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ABSTRACT

This article studies the development of two numerical techniques for solving convection-diffusion type partial
integro-differential equation (PIDE) with a weakly singular kernel. Cubic trigonometric B-spline (CTBS) functions
are used for interpolation in both methods. The first method is CTBS based collocation method which reduces the
PIDE to an algebraic tridiagonal systemof linear equations. The othermethod is CTBSbased differential quadrature
method which converts the PIDE to a systemofODEs by computing spatial derivatives asweighted sumof function
values. An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method
as well as for determination of weighting coefficients in the second method. An explicit scheme is employed as
time integrator to solve the system of ODEs obtained in the second method. The methods are tested with three
nonhomogeneous problems for their validation. Stability, computational efficiency and numerical convergence
of the methods are analyzed. Comparison of errors in approximations produced by the present methods versus
different values of discretization parameters and convection-diffusion coefficients are made. Convection and
diffusion dominant cases are discussed in terms of Peclet number. The results are also comparedwith cubic B-spline
collocation method.
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1 Introduction

Partial integro-differential equations have been applied to model different physical phenomena
in science and engineering such as heat conduction [1], reactor dynamics [2], flow in fractured
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biomaterials [3], electricity swaptions [4], financial option pricing [5], viscoelasticity [6], population
dynamics [7], and convection-diffusion [8–11].

Convection-diffusion integro-differential equation has been used to model several important
physical phenomena such as heat and mass transfer, flows in porous media, current density in
fluids, and pollutant transport in atmosphere, streams, rivers and oceans (see [8,10,11] and the
references therein).

PIDE models have been rarely solved analytically and their general solution is only obtained
under restrictive conditions [12]. Due to such restrictive conditions the models become over sim-
plified and also limit their physical relevance. Therefore, alternative approaches have been obtained
for the solution of PIDEs including finite difference methods [13,14], finite element method [15],
radial basis function collocation methods [16], spectral method [17], quasi-wavelet method [18],
and spline methods [19–21].

This paper is devoted to comparative study of two efficient numerical techniques for solution
of convection-diffusion parabolic PIDE [8,10] defined by:

∂u(x, t)
∂t

+ c
∂u(x, t)

∂x
− d

∂2u(x, t)
∂x2

=
∫ t

0
K(q− t)u(x, q)dq+ f (x, t), x ∈� = [a, b], t> 0, (1)

with initial condition

u(x, 0)= g(x), x ∈�, (2)

boundary conditions

u(a, t)= g1(t), u(b, t)= g2(t), t> 0, (3)

where the integral term is known as memory term, g(x),g1(t),g2(t) are known functions, and
K(q, t) = (t − q)−μ, 0 < μ < 1, is weakly singular kernel. The parameters c and d are positive
constants which represent quantities of the convection and diffusion processes respectively. Differ-
ent numerical techniques are developed to obtain the solution of the PIDE (1). Siddiqi et al. [8]
employed cubic b-spline functions to spatial derivatives and Euler backward formula to time
derivative to solve the PIDE (1). Ali et al. [9] constructed quartic B-spline collocation technique
to obtain the solution of the PIDE (1). Fahim et al. [10] have solved (1) using product trapezoidal
integration rule and sinc collocation method. Recently, Al-Humedi et al. [11] have solved (1) using
cubic B-spline Galerkin method with quadratic weight function.

The cubic trigonometric B-spline methods are numerically accurate, computationally fast,
consistent, and has ability to get the approximate solution at any point in the domain with more
accuracy as compared to the conventional finite difference method which approximates solution
at only selected points in the domain. In recent years solution of several partial differential
equations have been found using these methods [22–28] due to special geometric features of
trigonometric splines [22,29–31]. In 1964, Schoenberg [29] introduced piecewise trigonometric
spline functions and founded the theory of locally supported trigonometric splines, named as
trigonometric B-splines. It was derived that trigonometric spline can be written as linear combina-
tion of trigonometric B-splines. Lycche et al. [32] derived a recurrence relation using trigonometric
B-splines divided differences for stable computation of trigonometric splines. They also formulated
derivatives of trigonometric B-splines and provided an integral representation of trigonometric
divided differences with trigonometric B-spline as kernel. Later on several other researchers have
enhanced the theory of trigonometric B-splines by further developing many important properties
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such as C2 continuity, nonnegativity, partition of unity, smoothness, curve control and its analysis,
and banded interpolation matrix (see [22,30,31] and the references therein). The first application
of cubic trigonometric B-spline functions appeared in the literature in 2010 [33] when these
functions were used for the solution of Two-point boundary value problem. In 2014, CTBS
functions were extended for the solution of initial and boundary-value hyperbolic problems [22].
Recently, CBTS functions have been employed for the solution of PIDE problem [19,34]. The
CTBS functions are also employed for the solution different problems which include Hunter
Saxton equation [25], time fractional diffusion-wave equation [26], Fisher’s reaction-diffusion equa-
tions [28], non-conservative linear transport problems [27], Nonclassical diffusion problems [35],
Hyperbolic telegraph equation [36], Fisher’s equations [37], and coupled Burgers’ equations [38].

