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ABSTRACT

This paper proposes a non-intrusive uncertainty analysis method for artillery dynamics involving hybrid uncer-
tainty using polynomial chaos expansion (PCE). The uncertainty parameters with sufficient information are
regarded as stochastic variables, whereas the interval variables are used to treat the uncertainty parameters with lim-
ited stochastic knowledge. In this method, the PCEmodel is constructed through the Galerkin projection method,
in which the sparse grid strategy is used to generate the integral points and the corresponding integral weights.
Through the sampling in PCE, the original dynamic systems with hybrid stochastic and interval parameters can be
transformed into deterministic dynamic systems, without changing their expressions. The yielded PCE model is
utilized as a computationally efficient, surrogate model, and the supremum and infimum of the dynamic responses
over all time iteration steps can be easily approximated through Monte Carlo simulation and percentile difference.
A numerical example and an artillery exterior ballistic dynamics model are used to illustrate the feasibility and
efficiency of this approach. The numerical results indicate that the dynamic response bounds obtained by the PCE
approach almost match the results of the direct Monte Carlo simulation, but the computational efficiency of the
PCE approach is much higher than direct Monte Carlo simulation. Moreover, the proposed method also exhibits
fine precision even in high-dimensional uncertainty analysis problems.
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1 Introduction

In practical dynamic systems, a variety of uncertainties associated with material properties,
environmental factors, external loads, dimensional tolerances, and boundary conditions are ubiqui-
tous. These uncertainties will inevitably affect the final system performances, and small variations
associated with uncertainties might result in significant changes in the dynamic responses. The
traditional way to investigate the dynamic response problems with uncertainty parameters is the
probabilistic method, in which the uncertainty parameters are described as stochastic variables or
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processes with precise probability distributions. Among these probabilistic methods, Monte Carlo
simulation (MCS) [1–3] is considered to be the most accurate and most versatile. Despite the
simplicity, it suffers from the considerable computational burden, thus it is usually used to generate
the reference solutions. To circumvent this drawback, the stochastic perturbation method [4–6]
using first-order or high-order Taylor series expansion was incorporated into MCS to investigate
the dynamic response problems. However, it is precise only for the small uncertainty level prob-
lems. Wan et al. [7] and Lu et al. [8] presented a general framework for analytical uncertainty
quantification of model outputs using a Gaussian process metamodel, where the inputs are char-
acterized as normal and/or uniform random variables, and characterized the uncertainty of modal
frequencies of bridge systems. Lu et al. [9] employed modal decomposition together with a low-
dimensional representation method to address the curse of dimensionality of frequency response
functions output, subsequently provided a fast vector-output approximation of the random modal
parameters through multi-output Gaussian process metamodel. Moreover, the spectral stochastic
method [10–12] is also an efficient alternative for stochastic problems, of which the polynomial
chaos expansion (PCE) method [13–15] has drawn much attention due to its strong power in func-
tional representations of stochastic parameters. PCE has achieved significant successes in dealing
with structural dynamic responses. Xiu et al. [13] presented the method for solving stochastic
differential equations based on the Galerkin projections and extensions of Wiener’s polynomial
chaos. Sandu et al. [16] Saha et al. [17] applied the generalized polynomial chaos to model
the complex, nonlinear, multibody dynamic systems with stochastic uncertainty. Saha et al. [18]
applied the generalized PCE to stochastic, dynamic response analysis of the base-isolated liquid
storage tanks. Wan et al. [19] presented an efficient approach based on arbitrary polynomial chaos
expansion for analytical, unified implementation of uncertainty quantification and global sensi-
tivity analysis in structural dynamics. For the aforementioned probabilistic methods, determining
precise probability distribution is required, which usually needs complete stochastic information
or experimental data. Unfortunately, the objective information is usually insufficient and expensive
to obtain in practical engineering problems. In this context, multiple types of non-probabilistic
models, such as fuzzy model and interval model, have been used to quantify the uncertainty.

Interval methods depict uncertainty through the upper and lower bounds of uncertain-but-
bounded parameters rather than other stochastic information, therefore, they are considered to be
a powerful supplement to the classical probabilistic approaches and have been perfectly applied in
dynamic structural response analysis. The interval arithmetic operation [20,21] was the first used
for dynamic response analysis. We can obtain the approximate response bounds effectively through
the specific interval operators. However, its inherent deficiency is the large overestimation of range
enclosure namely wrapping effect [22,23], which becomes more obvious and severe in the multidi-
mensional and non-monotonic problems. To this end, some other interval-based, dynamic response
analysis methods, such as the Taylor model method [24,25], interval vertex method [26], and the
heuristic optimization method [27], have been developed. Based on the first-order or second-order
Taylor series expansion, Qiu et al. [28,29], Zhang et al. [30], and Han et al. [31] estimated the
ranges of the nonlinear structural dynamic responses. However, it should be mentioned that the
Taylor model methods are precise only if the uncertainty levels of interval parameters are small
enough. To overcome this drawback, the subinterval method [32] was introduced as an important
remedy to obtain more accurate results. Xia et al. [26] presented a method to produce the tighter
dynamic response bounds, based on the vertex solution theorem for the first-order deviation of
dynamic response. Liu et al. [27] employed a particle swarm optimization method to search for
the dynamic response bounds of a vehicle-bridge interaction system. Wu et al. [33] proposed a
Chebyshev polynomial series method to control the large overestimation. Wan et al. [34] proposed
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an efficient Bayesian optimization approach for estimating the dynamic response bounds of a
train-bridge system. The biggest merit of the aforementioned interval methods is that it can
produce a rigorous enclosure that contains all possible solutions by using limited information.
However, the relevant research results [28,35] showed that the results of interval methods may be
conservative.

