraded to the original dimension through a fully-
connected layer. Then the normalized weight is obtained through a sigmoid function, �nally, the
normalized weight is weighted to each channel feature through a scale operation to obtain the
features X̃ that are passed forward. After the SE block is added, the importance of each channel
feature can be acquired through the network according to loss. As a result, the effective feature
map has a signi�cant weight, while the invalid or ineffective feature map has a small weight, to
reduce the impact of ineffective features in the DenseNet121 feature reuse process.

At the same time, the present study makes use of the complementary expression advantages
of the middle and deep features of CNN to fuse the features of the middle layer and the �nal
layer, so that the model can learn more distinct features. From the bottom to the top, the features
extracted from the deep learning model often correspond to more abstract and semantically higher
visual concepts. Yu et al. [12] visualized the middle layer of the network and found that the deep
network has learned the internal local attributes in the middle layer, and the middle layer features
are more obvious response to the local. We extracted the middle layer features of DenseNet121,
as shown in the network structure of Fig. 1, the features obtained by SE block3 and SE block4
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are denoted by f seblock3 and f seblock4 , respectively. Then the feature vector of the middle layer can
be expressed as

fmid =GAP
(
f seblock3

)
(2)

A global average pooling (GAP) was performed on f seblock3 and f seblock4 respectively, and then
stitched these two vectors as the �nal image representation f .

denseblockdenseblock

Global poolingp gGlobal pooling

scalescale

FC

ReLu

FC

Sigmoid

X

XX

H×W×C

1×1×C/r

1×1×C/r

1×1×C

1×1×C

1×1×C

H×W×C

Figure 4: Structure of SE block

3.3 Loss Function
The loss function is essential in the vehicle Re-ID task. The vehicle Re-ID loss function

generally uses joint loss to optimize the network, and most networks use a combination of triple
loss and cross-entropy loss. Some different vehicles of the same style are not easily distinguishable
even by human eyes. Therefore, it is necessary to design a better loss function to make the model
that pays more attention to such indistinguishable vehicle samples and reduce the in�uence of
simple samples. Hence, we proposed using a focal loss instead of cross-entropy loss in vehicle
Re-ID, to increase the weight of dif�cult-to-separate samples so as to pay more attention to the
contribution of dif�cult-to-separate samples in the training.

3.3.1 Triplet Loss
Triplet loss is the most widely used in metric learning. Many metric learning methods make

different improvements on the triplet loss. The advantage of triple loss lies in the learning of
image details. Three paired images are input each time, including an anchor image a, a positive
sample p with the same ID as a, and a negative sample n with a different ID. The triplet loss
function is expressed as

Lt =max
(
da,p− da,n+marg in, 0

)
(3)

da,p is the Euclidean distance calculated by the feature vector of a and p, similarly da,n.
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3.3.2 Focal Loss
The cross-entropy loss function for multiple categories is de�ned as

L (pi, yi)=−yi logpi (4)

pi represents the probability obtained by the i-th sample after the activation function, and yi
represents the true label of the i-th sample.

The focal loss of multiple categories is expressed as

FL (p)=
n∑
i=1

(1− pi)γ L (pi, yi) (5)

n represents the number of categories, γ is a hyperparameter greater than 0. The term
(1− pi)γ is utilized to enlarge the weight of the loss of the dif�cult-to-separate samples in the total
loss and reduce impact of easy-to-separate samples. For easy-to-separate samples, i.e., samples
with larger p, the modulation factor (1− pi)γ is smaller; conversely, for dif�cult-to-separate sam-
ples, the modulation factor is larger. In this way, during training, the loss of dif�cult-to-separate
samples is ampli�ed, and the model pays more attention to these samples. It solves the problem
that a large number of easy-to-separate samples reduce the overall loss and improves the judgment
ability of the model for dif�cult-to-separate samples.