In 1937, Frazer et al. [39] initiated the use of collocation method. This method is a spe-
cial variant of the method of weighted residuals which uses dirac delta functions as weighting
functions to minimize the residual. The main advantage of the collocation method is that as
the number of collocation points increases, more points from the domain satisfy the functional
equation. As a result approximate solution obtained by this method approaches to exact solution.
Another advantage of this method is that using the dirac delta function makes computation of
residual easy. The method is coupled with other methods such as Galerkin method, least squares
method, Newton’s method, and finite difference method for the solution of various problems
(see [22,40,41] and the references therein). In this paper, the first technique is developed by
coupling CTBS functions with collocation procedure (CTBS-CT) for the solution of problem (1).
The main advantage of this technique is that it reduces (1) to a tridiagonal system of linear
equations which can be solved by an efficient tridiagonal solver.

The differential quadrature (DQ) method was projected as strong alternative of conven-
tional methods i.e., finite difference and finite element methods. This method produces accurate
numerical results with little computational effort as it uses smaller set of grid points while the
conventional methods need relatively larger sets [42,43]. The DQ method was first introduced
by Bellman et al. [44] in 1971, for approximating derivative of a sufficiently smooth function.
The basic structure of DQ method is that it uses a weighted linear sum of functional values
to approximate the function derivatives. The weighting coefficients play a key role since accuracy
of the approximation depends on the accuracy of these coefficients. Initially Bellman and his
co-researchers have developed two methods for determination of weighting coefficients [45]. How-
ever, the methods lead to ill-conditioned algebraic system for larger set of grid points. Shu [46]
presented a systematic theoretical analysis and applications of earlier work about this method,
and introduced two explicit approaches (i) a recurrence formula, and (ii) matrix multiplication,
for computing the weighting coefficients of higher order derivatives to avoid the ill-conditioned
system. The selection of grid points also effects accuracy of the DQ method and better accuracy
was achieved using non-uniform and scattered grid points, and ghost points [34,43,47,48]. The DQ
method is extended for the solution of various problems including Fisher’s reaction-diffusion equa-
tions [28], coupled viscous Burgers’ equations [38], space-dependent inverse heat problems [48],
Kawahara equation [49], and shock wave simulations [50].

Recently, Korkmaz et al. [27] pioneered DQ method along with CTBS functions for the
solution of second order advection-diffusion equation. Tasmir et al. [28] presented modified CTBS
functions based DQ method for second order nonlinear Fisher’s reaction-diffusion equations.
Kumar Singh et al. [38] extended the method for the solution of one and two dimensional coupled
viscous Burgers’ equations. Arora et al. [51] developed a hybrid CTBS based DQ method for
the solution of nonlinear Burgers’ equations. In this paper, the other technique is developed by
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coupling CTBS functions with differential quadrature (CTBS-DQ) approach. The key feature of
this approach is that it reduces (1) to a system of ODEs which can be solved by any ODE solver.

Upto the best of our knowledge a comparative study of PIDE (1) using the proposed
techniques has not been done. Moreover, solving PIDEs of the form (1) numerically have two
major challenges in addition to discretization of temporal and spatial derivatives: the singular
kernel and approximation of the memory term which also affect stability and accuracy of a
numerical method.

Remaining work of the paper is arranged as follows: Section 2 shows development of the
proposed methods through combination of CTBS functions with collocation and differential
quadrature procedures. Section 3 analyzes stability of the present schemes. Section 4 shows
numerical results of both methods including error norms, computational efficiency, conditioning,
spectral radii, convergence and comparison with an existing method in order to establish the
current approaches. Section 5 concludes the findings and outcomes of the paper.

2 The Proposed Methods

In order to develop, the proposed methods, consider the problem (1)–(3). The spatial domain

� is divided into N sub-intervals �n= [xn−1, xn], n= 1, 2, . . . ,N, of equal length h= b− a
N

by the

nodes xn, n ∈ I = {0, 1, . . . ,N} with a= x0 and b= xN . Let tl = lδt, l = 0, 1, 2, . . . ,M, where δt is
temporal step.