As aforementioned, the probabilistic methods and interval methods both have their own mer-
its, deficiencies, and limited scope of application. In practical structures, the stochastic and interval
parameters may exist simultaneously due to the different availability of uncertainty information.
In the early researches [36–38], only the external excitation is considered as a Gaussian random
process, while the structure parameters are regarded as interval variables. These works basically
consisted of combining random vibration theory with the first-order interval Taylor expansion of
the mean-value and covariance vectors of the response, which can evaluate the lower and upper
bounds of the second-order statistics of the response. Recently, the structural response analysis
with respect to the hybrid stochastic and interval structure variables has attracted more attention,
and some uncertainty techniques have been developed to treat such situations. In the relevant
literatures [39–43], the statistics of the system response were derived based on the perturbation
technique and random moment method, and the interval bounds of statistical moments of the
system response were further calculated through the interval vertex method [39,40] and the interval
perturbation method [41–43]. Moreover, Xia et al. [44] proposed an inverse mapping hybrid
perturbation method based on the Taylor series expansion, in which the functional representations
of the response probability were obtained through the change-of-variable technique. However,
it should be mentioned that these methods have some deficiencies. The stochastic and interval
perturbation methods based on the Taylor series expansion are only suitable for problems of
small uncertainty levels and systems of weakly nonlinearity. Besides, the applications of the vertex
method are limited to monotonous cases, which is not suitable for the complex dynamics problems.
In another type of methods, Wang et al. [45], and Xu et al. [46] proposed the polynomial chaos
expansion methods for the prediction of frequency response of the structural-acoustic system
with stochastic and interval parameters, whereby evaluating the interval bounds of statistical
moments effectively. Wu et al. [47] integrated the PCE theory that accounts for the random
uncertainty with the Chebyshev inclusion function theory that describes the interval uncertainty,
and delivered a Polynomial-Chaos-Chebyshev-Interval (PCCI) method for the uncertainty analysis
of vehicle dynamics. Wang et al. [48] proposed a non-intrusive uncertainty analysis method named
polynomial chaos response surface (PCRS) for the frequency response analysis of acoustic field
with hybrid uncertainty. In their work, the PCE model is employed to deal with the stochastic
parameters, and the response surface method is used to handle the interval parameters.

These aforementioned methods are very heuristic, and have laid a solid methodological
foundation for uncertainty analysis of artillery dynamics. However, it is frankly to say that few
literatures considered uncertainties in artillery dynamics. Among them, Wang et al. [49] proposed
an interval uncertain optimization method for structural dynamic responses of artillery system.
From the overall perspective, research on the uncertainty analysis of artillery dynamics is in
its preliminary stage, the potential and applicability of these methods in dealing with artillery
dynamics system is required to explore. Developing a generally applicable method for estimation
of the response bounds of artillery dynamics with hybrid uncertainty parameters is necessary.
Polynomial chaos has been used extensively to model uncertainties in structural mechanics and
in fluids, but to our knowledge they have yet to be applied to artillery dynamic simulations.
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The application of the polynomial chaos expansion method in this domain is promising, yet
mostly unexplored.

The dynamics systems described by ordinary differential equations (ODEs) which are quite
common in artillery dynamics are considered in the present paper. To overcome the potential
limitations for current research, the focus of this paper is to develop an accurate, efficient and
generally applicable method for estimation of the response bounds of artillery dynamics with
hybrid uncertainty parameters. Thus, a non-intrusive polynomial chaos expansion framework will
be adopted due to its fine capacity and strong mathematical basis in quantifying the uncertainty of
the dynamic systems. The PCE model is constructed through the Galerkin projection method, in
which the sparse grid numerical integration method is used to generate the integral points and the
corresponding integral weights. Through the sampling in PCE model, the original dynamic systems
with hybrid stochastic and interval parameters can be transformed into ones with deterministic
parameters, without changing their expressions. The yielded PCE model is utilized as a computa-
tionally efficient, surrogate model, and the supremum and infimum of the dynamic responses at
each iteration time step can be easily approximated through MCS and percentile difference.

The remainder of this paper is organized as follows. A statement of the dynamic systems
with hybrid uncertainty parameters is given in Section 2. Then in Sections 3 and 4, the proposed
method and its solving process are introduced in detail, respectively. In Section 5, an artillery
exterior ballistic dynamics model is given to show the effectiveness and feasibility of the proposed
method in comparison with MCS. Finally, the conclusions are drawn in Section 6.

2 Problem Statement

The dynamics systems expressed as a set of ODEs are quite common in artillery dynamics.
Suppose that there are q state variables, the q-dimensional ODEs can be described as follows:

y′ (t)= f (y, x, t) , y (t0)= y0, (1)

where y= [y1,y2, . . . ,yq]T is a q-dimensional vector of dynamic responses, f = [f1, f2, . . . , fq]T is a
q-dimensional vector comprising nonlinear functions, y0 is a q-dimensional initial condition vector,
x = [x1,x2, . . . ,xn]T is an n-dimensional vector, t ⊆ [t0, te] is the time range. Eq. (1) represents a
deterministic model. If no uncertainty exists, Eq. (1) can be solved by any numerical integration
method, such as the Runge–Kutta method, to obtain the variation of y with time.

Assuming that there are uncertainties in the structure, of which the uncertainty parameters
with precise probability distributions are regarded as stochastic variables, given by

xR =
[
xR1 ,x

R
2 , . . . ,x

R
l

]
, xi ∈ xRi =D (xi) , i= 1, 2, . . . , l, (2)

where superscript R denotes stochastic variables, D(xi) is the distribution function of the i-th
stochastic parameter. Furthermore, the uncertainty parameters with limited stochastic information
and knowledge are constrained to lie within an interval, given by

xI =
[
xI1,x

I
2, . . . ,x

I
m

]
, xi ∈ xIi =

[
xi, xi

]
, i= 1, 2, . . . ,m, (3)

where superscript I denotes interval parameters, xi and xi denote the upper and the lower bounds
of the i-th interval parameter.
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A dynamic system with hybrid stochastic and interval uncertainty parameters can be
rewritten as

y′ (t)= f
(
y,
(
xR,xI

)
, t
)
, y (t0)= y0. (4)

Considering the transitivity of uncertainty parameters, the solution of Eq. (4) subject to
Eqs. (2) and (3) is also uncertain rather than deterministic values. The lower bound and upper
bound of y can be obtained by

y=min
x

{
y : y′ (t)= f

(
y,
(
xR,xI

)
, t
)
, y (t0)= y0, xR=

[
xR1 ,x

R
2 , . . . ,x

R
l

]
,

xI =
[
xI1,x

I
2, . . . ,x

I
m

]}
, (5)

y=max
x

{
y : y′ (t)= f

(
y,
(
xR,xI

)
, t
)
, y (t0)= y0, xR =

[
xR1 ,x

R
2 , . . . ,x

R
l

]
,

xI =
[
xI1,x

I
2, . . . ,x

I
m

]}
. (6)

In Eq. (4), the dynamic uncertainty propagation problem is to solve the ODEs with hybrid
stochastic and interval parameters. The dynamic responses bounds are essentially the extrema at
each integration time of the functional equations. Generally, the precise solution is difficult to
compute directly through Eqs. (5) and (6). The most robust and accurate method may be MCS.
However, it is well known that MCS is computationally intensive. To overcome this drawback, the
PCE model is applied in the estimation of the dynamic responses bounds, which will be described
in the following sections.