3.3.3 Joint Loss
The combined loss of triplet loss and focal loss is utilized. Triplet loss clusters samples in

the feature space and learns the similarity between samples. Focal loss learns the interface of
various samples in the feature space and classi�es the samples in the feature space. The joint loss
is employed to optimize the network and let different loss functions constrain each other so that
the network can learn more representative characteristics.

The triplet loss and focal loss are combined as the loss function of the model, and the joint
loss is expressed as

Lj =Lt+ λFL (p) (6)

λ is the coef�cient of focal loss, and λ is considered equal to 1.

3.4 Random Erasing
To reduce the risk of over�tting and improve the robustness of the model, the technique

of random erasing is adopted in the present study. Random erasing is a data expansion method
proposed by Zhong et al. [29]. During training, a rectangular area is randomly selected in the
original image, and the pixels in the area are replaced with random values. In this process, the
images will be occluded to different degrees, which reduce the risk of over�tting and improve the
robustness of the model. Random erasing is independent of the parameter learning process, so it
can be integrated into any CNN-based recognition model. As shown in Fig. 5, the pixels of the
vehicle image are replaced by random pixel values with a certain probability, which can simulate
the situation of the vehicle being blocked and improve the robustness of the model.
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Figure 5: Examples of erased vehicle image

4 Experiments

The qualitative analysis experiments are carried out on the Veri-776 dataset to determine the
optimal parameters. At the same time, the image of vehicle query is visualized, which further
proves the effectiveness of the proposed method on the two popular datasets, Veri-776 and
VehicleID, we compared our method with other existing methods.

4.1 Datasets and Evaluation Metrics
4.1.1 Datasets

We evaluated the proposed method on two large-scale datasets for vehicle Re-ID, including
VehicleID and VeRi776, strictly following the evaluation protocols.

VeRi-776 [30] contains 619 vehicle models and a total of 40,000 vehicle images. These images
are captured by 20 cameras in a variety of different traf�c scenes, and each car is captured by 2–18
cameras at different locations, so the vehicle images have different resolutions, backgrounds, and
occlusions. Each vehicle image has detailed annotation information, including body-color, vehicle
style, and brand, etc. This dataset can re�ect the actual situation of real-world traf�c scenes, is
suitable for vehicle Re-ID and is more challenging than other datasets.

In VehicleID [13] dataset, the vehicle images are captured by multiple non-overlapping surveil-
lance cameras from two viewpoints (front and back), including 26,267 vehicles and a total of
221,763 images. The dataset annotates the color, vehicle style, and vehicle ID of the vehicle,
and contains more vehicle images and identity information, which is appropriate for �ne-grained
vehicle retrieval. Due to the large size, the dataset is divided into small-scale, medium-scale, and
large-scale datasets. The number of vehicle IDs in them is 800, 1600, and 2,400 respectively.

4.1.2 Evaluation Metrics
We adopted two evaluation metrics, which are mean Average Precision (mAP) and Cumulative

Match Curve (CMC) in our experiments [31]. The mAP metric evaluates the overall performance
for ReID. The CMC shows the probability that a query identity appears in differently sized
candidate lists. We used Rank-n from CMC; Rank-n refers to the accuracy of the �rst n images
in the matching result.

The mAP is the average of the AP. An AP is the area of the PR curve. PR is obtained by two
parameters, precision, and recall. The calculation formulas of precision and recall are as follows
R=

TP
TP+FN

P=
TP

TP+FP

(7)
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Among them, TP indicates the number of positive examples in the training set that are
predicted to be positive examples, FP is the number of positive examples but actually negative
examples, FN is the number of negative examples, but actually positive examples.

The PR curve is drawn with Recall and Precision as the abscissa and ordinate respectively, and
the enclosed area is computed to obtain the average accuracy. Rank-n indicates the probability of
correct matching among the �rst n items in the returned image set after searching.