2.1 CTBS-CT

Taking t = tl+1 in Eq. (1) and the temporal derivative is approximated by Euler backward
formula which reduces Eq. (1) to the following form:

u(x, tl+1)− u(x, tl)
δt

+ c
∂u(x, tl+1)

∂x
− d

∂2u(x, tl+1)

∂x2
=

∫ tl+1

0
(tl+1 − q)−μu(x,q)dq+ f (x, tl+1). (4)

The integral part of Eq. (4) is approximated as below ([9]):

∫ tl+1

0
(tl+1−q)−μu(x, q)dq=

l∑
s=0

∫ ts+1

ts
q−μu(x, tl+1−q)dq,

≈
l∑

s=0

u(x, tl−s+1)

∫ tj+1

ts
q−μ dq,

≈
l∑

s=0

bsul−s+1, (5)

where ul denotes u(x, tl+1) and bs= (δt)1−μ

1−μ

(
(s+ 1)1−μ − s1−μ

)
and bs→ 0 as s→∞.
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Putting Eq. (5) in Eq. (4), we get

ul+1− ul

δt
+ c

∂ul+1

∂x
− d

∂2ul+1

∂x2
=

l∑
s=0

bsul−s+1+ f l+1, (6)

where f l+1 = f (x, tl+1).

Simplifying Eq. (6), we get

ul+1+ δt
(
cul+1

x − dul+1
xx − b0ul+1

)
= (1+ b1δt)ul + δt

⎛
⎝ l∑
s=2

bsul−s+1+ f l+1

⎞
⎠ , (7)

where ul+1
x = ∂ul+1

∂x
and ul+1

xx = ∂2ul+1

∂x2
.

Now collocating Eq. (7) at x= xr, r ∈ I , we obtain

(1− b0δt)ul+1
r + δt

(
c(ux)l+1

r − d(uxx)l+1
r

)
= (1+ b1δt)ulr+ δt

⎛
⎝ l∑
s=2

bsul−s+1
r + f l+1

r

⎞
⎠ , (8)

where ul+1
r = u(xr, tl+1). Next using CTBS functions Sr(x), given in [22,23] to approximate u(xr, t).

Let

u(x, t)=
N+1∑
r=−1

Cr(t)Sr(x), (9)

where

Sr(x)= 1
ω

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ3
r−2, x ∈�r−1,

φr−2[φr−2ρr+ρr+1φr−1]+ρr+1φ
2
r−1, x ∈�r,

φr−2ρ
2
r+1+ρr+2[φr−1ρr+1+ρr+2φr], x ∈�r+1,

ρ3
r+2, x ∈�r+2,

0, otherwise,

φr= sin
(
x− xr
2

)
, ρr= sin

(
xr− x
2

)
, and ω = sin

(
h
2

)
sin(h) sin

(
3h
2

)
.

Lemma [22,33]: The values of Sr(x), S′r(x) and S′′r (x) at the node xs are obtained as:

Sr(xs)=

⎧⎪⎨
⎪⎩

δ2, if r− s= 0,

δ1, if r− s= 1 or − 1,

0, elsewhere,

S′r(xs)=

⎧⎪⎨
⎪⎩

δ4, if r− s= 1,

δ3, if r− s=−1,

0, elsewhere,
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and

S′′r (xs)=

⎧⎪⎨
⎪⎩

δ6, if r− s= 0,

δ5, if r− s= 1 or − 1,

0, elsewhere,

.

Then using Eq. (9), the function u and its derivatives at the rth node (x= xr, r ∈ I) can be
expressed as

ur= δ1Cr−1+ δ2Cr+ δ1Cr+1,

u′r= δ3Cr−1+ δ4Cr+1, (10)

u′′r = δ5Cr−1+ δ6Cr+ δ5Cr+1,

where δ1 =
sin2(h2)

sin(h) sin(3h2 )
, δ2 =

2
1+ 2 cos(h)

, δ3 =− 3

4 sin(3h2 )
, δ4 =

3

4 sin(3h2 )
,

δ5 = 3(1+ 3 cos(h))

16(2 cos(h2 )+ cos(3h2 )) sin2(h2 )
, and δ6 =− 3 cot2(h2 )

2+ 4 cos(h)
.

Thus by using (10) in (8) and combining like terms, we get

α1C
l+1
r−1+α2C

l+1
r +α3C

l+1
r+1 = (1+ b1δt)(δ1C

l
r−1+ δ2C

l
r+ δ1C

l
r+1)+Fr, r ∈ I , (11)

where α1 = [(1−b0δt)δ1+cδtδ3−dδtδ5],α2 = [(1−b0δt)δ2−dδtδ6], α3 = [(1−b0δt)δ1+cδtδ4−dδtδ5],

and Fr= δt
∑l

s=2 bs[δ1C
l−s+1
r−1 + δ2Cl−s+1

r + δ1C
l−s+1
r+1 ]+ δtf l+1

r .