3 Polynomial Chaos Expansion for Uncertainty Functions with Hybrid Stochastic and Interval
Parameters

Polynomial chaos employs a series of orthogonal polynomials with specific distribution in
the uncertainty space to approximate the uncertainty processes. The original polynomial chaos
proposed by Wiener [50] takes the Hermite polynomials in terms of Gaussian random variables
as the trial basis to construct the PCE model. Cameron et al. [51] proved that such expansion
converges to any second-order processes in the L2(�) sense, where � is the defined uncertainty
space; this implies that any uncertain process can be approximated by the orthogonal polynomials
of uncertainty variables in L2(�). The generalized polynomial chaos, or the Askey-chaos, was
proposed in [13,52–54] and employed more types of orthogonal polynomials from the Askey
scheme [54].

3.1 Basic Definition of Polynomial Chaos Expansions
The polynomial chaos expansion is essentially a representation of a function f ∈ L2 (�), where

� is the properly defined probability space. Second-order random processes in [51] are processes
with finite variance, and this can be applied to most uncertain event. Thus, a general second-order
uncertain process y(x), viewed as a function of x, i.e., the uncertain event, can be represented in
the form



484 CMES, 2021, vol.126, no.2

y (x)= α0ψ0 +
∞∑
i1=1

αi1ψ1
(
ξi1 (x)

)+ ∞∑
i1=1

i1∑
i2=1

αi1i2ψ2
(
ξi1 (x) , ξi2 (x)

)

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

αi1i2i3ψ3
(
ξi1 (x) , ξi2 (x) , ξi3 (x)

)+ . . . , (7)

where α = [α0, αi1 , . . . , αi1i2...in] is the polynomial coefficient to be estimated, ψn
(
ξi1 , ξi2, . . . , ξin

)
is

the generalized polynomial chaos of order n in terms of the d-dimensional uncertainty variables
ξ = [ξ1, ξ2, . . . , ξd ]. For convenience, Eq. (7) is usually expanded and renumbered according to
some specific rules, which is simplified in the form of only one index as

y=
∞∑
i=0

aiϕi (ξ) , (8)

where ai and ϕi (ξ) correspond to the polynomial coefficients and basis functions in
Eq. (7), respectively.

Note that Eq. (8) is an infinite and convergent summation in the infinite dimensional space
of ξ . To reduce computational effort, it is often truncated at the pth-order and rewritten in the
following form

y≈ ỹ=
S∑
i=0

aiϕi (ξ) , (9)

where (S+ 1) is the number of retained terms, which is given by

S=
p∑
j=1

1
j!

j−1∏
r=0

(d+ r)= (d+ p) !
d!p!

. (10)

The most important aspect of the above expansions is that an uncertainty process has been
decomposed into a set of deterministic functions, and the truncated expansion series, p, mainly
depends on the complexity and the nonlinearity of the uncertainty process. A second-order
approximation is recommended as a first attempt; this approximation can be refined further using
higher order terms, depending on the accuracy needs and available computational resources.

The polynomials ϕi (ξ) satisfy the following orthogonality relation:〈
ϕi (ξ) , ϕj (ξ)

〉= 〈ϕ2i (ξ)〉 δij, (11)

where δij denotes Kronecker delta function, 〈 , 〉 denotes the inner product in the Hilbert space of
variables ξ which can be expressed as follows:

〈f (ξ) , g (ξ)〉 =
∫
f (ξ )g (ξ)W (ξ)dξ . (12)

Here, W(ξ ) is the weight function determined by the distribution of the corresponding
uncertainty variables ξ .
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3.2 Polynomial Basis Functions for Hybrid Uncertainty Parameters
In Eqs. (8) and (9), the multi-dimensional, hypergeometric polynomials ϕi (ξ) can be expressed

as the tensor product of the corresponding one-dimensional polynomials bases:

ϕi (ξ)=
d∏

k=1

φik (ξk) , (13)

where φik (ξk) denotes the one-dimensional polynomial of the k-dimensional uncertainty
variable ξk.

For the stochastic parameters satisfying normal distribution, the one-dimensional polynomial
φ (ξ) is the Hermite polynomial Hn (ξ), which can be expressed as follows:

Hn (ξ)=
(√

2ξ
)n

2F0

(
−n
n
,−n− 1

2
; ;− 2

ξ2

)
. (14)

The (n+ 1)-th order Hermite polynomial satisfies the following relation:

Hn+1 (ξ)= ξHn (ξ)− nHn−1 (ξ) , (15)

hence the first few Hermite polynomials can be expressed as

H0 (ξ)= 1, H1 (ξ)= ξ , H2 (ξ)= ξ2− 1, H3 (ξ)= ξ3− 3ξ , H4 (ξ)= ξ4− 6ξ2 + 3, . . . (16)

The inner product of two Hermite polynomials can be formulated as

〈Hm (ξ) ,Hn (ξ)〉 =
∫ +∞

−∞
Hm (ξ)Hn (ξ)W (ξ)dξ = n! δmn, (17)

where δmn is Kronecker delta function, and

W (ξ)= 1√
2π

exp

(
−ξ

2

2

)
. (18)

Moreover, the Legendre polynomial Ln (ξ) is used to describe the interval parameters, which
is given by

Ln (ξ)= 2F1

(
−n,n+ 1; 1;

1−x
2

)
. (19)

The (n+ 1)-th order Legendre polynomial satisfies the following relation:

Ln+1 (ξ)= 2n+ 1
n+ 1

ξLn (ξ)− n
n+ 1

Ln−1 (ξ) , (20)

hence the first few Legendre polynomials can be expressed as

L0 (ξ)= 1, L1 (ξ)= ξ , L2 (ξ)= 1
2

(
3ξ2− 1

)
, L3 (ξ)= 1

2

(
5ξ3− 3ξ

)
,

L4 (ξ)= 1
8

(
35ξ4− 30ξ2+ 3

)
, . . . (21)
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The inner product of two Legendre polynomials can be formulated as

〈Lm (ξ) ,Ln (ξ)〉 =
∫ 1

−1
Lm (ξ)Ln (ξ)W (ξ)dξ = 2

2n+ 1
δmn, (22)

where W (ξ) = 1. More polynomial bases, such as Jacobi, Laguerre, and generalized Laguerre
polynomials can be found in the relevant literatures [52,53].