4.2 Implementation Details
All experiments are completed in NVIDIA RTX 2080Ti, Python 3.7, Pytorch 1.3.1 environ-

ment. The backbone Densene121 is initialized from the ImageNet pre-trained model. All pictures
are preprocessed and uni�ed into 256× 256, and data enhancement processing is done such as
random �ipping and cropping data. Training batch size is N= P×K, where P is the number of
pedestrians in each batch, K is the number of pictures of each pedestrian in each batch, set P= 8,
and K = 4. The network is trained for a total of 120 epochs. The warmup learning rate strategy
was used [32]. The basic learning rate was set to 0.0035, exponential decay was performed in the
40th epoch and 70th epoch, and the attenuation coef�cient was set to 0.1. We used the Adam
optimizer with the weight attenuation coef�cient set to 0.0005 and the margin of the triple loss
is set to 0.3.

4.3 Method Analysis
To further demonstrate the effectiveness of the proposed method, the method is qualitatively

analyzed on the VerI-776 dataset, and the appropriate parameters are selected. The baseline is
based on the original Desenet121 network structure using the combined loss of triple loss and
cross-entropy loss. It can be seen from Tab. 1 that the baseline has obtained relatively good
results, with mAP and Rank-1 reaching 68.5% and 92.5%. The Desenet121 was replaced with
optimized Desenet121, both mAP and Rank-1 have been promoted. It re�ects the effectiveness
of the optimized Desenet121 by using the SE block combined with the features of the middle
layer, and the extracted features are more distinguishable. Using random erasing on the Optimized
Desenet121 network structure, it’s observed that the improvement is more signi�cant. Therefore,
in the future research on vehicle Re-ID, random erasing can be considered to preprocess the
image. At the same time, replacing the cross-entropy loss with the focal loss achieved the best
experimental results. The mAP and Rank-1 reached 94.8% and 75.5%, respectively. This is owing
to the focal loss pays more attention to dif�cult samples and improves the classi�cation accuracy
of the model.

Table 1: Qualitative analysis on VeRi-776

Method mAP (%) Rank-1 (%)

Baseline 68.5 92.5
Optimized desenet121 70.0 94.0
Optimized desenet121+RE 73.5 94.3
Optimized desenet121+RE+ focalloss 75.5 94.8

The proposed model uses the joint loss of triplet loss and focal loss. The focal loss enlarges
the weight of the loss of dif�cult-to-separate in the total loss through the (1− pi)γ , and reduces
the weight of the loss of easy-to-separate samples. In this way, during training, the loss of
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dif�cult-to-separate samples is ampli�ed, and the model pays more attention to these samples.
One important hyperparameter is tested on the VerI-776 dataset, and the best hyperparameter is
selected. The following Fig. 6 shows the results of the experiment on VerI-776. It is observed that
the relationship between mAP, Rank-1 and γ is not linear and does not increase with the increase
of γ . If the value of γ is 2, the best result is obtained, so the parameter γ = 2 of focal loss
is considered.

Figure 6: The selection of parameter γ (match rate (%) and mAP (%) for different γ on the VeRi-
776 dataset)

Figure 7: Visualization of vehicle re-ID results (rank-10) on the VeRi-776
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To further illustrate the effectiveness of the proposed framework, we visualized some examples
of query results on VeRi-776, as shown in Fig. 7. True matches are green, false matches are red.
The left is the query result of the baseline, and the right is the query result of the proposed
method. Judging from the query results, the correct number of queries is more than that of the
baseline, and the query effect is more effective than the baseline, which once again veri�es the
effectiveness of the proposed method.

4.4 Comparison with State-of-the-Art Methods
We compared the proposed method with other methods on VeRi-776 and VehicleID datasets.