For r= 0 and N, Eq. (11) reduces to α1C
l+1
−1 +α2C

l+1
0 +α3C

l+1
1 = F0 and α1C

l+1
N−1+α2C

l+1
N +

α3C
l+1
N+1 = FN respectively. After eliminating the parameters Cl+1

−1 and Cl+1
N+1 using (10) and the

boundary conditions (3), we get the linear system of N + 1 equations in N + 1 unknowns whose
matrix form is as follows:

ACl+1 =BCl +F, l ≥ 0, (12)

where

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2− δ2

δ1
α1 α3−α1 0 0 . . . 0 0 0

α1 α2 α3 0 . . . 0 0 0

0 α1 α2 α3 . . . 0 0 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 . . . α1 α2 α3

0 0 0 0 . . . 0 α1−α3 α2− δ2

δ1
α3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B= (1+ b1δt)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0 0 0
δ1 δ2 δ1 0 . . . 0 0 0

0 δ1 δ2 δ1 . . . 0 0 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 . . . δ1 δ2 δ1

0 0 0 0 . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Cl+1 = [Cl+1
0 ,Cl+1

1 , . . . ,Cl+1
N ]T and F= [F0+ (1+b1δt)g1(tl)− α1

δ1
g1(tl+1),F1,F2, . . . ,FN−1,FN+

(1+ b1δt)g2(t
l)− α3

δ1
g2(t

l+1)]T .

Eq. (12) can be re-written as

Cl+1 =DCl +K, l ≥ 0, (13)

where D=A−1B and K=A−1F. The system Eq. (12) is solved using the efficient tridiagonal solver
“Thomas Algorithm.”

2.2 CTBS-DQ
The DQ approach provides kth order derivative of the function u(x, t) from the values of

u(x, t) at xr, r ∈ I1 = {1, 2, . . . ,N}, as

∂ku(xr, t)
∂xk

=
N∑
s=1

a(k)
rs u(xs, t), (14)

where a(k)
rs , k = 1, 2, . . . are kth order weighting coefficients (WCs) which are determined by test

functions. Different basis functions have been employed as test functions for determination of the
WCs such as CTBS functions [27,38], polynomials [42], radial basis functions [48], cubic B-spline
functions [49], and sinc functions [50]. In CTBS-DQ method we take the following test functions
which are defined as modified CTBS functions [51]:

	1(x)= (S1+ 2S0)(x),

	2(x)= (S2−S0)(x),

	l(x)= Sl(x), for l= 3, 4, . . . ,N− 2,

	N−1(x)= (SN−1−SN+1)(x),

	N(x)= (SN + 2SN+1)(x),

which form a basis in region �.

Thus for each basis function 	l(xr), Eq. (14) gives

∂k	m

∂xk
(xr)=

N∑
s=1

a(k)
rs 	m(xs), for r, m ∈ I1, and k= 1, 2,
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which leads to the following matrix form:

G�a(k)
r =H(k)

r , (15)

where �a(k)
r = [a(k)

rs : s ∈ I1], H(k)
r =

[
∂k	l

∂xk
(xr) : l ∈ I1

]T
, G= [grs : r, s ∈ I1] and

grs=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2δ1+ δ2, if r= s= 1 or N,

δ2, if r= s and 1< r, s<N,

δ1, if (s= r− 1 and 2< r≤N) or (r= s− 1 and 1≤ s<N− 1),
0, elsewhere.

The weighting coefficients a(k)
rs , r, s ∈ I1, are obtained by solving the system (15) through the

well known efficient tridiagonal solver “Thomas algorithm.” Now using (14) in (1) and taking
x= xr to obtain the differential quadrature based technique,

∂u(xr, t)
∂t

+ c
N∑
s=1

a(1)
rs u(xs, t)− d

N∑
s=1

a(2)
rs u(xs, τ )=

∫ t

0
(t−q)−μu(xr, q)dq+ f (xr, t). (16)

The explicit time marching process for Eq. (16) is obtained as follows:

ul+1
r − ulr

δt
=−c �a(1)

r ul + d �a(2)
r ul +

∫ tl+1

0
(tl+1−q)−μu(xr, q)dq+ f l+1

r , (17)

where ul = [ulr : r ∈ I1]T . Using Eq. (5) in Eq. (17) and combining the like terms, we get

ul+1
r = 1

1− b0δt

⎛
⎝ulr+ δt

⎛
⎝−c �a(1)

r ul + d �a(2)
r ul +

l∑
s=1

bsul−s+1
r + f l+1

r

⎞
⎠

⎞
⎠ . (18)

Eq. (18) leads to the following matrix form:

ul+1 =Dul +M, l ≥ 0, (19)

where

D= 1
1− b0δt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+ δt(b1 − ca(1)
11 + da(2)

11 ) δt(−ca(1)
12 + da(2)

12 ) . . . δt(−ca(1)
1N + da(2)

1N)

δt(−ca(1)
21 + da(2)

22 ) 1+ δt(b1 − ca(1)
22 + da(2)

22 ) . . . δt(−ca(1)
2N + da(2)

2N)

. . . . . .