3.3 Galerkin Projection Method for the Expansion Coefficients
The Galerkin projection method [13,54] is adopted to identify the coefficient ai in Eq. (8).

Applying Galerkin projection, both sides of Eq. (8) are simultaneously projected onto the orthog-
onal polynomial ϕi (ξ), such that

〈
y (ξ) , ϕj (ξ)

〉=
〈

S∑
i=0

aiϕi (ξ) , ϕj (ξ)

〉
, j= 0, 1, . . . ,S. (23)

Owing to the orthogonality, the expansion coefficient ai in Eq. (8) can be calculated as
follows:

ai = 〈y (ξ) ,ϕi (ξ)〉
〈ϕi (ξ) ,ϕi (ξ)〉 , i= 0, 1, . . . ,S. (24)

It is noted that the denominator term of Eq. (24) is only the inner product of the orthogonal
polynomial ϕi (ξ), which is the tensor product of the corresponding one-dimensional polynomials
bases. Hence the denominator term can be regarded as the product of the inner products of the
one-dimensional, orthogonal polynomial bases:

〈
ϕ2i (ξ)

〉
=

d∏
k=1

〈(
φik (ξk)

)2〉
, (25)

where
〈(
φik (ξk)

)2〉 can be easily calculated through Eqs. (17) and (22).

The numerator term of Eq. (24) is determined by calculating the expectation of y (ξ) ϕi (ξ),
which can be expressed as

〈y (ξ) , ϕi (ξ)〉 =
∫
y (ξ) ϕi (ξ ) f (ξ)dξ , i= 0, 1, . . . ,S, (26)

where f (ξ) is the joint probability density function of ξ . It is noted that this is a numerical
integration of multivariate functions, and will be extremely complicated for the complex, nonlin-
ear functions. Here, we use the sparse grid, numerical integration method (SGNIM) [46,55] to
compute Eq. (26), while the sparse grid collocation strategy is utilized to generate the integral
collocation nodes. For the d-dimensional uncertainty variables ξ , the sparse grid with the k-th
collocation level can be expressed as follows:

Uk
d =∪k+1≤|i|≤k+dU

i1
1 ⊗Ui2

1 ⊗ · · ·⊗Uid
1 , (27)

where Ui
1 is the one-dimensional integral nodes for each uncertain variable; i1, . . . , ij, . . ., and id

are the multi-indices determining the number of collocation nodes in each dimension (Nj), that
is, Nj is a function of ij; k is the collocation level, and larger values of k correspond to higher
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accuracy. |i| =∑d
j=1 ij, and the inequality k+ 1≤ |i| ≤ k+ d limits |i| to a certain interval, so that

all integral collocation nodes satisfying this condition can be found. The detailed formulas are not
provided herein; the interested readers are referred to [55].

SGNIM performs the tensor product only on the one-dimensional integration corresponding
to the multi-indices that meet k + 1 ≤ |i| ≤ k + d, thus avoids the “dimension disaster” caused
by the direct tensor product. Such constraint can effectively remove those integral points in the
full factor grid [56] that do not contribute significantly to the improvement of accuracy, thereby
greatly reducing the computational cost.

Assuming that we obtain a total of N d-dimensional integral collocation nodes through
Eq. (27), i.e., {L1, . . . ,Ll, . . . ,LN}, the corresponding integral weight wl of the l-th collocation node
Ll ∈Uk

d can be expressed as follows:

wl = (−1)k+d−|i|
(

d− 1

k+ d− |i|
)(

wli11 . . .w
lid
1

)
, (28)

where wli11 . . .w
lid
1 is the product of the corresponding weights in each dimension of the l-th

d-dimensional integral collocation node.

Moreover, the one-dimensional integral node U
ij
1 in Eq. (27) and integral weight w

ij
1 in

Eq. (28) (j = 1, 2, . . . ,d) can be generally calculated through the moment-matching method [57].

For the normal random parameters, U
ij
1 and w

ij
1 can be easily obtained through Gaussian–Hermite

quadrature formula, given by∫ +∞

−∞
exp
(
−x2
)
g (x) dx≈

q∑
i=1

wG−Hi g
(
UG−H
i

)
, (29)

where wG−Hi and UG−H
i are the integral weights and nodes of Gaussian–Hermite integration,

respectively. Similarly, the U
ij
1 and w

ij
1 of interval parameters can be computed by Gaussian–

Legendre quadrature formulas. These weights and nodes of Gaussian quadrature can be easily
found in the relevant literature [58], which is not discussed here. Taking the Gaussian–Hermite
and Gaussian–Legendre as examples, the sparse grids in 2D space based on Gaussian abscissas
are displayed in Fig. 1.

Using the d-dimensional collocation nodes {L1, . . . ,Ll, . . . ,LN} and the corresponding weights
{w1, . . . ,wl, . . . ,wN}, Eq. (26) can be rewritten as follows:

〈y (ξ) , ϕi (ξ)〉 ≈
N∑
l=1

⎛
⎝wly (Ll) d∏

k=1

φik (ξk)

⎞
⎠ , i= 0, 1, . . . ,S. (30)

Then substituting Eqs. (25) and (30) into Eq. (24), we can obtain the expansion coefficient ai.
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Figure 1: Sparse grids in 2D space based on Gaussian abscissas (a) Gaussian–Hermite, d = 2,
k = 2. (b) Gaussian–Hermite, d = 2, k = 3. (c) Gaussian–Legendre, d = 2, k = 2. (d) Gaussian–
Legendre, d = 2, k= 3

3.4 Evaluation of the Responses Bounds
After obtaining the PCE model, the statistical moments of the response can be directly

derived through the expansion coefficients and the polynomial bases. The mean and standard
deviation of y(ξ) can be expressed as follows:

μ(y (ξ ))= a0, σ (y (ξ))=
√√√√ s∑

i=1

a2i
〈
ϕ2i (ξ)

〉
. (31)

The lower and upper bounds of the response can be determined by the combination of MCS
and PCE conveniently. In this process, the first step is to generate the samples of the hybrid
uncertainty vector ξU . Then substituting ξU into Eq. (9) to get the responses, we can obtain the
probability density function (PDF) of the responses through the samples. In such circumstance,
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the percentile difference proposed by Du et al. [59] is usually used as an uncertainty measure,
defined by


yα2α1 = yα2 − yα1 , (32)

where yα1 and yα2 are two values of y satisfy the following probability relation:

Prob
{
y≤ yαi

}= αi, i= 1, 2. (33)

α1 and α2 are, respectively, the cumulative distribution function (CDF) of y at the left and
right tail. For instance, the value of α1 can be taken as 0.05 or 0.01, while the value of α2 can
be set as 0.95 or 0.99. yαi is the value of y that corresponds to CDF αi. Fig. 2 illustrates the
concept of the percentile difference. More details can be found in [60].