Among them, LOMO [33] is a traditional manual method, FACT [30] combines deep learning
and traditional methods, and the rest is based on deep learning methods. On the two datasets,
our method far exceeds LOMO and FACT, indicating that the deep learning method has greatly
surpassed the traditional method, and it is an inevitable trend to solve the problem of vehicle
Re-ID with deep learning. PRN [10] uses pre-trained YOLO to detect areas of interest such as
car windows, lights, and license plates. OIFE [19] and AAVER [20] use key points to obtain
local information. Both RAM [21] and SAN [22] learn the local features of each piece in blocks.
All of the above methods belong to local feature learning. PAMTRI [8] assists feature learning
by gesture estimation. Both VAMI [34] and EALN [35] methods use GAN network to generate
vehicle images. It can be seen from Tabs. 2 and 3 that the proposed method is superior to the
earlier mentioned methods. Compared with PAMTRI, which also utilizes DenseNet121 as the
backbone, our method improves mAP and Rank-1 on VeRi by 3.6% and 1.9%, respectively. It is
worth mentioning that our network structure is more concise than other network structures, and
does not require substantial additional annotations and calculations. But the effect of the method
of the present study is still behind that of PVEN [23]. PVEN enlarges the part of the common
view of the vehicle image under different viewing angles and overcomes the huge differences in the
instances under different views. The proposed method does not take into account the difference in
viewing angles, and the accuracy rate needs to be further optimized. The focus on viewing angle
characteristics is also a direction for future improvement.

Table 2: Performance comparison of different methods in analysis of VeRi-77 dataset

Method Backbone VeRi-776

mAP Rank@1

LOMO – 9.8 23.9
FACT – 18.7 51.9
OIFE – 48.0 65.9
RAM VGG 61.5 88.6
PRN ResNet-50 74.3 94.3
VAMI GAN 50.1 77.0
EALN GAN 57.4 84.4
AAVER ResNet-50 58.5 88.7
PAMTRI DenseNet121 71.9 92.9
SAN ResNet-50 72.5 93.3
PVEN ResNet-50 79.5 95.6
Ours DenseNet121 75.5 94.8
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Table 3: Performance comparison of different methods in analysis of VehicleID dataset

Method Backbone VehicleID (small) VehicleID (medium) VehicleID (large)

Rank@1 Rank@5 Rank@1 Rank@5 Rank@1 Rank@5

LOMO – 19.7 32.1 19.0 29.5 15.3 25.6
FACT – 49.5 68.0 44.6 64.2 39.9 60.50
OIFE – 67.0 82.9
RAM 75.2 91.5 72.3 87.0 67.7 84.5
PRN ResNet-50 78.4 92.3 75.0 88.3 74.2 86.4
VAMI GAN 63.1 83.3 52.9 75.1 47.3 70.3
EALN GAN 75.1 88.1 71.8 83.9 69.3 81.4
AAVER ResNet-50 72.5 93.2 66.9 89.4 60.2 84.9
SAN ResNet-50 79.7 94.3 78.4 91.3 75.6 88.3
PVEN ResNet-50 84.7 97.0 80.6 94.5 77.8 92.0
Ours DenseNet121 81.3 94.3 78.9 92.1 76.5 89.2

5 Conclusion

In this paper, an end-to-end simple and ef�cient vehicle re-ID model is proposed, which uses
the SE block combined with information from the middle layer to improve the performance of
DenseNet121. The use of the SE block reduces the impact of useless features in the feature reuse
process. At the same time, using the complementary expression advantages of CNN’s middle and
deep features, the features of the middle and last layers are merged, so that the model can learn
more effective and distinguishing features. In addition, the joint loss of focal loss and triplet loss
is proposed for the �rst time in vehicle Re-ID. In the training process, more attention is paid to
dif�cult-to-separate samples to enhance the model’s judgment. The experimental results demon-
strate that, compared with the existing vehicle Re-ID methods, the proposed model is simple and
ef�cient, and surpasses many current methods in the analysis of VeRi-776 and VehicleID datasets.
In view of the challenges of intra-class differences in different views and inter-class similarities
between different vehicles, vehicle Re-ID still has great research prospects. In future work, we will
further consider the perspective difference based on the proposed model to extract more effective
features and improve the performance of vehicle re-recognition. In addition, we will continue to
simplify the complexity of the model, realize the lightweight of the model, and transplant it to
smart devices in the future to realize real-time traf�c scene vehicle Re-ID.
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