. . . . . .

. . . . . .

δt(−ca(1)
N1 + da(2)

N1) δt(−ca(1)
N2 + da(2)

N2) . . . 1+ δt(b1− ca(1)
NN + da(2)

NN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and M= [p1,p2, ...,pN]T , pr = δt(
∑l

s=2 bsu
l−s+1
r + f l+1

r ), r∈ I1.
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3 Stability Analysis

In this section we assess stability of the present schemes (13) and (19). Let en, un and ũn

represent error, exact solution and approximate solution at nth time level respectively, then en =
un− ũn. The error equation for the methods (13) and (19) is given by

en+1 =Den, (20)

where D is the amplification matrix. The schemes (13) and (19) will be stable if ‖D‖ ≤ 1 (see [52]
and Lax-Richtmyer condition for stability). This condition is equivalent to ρ(D)≤ 1, where ρ(D)

represents spectral radius of the matrix D [53] and is defined as ρ(D)=max1≤i≤N |λi| and λi is an
eigenvalue of D. The values of λi depend on N, δt, c, d and μ. Computational values of ρ(D) for
different values of the parameters N, δt, c, d and μ are provided in the next section which show
that the schemes (13) and (19) satisfy the condition of stability.

4 Test Problems

In this section three examples are taken from the literature [8] to validate the present
approaches (13) and (19) for the solution of the problem (1)–(3) and comparison is also made
with results obtained by cubic B-spline collocation method (CBSC) [8]. The methods are examined
via E∞, E2 error norms [8]. The schemes are also tested for convection and diffusion dominated

problems via the Peclet number P= c
d
h. High values of P lead to convection dominated problem

while lower values of P lead to diffusion dominated problem [8]. Computations are carried out
with Corei3, 2.4 GHz processor, 4 GB Ram, Matlab7.5 and computer run time (RT) is provided
in seconds.

4.1 Problem 1

We take Eqs. (1)–(3) with convection-diffusion coefficients c = 0.1, d = 0.1 and μ = 1
4

elsewhere mentioned, and choose f (x, t) such that the exact solution is given by [8]

u(x, t)= 2(t+ 1) sin2 x, 0≤ x≤ 4π . (21)

Table 1: Error norms for different values of convection and diffusion coefficients using δt= 10−4,
M = 100, N = 100

c d CTBS-DQ CTBS-CT

E∞ E2 ρ(D) E∞ E2 ρ(D)

0.5 0.1 1.098e− 03 1.758e− 05 1.0 1.935e− 05 1.125e− 06 1.0
0.2 0.1 1.015e− 03 1.445e− 05 1.0 1.934e− 05 1.125e− 06 1.0
0.1 0.1 9.866e− 04 1.395e− 05 1.0 1.934e− 05 1.125e− 06 1.0
0.05 0.1 9.721e− 04 1.382e− 05 1.0 1.934e− 05 1.125e− 06 1.0
0.01 0.1 9.604e− 04 1.378e− 05 1.0 1.933e− 05 1.125e− 06 1.0
0.1 0.5 3.229e− 03 4.590e− 05 1.0 5.641e− 05 3.485e− 06 1.0
0.1 0.2 1.728e− 03 2.442e− 05 1.0 2.868e− 05 1.704e− 06 1.0
0.1 0.05 5.435e− 04 7.704e− 05 1.0 1.466e− 05 8.524e− 06 1.0
0.1 0.01 1.481e− 04 2.665e− 06 1.0 1.092e− 05 6.569e− 07 1.0
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Table 2: Error norms vs. N using δt= 10−4, M = 100

N CTBS-DQ CTBS-CT

E∞ E2 RT (sec) E∞ E2 RT (sec)

10 2.257e− 03 4.357e− 04 0.041 1.154e− 03 2.060e− 04 0.034
50 1.161e− 03 2.394e− 05 0.060 4.776e− 05 4.153e− 06 0.053
100 9.866e− 04 1.395e− 05 0.089 1.934e− 05 1.125e− 06 0.075
200 6.974e− 04 4.950e− 06 0.166 1.236e− 05 5.131e− 07 0.122
500 2.662e− 04 8.096e− 07 0.662 1.038e− 05 2.817e− 07 0.263