Through the theory of percentile difference, the lower and upper bounds of the response can
be regarded as the positions at the left and right tail of its distribution function, satisfying the
given CDF αi (i = 1, 2). Hence the lower and upper bounds of the response can be obtained
as follows:

y= F−1
y (α1) , y= F−1

y (α2) , (34)

where F−1
y (·) is the inverse CDF of y.

y

PDF of  y

1y� 2y�

Area= 1� Area = 21 ��

Percentile difference 2

1
y���

Figure 2: The concept of the percentile difference

4 Polynomial Chaos Expansion Approach for Dynamic Response Analysis of Interval ODEs

In this section, the direct MCS for dynamic response analysis will be reviewed briefly, and
the polynomial chaos expansion approach for dynamic systems described by ODEs with hybrid
uncertainty parameters will be introduced. A numerical example based on the two methods will
then be compared to illustrate the advantages of the polynomial chaos expansion approach.

4.1 Direct MCS Method for Dynamic Response Analysis
When using numerical methods to solve the ODEs in Eq. (4), the range of time t⊆ [t0, te] is

discretized into a set of interpolation points (t0, t1, . . . , tj, . . . , te), and the solutions are calculated
in turn at each time point. At any time tj, the direct MCS can be used to evaluate the response
bounds of the dynamic systems with hybrid stochastic and interval uncertainty. The main solving
process is summarized in Fig. 3.
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Begin

Define NM, xI, xR, te, Δt, α1, and α2

Generate one group sample of xR and xI

Initialize j=0

Initialize i=1

Take the sample into the original differential 
equation, and calculate the real responses at time tj

i=NM?
No

i=i+1
Yes

j>te/Δ t ?
No

j=j+1

Yes
Output the statistical moments and bounds of 

dynamic response with time

End

Calculate the response bounds at time tj
according to Eqs. (32)-(34)

Calculate the statistical moments, and obtain the PDF of 
the responses at time tj through the NM samples

Figure 3: The solving process of the direct MCS method for dynamic response analysis

Step 1: Define the numerical solving method for ODEs, the number of samples for MCS, NM ,
the length of time period, te, the time step, 
t, the CDF of response at the left (right) tail, α1
(α2), the distribution parameters of stochastic variables, xR, and the interval bounds of interval
variables, xI .

Step 2: Initialize the cyclic counting indices j = 0 and i= 1, where j and i are introduced to
count the iterations of time and the samples, respectively.

Step 3: Generate one group sample of xR and xI from their distributions.

Step 4: Take the sample into the original ODEs, and use an appropriate numerical method
to calculate the real response at time tj.

Step 5: If i=NM , continue. Else, assume i= i+ 1, and go to Step 3.

Step 6: Calculate the statistical moments, and obtain the PDF of the response at time tj
through the NM samples.

Step 7: Calculate the response bounds at time tj according to Eqs. (32)–(34).

Step 8: If j > te/
t, output the statistical moments and bounds of dynamic response with
time. Else, assume j= j+ 1 and i= 1, then go to Step 3.
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4.2 The Computational Procedure of the Polynomial Chaos Expansion Approach
At time tj, the dynamic response of the ODEs in Eq. (4) with respect to the hybrid uncer-

tainty vector can be approximated by the truncated polynomial chaos as shown in Eq. (9). The
polynomial chaos model is an uncertainty function since the ODEs are with hybrid stochastic and
interval parameters. To generate a PCE model at time tj, we must preset the polynomial basis
functions according to the distributions of the uncertainty parameters, and specify the expansion
series of polynomial chaos as well as the collocation level k in SGNIM. After ai is obtained
through the Galerkin projection method, the PCE model is independent of the degree of freedom
of the structure and therefore, a computationally efficient surrogate model. In this case, combined
with MCS, the response bounds at time tj can be efficiently evaluated with a low computational
cost. The flowchart of the solving process is plotted in Fig. 4, which can be described as follows:

Step 1: Define the numerical solving method for ODEs, the expansion series of polynomial
chaos, p, the collocation level, k, the number of samples for MCS, NM , the length of time
period, te, the time step, 
t, the CDF of response at the left (right) tail, α1 (α2), the distribution
parameters of stochastic variables, xR, and the interval bounds of interval variables, xI .

Step 2: Determine the polynomial basis functions according to the distributions of the
uncertainty parameters.

Step 3: Utilize the sparse grid collocation strategy to generate the integral collocation nodes
and the corresponding integral weights according to Eqs. (27) and (28).

Step 4: Initialize the cyclic counting indices j = 0. j is introduced to count the iterations
of time.

Step 5: Take the collocation nodes into the original ODEs, and use an appropriate numerical
method to calculate the real responses at time tj.

Step 6: Calculate the expansion coefficient of polynomial chaos through the Galerkin projec-
tion method according to Eqs. (23)–(26) and (30) to yield the polynomial chaos at time tj.

Step 7: Calculate the statistical moments of the response at time tj according to Eq. (31).

Step 8: Generate NM group samples of xR and xI in the corresponding standard
uncertainty spaces.

Step 9: Take the NM group samples into the obtained PCE model, and obtain the
approximate responses.

Step 10: Obtain the PDF of the responses at time tj through the NM samples.

Step 11: Calculate the response bounds at time tj according to Eqs. (32)–(34).

Step 12: If j > te/
t, output the statistical moments and bounds of dynamic response with
time. Else, assume j= j+ 1, and go to Step 5.

In a brief description, the proposed polynomial chaos expansion algorithm for solving the
dynamic systems described by ODEs with hybrid stochastic and interval parameters is similar to a
type of sampling method. It transforms the original ODEs with uncertainty parameters into ODEs
with deterministic parameters through sampling, without changing their expressions. As a non-
intrusive method, any numerical methods can be used to solve the differential equations. Thus, the
polynomial chaos expansion approach can be regarded as a computationally convenient method.
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Begin

Define p, k, NM, xI, xR, te, Δt, α1, and α2

Take the NM group samples into the obtained PCE model

Determine the polynomial basis functions

Initialize j=0

j>te/Δ t ?
No

j=j+1

Yes
Output the statistical moments and the 
dynamic response bounds with time

End

Use the sparse grid collocation strategy to generate the integral 
collocation nodes and weights according to Eqs. (27) and (28)

Take the collocation nodes into the original differential 
equation, and calculate the real responses at time tj

Calculate the expansion coefficient of PCE through Galerkin 
projection method according to Eqs. (23)-(26) and (30)

Calculate the statistical moments of the response at time 
tj according to Eq. (31)

Generate NM group samples of xR and xI in the 
corresponding standard uncertainty spaces

Obtain the PDF of responses at time tj

Calculate the response bounds at time tj through Eqs. (32)-(34)

Figure 4: The solving process of the polynomial chaos expansion approach for dynamic systems
described by ODEs with hybrid uncertainty parameters

4.3 A Numerical Example and Discussions
A simple numerical example is used here to demonstrate the validity of the present method.

The results obtained by the polynomial chaos method which is abbreviated as PCEM are com-
pared with those of the direct MCS. The schematic of a double pendulum system is analyzed as
depicted in Fig. 5. The differential equations of this system can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇1 =ω1,

θ̇2 =ω2,

ω̇1 =
−g (2m1+m2) sin θ1−m2g sin (θ1− 2θ2)− 2m2 sin (θ1− θ2)

(
ω2
2l2−ω2

1l1 cos (θ1− θ2)
)

l1 (2m1+m2 −m2 cos (2θ1− 2θ2))
,

ω̇2 =
2 sin (θ1− θ2)

(
ω2
1l1 (m1+m2)+ g (m1 +m2)cos θ1+ω2

2l2m2 cos (θ1− θ2)
)

l2 (2m1+m2 −m2 cos (2θ1− 2θ2))
.

(35)
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where m1 and m2 are the masses of the two pendulums, respectively; l1 and l2 are the lengths of
the pendulum rods, respectively; θi and ωi (i = 1, 2) are respectively the angles and the angular
velocities of the pendulum rods, and g is the gravity acceleration. Here, we assume that m1
and m2 satisfy Gaussian distribution, with the mean and standard deviation of 1.0 and 0.1 kg,
respectively. Note that Gaussian distribution is unbounded distribution with infinite interval, it
means that the parameter values will be negative to some extent. Therefore, the modeling of
stochastic variables is an approximate situation. l1 and l2 are considered as interval parameters,
and their interval ranges are [0.45, 0.55] m, and [0.9, 1, 1] m, respectively. The initial conditions
[θ1 (t0) , θ2 (t0) ,ω1 (t0) ,ω2 (t0)] are [π/3, 3π/5, 0, 0].

θ1

x

y

l1

m1

l2

m2
θ2

Figure 5: The schematic of a double pendulum system

For this problem, the fifth-order polynomial chaos approach is used to solve the differential
equations in the time period of 0–10 s. The collocation level k in SGNIM is set as 4, thus the total
number of samples in PCEM are 999, and the number of samples for MCS is 10000. The direct
MCS is used to generate the reference solutions for comparison, in which the sample size is 10000.
Moreover, α1 and α2 in the two algorithms are set as 0.001 and 0.999, respectively. The results
of the angles and the angular velocities of the two pendulum rods are plotted in Figs. 6 and 7,
respectively. To show it in a more intuitive way, detailed information of the angular velocities of
the first and second pendulum rods are listed in Tabs. 1 and 2 at 10 time instants from 1 to 10
s. All calculations are completed on a desktop personal computer with 16 GB RAM and a CPU
core of Intel(R) Core(TM) i5-4590 CPU clocked at 3.30 GHz.

As shown in Figs. 6 and 7 and Tabs. 1 and 2, the response bounds of the double pendulum
system yielded by PCEM almost match the results of the direct MCS in most time period.
Therefore, we can summarize that the PCEM can be considered as an alternative algorithm with
fine precision when calculating the response bounds of dynamic systems with hybrid stochastic
and interval uncertainty. Furthermore, Figs. 6 and 7 show that the ranges of the upper and lower
bounds of θ1, θ2, ω1, and ω2 gradually expand with time. The dynamic responses of the double
pendulum system are very sensitive to the uncertainty parameters. Therefore, the uncertainty of
the dynamic response deserves more attention in structure design and analysis.

Moreover, the computations of PCEM and direct MCS take 128.67 s and 1347.42 s, respec-
tively. Clearly, the computational efficiency of PCEM is much higher than that of the direct MCS.
Therefore, the proposed method can be considered as an effective and efficient uncertainty analysis
method for the dynamic systems with hybrid stochastic and interval uncertainty parameters.
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Figure 6: The response bounds of the angles in a time period 10 s (a) the angle of the first
pendulum rod (b) the angle of the second pendulum rod
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Figure 7: The bounds of the angular velocities in a time period 10 s (a) the angular velocity of
the first pendulum rod (b) the angular velocity of the second pendulum rod

Table 1: The detailed information of ω1 (rad/s) in a time period 10 s

Time (s) Lower bound Upper bound

MCS PCEM Relative error (%) MCS PCEM Relative error (%)

1.0 −3.9829 −3.9794 0.0879 −1.7749 −1.7923 0.9803
2.0 2.0924 2.1233 1.4768 3.5345 3.4785 1.5844
3.0 −8.4598 −8.2306 2.7093 8.3898 8.4254 0.4243
4.0 −2.5410 −1.8044 28.9886 6.9487 6.6246 4.6642
5.0 −8.7390 −8.7762 0.4257 3.2666 3.0824 5.6389
6.0 −4.7024 −4.7300 0.5869 7.0896 6.8157 3.8634
7.0 −7.5115 −7.4272 1.1223 6.7837 6.5689 3.1664
8.0 −8.6512 −8.6269 0.2809 3.9777 3.7523 5.6666
9.0 −3.1432 −2.5161 19.9510 7.5285 7.3223 2.7389
10.0 −10.5592 −9.7787 7.3917 7.7989 7.1065 8.8782
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Table 2: The detailed information of ω2 (rad/s) in a time period 10 s