Table 3: Error norms at various time levels M using δt= 10−4 and N = 100

M CTBS-DQ CTBS-CT

E∞ E2 RT (sec) E∞ E2 RT (sec)

10 1.109e− 04 1.582e− 06 0.022 1.406e− 06 8.399e− 08 0.017
50 5.256e− 04 7.458e− 06 0.058 8.940e− 06 5.221e− 07 0.025
100 9.866e− 04 1.395e− 05 0.089 1.934e− 05 1.125e− 06 0.075
200 1.756e− 03 2.483e− 05 0.187 4.135e− 05 2.400e− 06 0.185
500 3.300e− 03 4.836e− 05 0.856 1.118e− 04 6.478e− 06 0.328

Table 4: Convergence in space using δt= 10−5 and M = 100

N CTBS-DQ CTBS-CT

E2 Order ρ(D) E2 Order κ(A) ρ(D)

10 4.342e− 05 – 1.0 2.042e− 05 – 8.964e+ 05 1.0
50 3.386e− 06 1.585 1.0 3.620e− 07 2.506 1.201e+ 04 1.0
100 1.580e− 06 1.100 1.0 6.942e− 08 2.382 2.848e+ 03 1.0
200 7.430e− 07 1.088 1.0 1.701e− 08 2.029 6.962e+ 02 1.0
500 2.261e− 07 1.298 1.0 5.648e− 09 1.203 1.100e+ 02 1.0
1000 6.588e− 08 1.780 1.0 3.563e− 09 0.665 2.729e+ 01 1.0

Table 5: Convergence in time using N = 100 and t= 0.1

δt CTBS-DQ CTBS-CT

E2 Order ρ(D) E2 Order κ(A) ρ(D)

10−2 7.867e− 05 – 1.0 1.033e− 04 – 2.783e+ 00 1.0
10−3 7.564e− 05 0.0171 1.0 4.100e− 05 0.401 2.836e+ 01 1.0
10−4 7.609e− 05 −0.0026 1.0 1.377e− 05 0.474 2.847e+ 02 1.0
10−5 7.614e− 05 −0.0003 1.0 7.615e− 06 0.257 2.848e+ 03 1.0
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Table 6: Error norms vs. the parameter μ using δt= 10−4, N = 100 and M = 100

μ CTBS-DQ CTBS-CT

E∞ E2 ρ(D) E∞ E2 κ(A) ρ(D)

1
5

9.847e− 04 1.571e− 05 1.0 9.458e− 06 7.532e− 07 2.847e+ 02 1.0

1
4

9.866e− 04 1.395e− 05 1.0 1.934e− 05 1.125e− 06 2.847e+ 02 1.0

1
3

9.911e− 04 2.139e− 05 1.0 1.176e− 04 7.085e− 06 2.847e+ 02 1.0

1
2

1.429e− 03 8.913e− 05 1.0 8.573e− 04 5.256e− 05 2.847e+ 02 1.0

Table 7: Comparison of error norms with CBSC method [8], δt= 10−5

P N M CTBS-DQ CTBS-CT CBSC

E∞ E2 E∞ E2 E∞ E2

1.25663 10 10 2.243e− 05 4.340e− 06 1.143e− 05 2.040e− 06 1.906e− 05 3.785e− 06
50 1.122e− 04 2.170e− 05 5.717e− 05 1.021e− 05 9.328e− 05 1.867e− 05
100 2.244e− 04 4.342e− 05 1.144e− 04 2.042e− 05 1.924e− 04 3.680e− 05

0.25132 50 10 1.197e− 05 3.396e− 07 3.662e− 07 3.439e− 08 9.466e− 07 7.297e− 08
50 5.980e− 05 1.696e− 06 1.849e− 06 1.738e− 07 4.227e− 06 2.892e− 07
100 1.194e− 04 3.386e− 06 3.719e− 06 3.492e− 07 7.136e− 06 6.352e− 07

(a) (b)

Figure 1: Numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT, using N = 50, δt= 10−4,
M = 1000, c= 0.1, d = 0.1, μ= 1/4
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(a) (b)

Figure 2: Error in numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT, using N = 50,
δt= 10−4, M = 1000, c= 0.1, d = 0.1, μ= 1/4

(a)

Figure 3: Numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT, over the time interval
[0, 1] using N = 50, δt= 10−4, c= 0.1, d = 0.1, μ= 1/4