Time (s) Lower bound Upper bound

MCS PCEM Relative error (%) MCS PCEM Relative error (%)

1.0 −1.1334 −0.8902 21.4623 0.9580 0.7779 18.7933
2.0 1.0341 1.1190 8.2070 4.7987 4.6801 2.4709
3.0 −10.0280 −9.8051 2.2228 −1.9048 −2.3057 21.0494
4.0 0.9586 0.9971 4.0143 9.1402 8.9929 1.6111
5.0 −9.7112 −9.6075 1.0682 2.8464 2.7273 4.1838
6.0 −1.4856 −1.0830 27.1017 4.2870 4.0211 6.2030
7.0 −2.7584 −2.2496 18.4463 4.0624 3.7918 6.6594
8.0 −9.2642 −9.2932 0.3123 5.3171 5.2181 1.8621
9.0 −2.9232 −2.6520 9.2765 10.4641 10.0964 3.5141
10.0 −11.3124 −10.9938 2.8164 2.2682 1.7392 23.3230

5 The Uncertainty Analysis of Artillery Exterior Ballistic Dynamics

The schematic of the artillery exterior ballistic dynamics model is analyzed as depicted in
Fig. 8. The artillery exterior ballistic is the most typical uncertainty process in the artillery launch-
ing process, which is affected by various uncertainties such as propellant parameters, projectile
characteristic parameters, artillery muzzle vibration, meteorological environment, operation error,
and so on. These uncertainties will inevitably affect the final dynamics performance, thus the flight
trajectory and motion attitude of each projectile is different. These differences eventually converge
to the projectile impact point, and affect a very important tactical indicator of artillery system,
namely artillery firing dispersion. The existence of uncertainties is the primary cause projectile
dispersion. The uncertainty analysis of artillery exterior ballistic dynamics model can explore the
impact of the uncertainty parameters on the projectile flight, which is of great significance for
achieving effective control of the artillery firing dispersion.
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Figure 8: The schematic of the artillery exterior ballistic dynamics model
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A general six-degree of freedom exterior ballistic model can be formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv
dt

=−bx
√(

v−wx2
)2+w2

y2+w2
z2

(
v−wx2

)−gsin(θ+ψ1)cosψ2,

dθ
dt

=−gcosθ
v

,

dX
dt

=vcosψ2cos(θ+ψ1),
dY
dt

=vcosψ2sin(θ+ψ1),
dZ
dt

=vsinψ2,

dψ1

dt
=byv

(
δ1+

wy2
v

)
+bzβ

(
δ2+wz2

v

)
+ gψ1sinθ

v
+bxwy2 ,

dψ2

dt
=byv

(
δ2+

wz2
v

)
−bzβ

(
δ1+

wy2
v

)
+ gψ2sinθ

v
+bxwz2 ,

dβ
dt

= d2γ
dt2

=−kxz
√(

v−wx2
)2+w2

y2+w2
z2β,

d�̇1

dt
= d2�1

dt2
=−IC

IA
β�̇2+kzv2

(
δ1+

wy2
v

)
−kzzv�̇1+kyvβ

(
δ2+wz2

v

)
−kzzvθ̇−

g
(
vθ̇ sinθ+ v̇cosθ)

v2
,
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= d2�2

dt2
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IA
β�̇1+kzv2

(
δ2+wz2

v

)
−kzzv�̇2−kyvβ

(
δ1+

wy2
v

)
+ IC
IA
βθ̇ .

(36)

where v is the projectile velocity, θ is the path angle, ψ1 and ψ2 are, respectively, the vertical and
the horizontal deflection angle; (X , Y , Z) indicate the position of centroid of the projectile in
the ground coordinate corresponding to the firing distance, height, and offset, respectively; δ1 and
δ2 are, respectively, the vertical and horizontal attack angle; γ is the rotation angle, and β is
the rotation angular velocity; �1 and �2 are the vertical and the horizontal angle of oscillation,
respectively, while �̇1 and �̇2 are the corresponding angular velocities; IC is the polar moment of
inertia; IA is the equatorial moment of inertia; bx, by, bz, kxz, kzz, ky, and kz are the aerodynamic
parameters of the projectile, which are related to the shape and size of the projectile, such as the
projectile mass mp, the maximum diameter of projectile dmax, and the distance from the projectile
centroid to its top lcg. Detailed auxiliary equations of the aerodynamic parameters can be found
in [61]. wx2 , wy2 , and wz2 are the projections of wind speed on the velocity coordinate, which are
given by

wx2 =wx cosψ2 cos (θ +ψ1)+wz sinψ2,

wy2 =−wx sin (θ +ψ1) ,

wz2 =−wx sinψ2 cos (θ +ψ1)+wz cosψ2.

(37)

where wx and wz are the longitudinal wind and the horizontal wind, respectively.
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Through the above equations, we can obtain the flight trajectory and motion attitude of the
projectile. Assuming that there are uncertain parameters in this dynamics model, the detailed
uncertainty types and values are shown in Tab. 3. This process has a total of 14 uncertainty
parameters, which is a typical, high-dimensional, uncertainty analysis problem.

Table 3: Uncertainty parameters for an exterior ballistic model

Uncertainty Type Mean value Standard deviation Range

ψ1(t0) (rad) Interval 0.0025 N/A [0.0, 0.005]
ψ2(t0) (rad) Interval 0.0025 N/A [0.0, 0.005]
�1(t0) (rad) Interval 0.005 N/A [0.0, 0.01]
�2(t0) (rad) Interval 0.005 N/A [0.0, 0.01]
�̇1 (t0) (rad/s) Interval 5.0 N/A [0.0, 10.0]
�̇2 (t0) (rad/s) Interval 3.0 N/A [0.0, 6.0]
v(t0) (m/s) Gaussian 930.0 5.0 N/A
mp (kg) Gaussian 45.5 0.2 N/A
dmax (m) Gaussian 0.15494 1.55E-4 N/A
IA (kg ∗m2) Gaussian 1.7558 0.02 N/A
IC (kg ∗m2) Gaussian 0.1589 0.002 N/A
lcg (m) Gaussian 0.551 0.006 N/A
wx (m/s) Gaussian 2.0 0.4 N/A
wz (m/s) Gaussian 2.0 0.4 N/A

The second-order polynomial chaos approach is used to solve the differential equations in the
time period of 0–107 s. The collocation level k in SGNIM is set as 2, thus the sample size for
PCEM is 632, and the number of samples for MCS is 10000. The direct MCS is used to generate
the reference solutions for comparison, in which the sample size is 10000. α1 and α2 in the two
algorithms are set as 0.001 and 0.999, respectively. Partial results including the velocity v, the
rotation angular velocity β, and the horizontal deflection angle ψ2 of the projectile are shown in
Fig. 9. Detailed information of v and ψ2 is listed in Tabs. 4 and 5, respectively. Moreover, Fig. 10
gives the spatial ranges of the projectile flight trajectory.

Figs. 9 and 10 show that the response bounds of the artillery exterior ballistic dynamics
model yielded by PCEM perfectly match the results of the direct MCS perfectly, which is further
indicated intuitively by Tabs. 4 and 5. Moreover, it is noted that the number of hybrid uncertainty
parameters is up to 14. The results show that the proposed method has fine precision even in
the high-dimensional, uncertainty problem. Furthermore, the computational time of direct MCS
is 124879.612 s, while the computing time of PCEM is only 4521.29 s. This example demon-
strates that high precision and low computational cost can be achieved by the proposed method
when calculating the response bounds of artillery dynamics with hybrid stochastic and interval
uncertainty.
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Figure 9: The response bounds of an artillery exterior ballistic dynamics model in a time period
107 s (a) the velocity of the projectile (b) the rotation angular velocity of the projectile (c) the
horizontal deflection angle of the projectile

Table 4: The detailed information of v (m/s) in a time period 107 s

Time (s) Lower bound Upper bound

MCS PCEM Relative error (%) MCS PCEM Relative error (%)

10.0 595.9562 596.0656 0.0184 620.0387 620.0365 0.0004
20.0 448.8532 448.9614 0.0241 470.2198 470.2250 0.0011
30.0 358.9886 359.0921 0.0288 378.6309 378.6382 0.0019
40.0 305.5613 305.6526 0.0299 322.6491 322.6559 0.0021
50.0 285.7332 285.8026 0.0243 298.8509 298.8556 0.0016
60.0 296.9672 297.0107 0.0146 305.9062 305.9071 0.0003
70.0 329.0193 329.0473 0.0085 335.5312 335.5296 0.0005
80.0 366.4526 366.4884 0.0098 372.9504 372.9542 0.0010
90.0 393.2813 393.3455 0.0163 403.1814 403.1956 0.0035
100.0 396.7107 396.8114 0.0254 412.5039 412.5271 0.0056
107.0 382.9736 383.0948 0.0316 402.4136 402.4417 0.0070
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Table 5: The detailed information of ψ2 (rad) in a time period 107 s

Time (s) Lower bound Upper bound

MCS PCEM Relative error (%) MCS PCEM Relative error (%)

10.0 0.01043 0.01038 0.4794 0.02996 0.02990 0.2003
20.0 0.01921 0.01914 0.3644 0.04968 0.04961 0.1409
30.0 0.02803 0.02794 0.3211 0.06851 0.06841 0.1460
40.0 0.03729 0.03718 0.2950 0.08602 0.08591 0.1279
50.0 0.04361 0.04352 0.2064 0.09619 0.09609 0.1040
60.0 0.04255 0.04250 0.1175 0.09306 0.09300 0.0645
70.0 0.03667 0.03666 0.0273 0.08187 0.08188 0.0122
80.0 0.02981 0.02986 0.1677 0.07036 0.07045 0.1279
90.0 0.02269 0.02283 0.6170 0.06161 0.06179 0.2922
100.0 0.01465 0.01488 1.5700 0.05656 0.05688 0.5658
107.0 0.00803 0.00832 3.6115 0.05538 0.05580 0.7584

Furthermore, Fig. 9 shows that the dynamic behaviors obtained by the proposed method are
ranges rather than deterministic ones. It fully reflects the fluctuation of these dynamic behaviors
caused by uncertainty. Hence the upper and lower bounds of these dynamic behaviors can provide
a good reference for the artillery exterior ballistic design. More importantly, the uncertainty
analysis of artillery external ballistic dynamics can predict the projectile flight trajectory under
uncertain parameters. Fig. 10a gives the spatial ranges of the projectile flight trajectory derived by
the two methods, and the shadow area in Fig. 10b is the possible range of the projectile impact
point, so that the projectile dispersion caused by uncertainty parameters can be predicted.
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Figure 10: The spatial ranges of the projectile flight trajectory (a) flight trajectory bounds in
ground coordinate (b) projection of projectile flight in XZ plane
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6 Conclusions

In this paper, a hybrid stochastic and interval uncertainty analysis method with polynomial
chaos expansion is proposed to evaluate the response bounds of artillery dynamics. In this
method, the Hermite polynomial in stochastic space and the Legendre polynomial in interval space
are employed, respectively, as the trial basis to expand the Gaussian and interval processes. The
polynomial coefficients are calculated through the Galerkin projection method, in which the sparse
grid, numerical integration method is used to generate the integral points and the corresponding
integral weights. Through the sampling in polynomial chaos expansion, the original artillery
dynamics systems with hybrid stochastic and interval parameters can be transformed into ones
with deterministic parameters, without changing their expressions. The yielded polynomial chaos
expansion model is utilized as a computationally efficient surrogate model, and the supremum and
infimum of the dynamic responses at each iteration time step can be easily approximated through
Monte Carlo simulation and percentile difference. A numerical example and an artillery exterior
ballistic dynamics model were used to illustrate the feasibility and efficiency of this approach.
The numerical results indicate that the dynamic response bounds obtained by the polynomial
chaos expansion approach almost match the results of the direct Monte Carlo simulation, but the
computational efficiency of the polynomial chaos expansion approach is much higher than direct
Monte Carlo simulation. Moreover, the proposed method also exhibits fine precision even in high-
dimensional uncertainty analysis problems. Another advantage of the polynomial chaos expansion
approach is that it is non-intrusive. In a brief description, the proposed algorithm is similar to
a type of sampling method. It has no special restrictions on numerical methods for solving the
differential equations. Therefore, this method can be potentially applied to other artillery dynamics
systems with hybrid uncertainty parameters, such as the artillery multi-body dynamics system
described by the differential-algebraic equations (DAEs). However, further research is required to
explore the potential of the proposed method in dealing with other artillery dynamics system.
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