The conditions g, g1, g2 are found from Eq. (21). The error norms E∞, E2 are obtained
using the present methods (13) and (19) along with different values of the parameters number of
nodes N, time step δt, time level M, convection and diffusion coefficients c, d, and μ which are
reported in Tabs. 1–6. The effect of the convection and diffusion coefficient parameters c, d on the
accuracy of both the methods are shown in Tab. 1. Computational efficiency RT of the methods
are given in Tabs. 2 and 3 which shows that both the proposed methods are highly efficient.
Numerical rate of convergence with respect to N and δt are provided in Tabs. 4 and 5, and it can
be seen that the CTBS-CT has higher rate of convergence than the CTBS-DQ. However, the rate
of convergence of CTBS-DQ becomes higher than that of CTBS-CT for larger values of spatial
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nodes N. From Tabs. 4–6, it can be noted that numerical values of ρ(D) for both methods satisfy
the stability condition given in Section 3, whereas κ(A) regarding CTBS-CT remains reasonably
small. From Tab. 6, it can be noted that as the parameter μ decreases accuracy of the CTBS-DQ
slightly increases as compared to the CTBS-CT. Furthermore, better accuracy of CTBS-CT than
CBSC method [8] is evident from Tab. 7. The solution of (1) for cases of convection dominant and
diffusion dominant problems are also provided in this table. It can also be seen from these tables
that the CTBS-CT gives better results than the CTBS-DQ. Fig. 1 represents solutions obtained
using CTBS-DQ and CTBS-CT at M = 1000. Fig. 2 displays errors in approximation obtained
by the present methods. Fig. 3 shows the CTBS based solutions at different time levels. Fig. 4
represents condition numbers of system matrices of the methods. Fig. 5 compares convergence in
space for the proposed methods.

Figure 4: Condition numbers of system matrix A and interpolation matrix G corresponding to the
methods (12) and (18) respectively, vs. the number of grid points N, for δt= 10−4, c= 0.1, d = 0.1,
μ= 1/4

4.2 Problem 2
We take the Eqs. (1)–(3) with the convection-diffusion coefficients c= 0.5, d = 0.005, and μ=

1/3. f (x, t) is chosen so that the exact solution of (1)–(3) is given by [8]

u(x, t)= (t+ 1) cosπx, 0≤ x≤ 1, t> 0. (22)
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Figure 5: Convergence of the approximate solution in space using δt = 10−4, c = 0.1, d = 0.1,
μ= 1/4

Table 8: Error norms using M = 100, μ= 1/3

δt N CTBS-DQ CTBS-CT

E∞ E2 E∞ E2

10−4 10 2.700e− 03 2.951e− 04 1.878e− 05 3.443e− 06
50 4.973e− 04 1.154e− 05 1.512e− 05 1.237e− 06
100 1.535e− 04 2.471e− 06 1.267e− 05 8.654e− 07
200 4.117e− 05 6.066e− 07 1.234e− 05 6.098e− 07
500 7.882e− 06 2.538e− 07 1.232e− 05 3.853e− 07

10−5 10 2.615e− 04 2.992e− 05 7.158e− 07 1.284e− 07
50 9.437e− 05 1.968e− 06 3.492e− 07 2.770e− 08
100 5.734e− 05 6.446e− 07 3.286e− 07 1.892e− 08
200 2.537e− 05 1.660e− 07 2.935e− 07 1.325e− 08
500 5.595e− 06 2.122e− 08 2.653e− 07 8.350e− 09

Table 9: Comparison of error norms with CBSC method [8] for N = 100, P= 1

δt M CTBS-DQ CTBS-CT CBSC

E∞ E2 E∞ E2 E∞ E2

10−4 10 1.565e− 05 1.819e− 07 7.694e− 07 4.421e− 08 1.171e− 06 1.469e− 08
50 5.756e− 05 6.492e− 07 6.004e− 06 3.789e− 07 2.010e− 05 2.543e− 07
100 8.706e− 05 1.006e− 06 1.267e− 05 8.654e− 07 7.266e− 05 9.210e− 07
500 1.535e− 04 2.471e− 06 7.627e− 05 5.256e− 06 1.500e− 03 1.906e− 05

10−5 10 1.640e− 06 1.998e− 08 1.734e− 08 9.706e− 10 3.013e− 05 3.755e− 07
50 8.132e− 06 9.519e− 08 1.461e− 07 8.282e− 09 3.305e− 04 5.006e− 06
100 1.554e− 05 1.780e− 07 3.286e− 07 1.892e− 08 1.061e− 03 1.684e− 05
500 5.744e− 05 6.446e− 07 1.801e− 06 1.144e− 07 2.171e− 02 2.841e− 04
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The conditions g, g1, g2 are found from Eq. (22). The error norms for different values of
N, δt and M are computed which are reported in Tabs. 8, 9 alongwith the results of CBSC
method [8]. It can be noted from Tab. 8 that errors produced by both the proposed methods
decrease as number of nodes N increases. Also both the methods provide considerably better
accuracy than the method [8]. Fig. 6 represents solutions obtained using CTBS-DQ and CTBS-CT
at M = 1000. Fig. 7 depicts the solution at different time levels.

(a) (b)

Figure 6: Numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT, using N = 50, δt= 10−4,
M = 1000, c= 0.5, d = 0.005, μ= 1/3

(a) (b)

Figure 7: Numerical solutions obtained by (a) CTBS-DQ (b) CTBS-CT, over time interval [0, 0.1]
using N = 50, δt= 10−4, c= 0.5, d = 0.005, μ= 1/3
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4.3 Problem 3
For this example we take the convection-diffusion coefficients c= 0.5, d = 0.001 and μ= 1/4

for the problem (1)–(3) and f (x, t) is chosen so that the exact solution is given by [8]

u(x, t)= 2(t2+ t+ 1) sin2 πx, 0≤ x≤ 1, t> 0. (23)

Table 10: Error norms using M = 100

δt N CTBS-DQ CTBS-CT

E∞ E2 E∞ E2

10−4 10 1.600e− 03 2.320e− 04 4.825e− 04 1.038e− 04
50 5.183e− 04 4.843e− 05 5.103e− 04 4.814e− 05
100 5.186e− 04 3.432e− 05 5.106e− 04 3.404e− 05
200 5.187e− 04 2.432e− 05 5.108e− 04 2.406e− 05
500 5.188e− 04 1.540e− 05 5.108e− 04 1.521e− 05

10−5 10 1.683e− 04 2.300e− 05 7.482e− 06 1.638e− 06
50 3.700e− 05 1.211e− 06 8.995e− 06 8.503e− 07
100 2.136e− 05 6.500e− 07 9.029e− 06 6.026e− 07
200 1.296e− 05 4.378e− 07 9.037e− 06 4.263e− 07
500 9.191e− 06 2.738e− 07 9.039e− 06 2.696e− 07

Table 11: Comparison of error norms with CBSC method [8] using N = 100, δt= 10−5, P= 5

M CTBS-DQ CTBS-CT CBSC

E∞ E2 E∞ E2 E∞ E2

10 2.502e− 06 2.893e− 08 1.685e− 07 1.130e− 08 6.616e− 09 3.941e− 10
50 1.159e− 05 2.203e− 07 2.687e− 06 1.796e− 07 3.308e− 08 1.970e− 09
100 2.136e− 05 6.500e− 07 9.029e− 06 6.026e− 07 6.618e− 08 3.942e− 09
500 1.527e− 04 1.013e− 05 1.517e− 04 1.010e− 05 3.314e− 07 1.973e− 08

Figure 8: Numerical solutions obtained by CTBS-CT, using N = 50, δt= 10−4, c= 0.5, d = 0.001,
μ= 1/4 at t= 0, 0.1



CMES, 2021, vol.126, no.2 689

The conditions g, g1, g2 are found from Eq. (23). The error norms for different values of
N, δt and M are computed which are provided in Tabs. 10 and 11. It can be noted from Tabs. 10
and 11 that CTBS-CT provided better results than CTBS-DQ. The results in Tab. 11 correspond
to convection dominated problem for P= 5. Moreover, the results of the present methods are also
compared with the method CBSC [8]. Fig. 8 shows solutions obtained using CTBS-CT at t= 0,
0.1. Fig. 9 shows the solution obtained by CTBS-DQ at various time levels.

Figure 9: Numerical solutions obtained by CTBS-DQ at different times in the interval [0, 0.1]
using N = 50, δt= 10−4, c= 0.5, d = 0.001, μ= 1/4

5 Conclusion

Two cubic trigonometric B-spline functions based methods are constructed for comparative
study of approximate solution of a parabolic type partial integro-differential equation with a
weakly singular kernel. The methods are validated using three test problems and the results are
compared via error norms. The methods are computationally efficient and improved accuracy
is obtained for relatively larger number of spatial nodes. Stability of the methods is shown via
spectral radius. It is also observed that condition numbers of the system matrix obtained from
cubic trigonometric B-spline collocation method does not increase with increase in the number
of spatial nodes and hence the computation remained stable. Both methods do not require much
smaller time step to attain high accuracy. In most cases, it is found that cubic trigonomet-
ric B-spline collocation method provides better accuracy as compared to cubic trigonometric
B-spline differential quadrature. Also, in two examples the cubic trigonometric B-spline collocation
technique provided better accuracy than cubic B-spline collocation method. Both techniques have
the ability to solve convection dominated and diffusion dominated problems. Due to excellent
agreement of these methods with the exact solution, the proposed techniques are efficient in
employing to get approximate solution of PIDEs.
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