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ABSTRACT

Speech intelligibility enhancement in noisy environments is still one of the major challenges for hearing impaired
in everyday life. Recently, Machine-learning based approaches to speech enhancement have shown great promise
for improving speech intelligibility. Two key issues of these approaches are acoustic features extracted from noisy
signals and classifiers used for supervised learning. In this paper, features are focused. Multi-resolution power-
normalized cepstral coefficients (MRPNCC) are proposed as a new feature to enhance the speech intelligibility for
hearing impaired. The new feature is constructed by combining four cepstrum at different time–frequency (T–F)
resolutions in order to capture both the local and contextual information. MRPNCC vectors and binary masking
labels calculated by signals passed through gammatone filterbank are used to train support vector machine (SVM)
classifier, which aim to identify the binarymasking values of the T–F units in the enhancement stage. The enhanced
speech is synthesized by using the estimated masking values and wiener filtered T–F unit. Objective experimental
results demonstrate that the proposed feature is superior to other comparing features in terms of HIT-FA, STOI,
HASPI andPESQ, and that the proposed algorithmnot only improves speech intelligibility but also improves speech
quality slightly. Subjective tests validate the effectiveness of the proposed algorithm for hearing impaired.
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1 Introduction

Noise affects speech intelligibility, especially that of hearing-impaired patients. To achieve
the same speech intelligibility in a noisy environment, the signal-to-noise ratio (SNR) required
for hearing-impaired patients is generally 3–6 dB higher than that of individuals with normal
hearing [1]. Traditional noise-suppression algorithms in modern hearing aids can improve the
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quality of noisy speech, but they have limited capacity to improve intelligibility [2]. Speech intel-
ligibility is closely associated with the information contained in the speech. Therefore, improving
the intelligibility of speech requires that the target speech signal should not be distorted while
noise is removed. However, the speech signals estimated from noisy speech are often inaccurate.
Recently, research on speech intelligibility enhancement based on binary masking is emerging [3].
The noisy signal is first decomposed into two-dimensional time–frequency (T–F) units, of which
one dimension is the T–F units of the target signal and the another dimension is the T–F units
of the interference signal. The ideal binary masking (IBM) algorithm indicates that if the energy
of the target signal is higher than that of the interference signal, then the element value of the
binary matrix corresponding to the T–F unit is 1, otherwise, it is 0. Under certain conditions, the
algorithm improves speech intelligibility by removing masking signals that do not contribute to
intelligibility [4–7]. In general, there are two kinds of research on speech intelligibility enhance-
ment by binary masking. One is based on ideal binary masking, the other is based on estimated
binary masking using machine learning. Early research mainly focused on ideal binary masking
such as reference [8]. The disadvantage of an ideal binary masking algorithm is that the IBM
values are known prior, which is hardly satisfied in practice. Motivated by the success of the IBM
algorithm for improvement of speech intelligibility, binary masking algorithms based on machine
learning is proposed [9,10]. Two key issues of these algorithms are acoustic features extracted from
noisy signals and classifiers used for supervised learning. While previous studies have emphasized
classifiers, in this paper, we focus on features. Our goal is to develop superior features to classify
T–F unit accurately and to improve speech intelligibility.

In this paper, we proposed a new feature called multi-resolution power-normalized cepstral
coefficients (MRPNCC) to improve the performance of the speech intelligibility enhancement
algorithm for digital hearing aids. This paper is organized as follows. A speech intelligibility
enhancement system based on MRPNCC is constructed in Section 2. Section 3 describes the
extraction steps of MRPNCC. Systematic evaluation and comparison are presented in Section 4.
We conclude this paper in Section 5.

2 Speech Intelligibility Enhancement System Based on MRPNCC

2.1 System Overview
A block diagram of the speech intelligibility enhancement system based on binary masking is

shown in Fig. 1 consisting a training stage and an enhancement stage. In the training stage, noise
and clean speech signal are used to train the Support Vector Machine (SVM) model to classify the
speech dominant unit and the noise dominant unit. At first, noisy speech is synthesized by clean
speech and noise according to the specified SNR. Then the clean speech, noise and noisy speech
are passed through gammatone filterbank to generate sub-band signals, from which features of
noisy sub-band signals are extracted and priori SNRs are calculated. The label of the T–F unit
is determined by the calculated SNR and predetermined local criteria value. Finally, the extracted
feature vector and the label of T–F unit are used to train SVM classifiers. In the enhancement
stage, noisy speech is enhanced by the classified label and Wiener filter. Firstly, noisy signal is
decomposed into sub-band signals using gammatone filterbank. Then, feature vector of each sub-
band signal is extracted and classified by the SVM model. At last, the estimated masking value is
multiplied by the speech spectrum enhanced by the Wiener filter to generate the enhanced speech
spectrum which ultimately gives rise to enhanced speech through inverse Fourier transform.
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2.2 Binary Masking Value Estimation Based on SVM
SVM is a machine learning algorithm that is based on statistical learning theory. Statistical

learning theory adopts the rule of structural risk minimization criterion to improve the generaliza-
tion ability of the model. In addition, Gaussian mixture model (GMM) is one of the commonly
used classification models. The output of GMM reflects the similarity between samples of the
same class. However, the output of SVM reflects the difference between the heterogeneous samples.
It is suitable for classification with small number of samples and nonlinear data. It has the advan-
tages of short training time and good generalization performance. Furthermore, the researchers
in [11] found that under the same experimental conditions, the classification performance of SVM
is better than that of the GMM model. This is probably because the GMM has more parameters
while the training data is inadequate. It was also found in [11] that the classification performance
of the SVM is superior to that of the multilayer perceptron (MLP). Therefore, in this paper SVM
is adopted to estimate the label of the T–F units.
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Figure 1: Diagram of the intelligibility enhancement system

During training stage, MRPNCC feature vectors of noisy speech are firstly calculated. Then,
the ideal binary masking value of each T–F unit is obtained using the corresponding clean speech
and noise to train SVM model. During test stage, the extracted feature vector is used to determine
whether the T–F unit is speech-dominant or noise-dominant. The SVM maps the feature vector
to a high-dimensional space by applying a kernel function. In the high-dimensional space, a
hyperplane is derived to maximize the margin of class separation. Here, the radial basis function
(RBF) kernel is chosen:

K
(
xi,xj

)= exp
(
−γ ||xi −xj||2

)
(1)

The reason that we choose RBF as our kernel function is as follows: The first reason is that
this kernel nonlinearly maps samples into a higher dimensional space, so it can handle the case
when the relation between class labels and attributes is nonlinear. The second reason is the number
of hyperparameters which influences the complexity of model selection. The polynomial kernel
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has more hyperparameters than the RBF kernel. Finally, the RBF kernel has fewer numerical
difficulties. Only when the number of features is very large, the RBF kernel is not suitable. In this
paper, the feature dimension is 160, so RBF is the best choice.

Given a set of pairs (xi,yi), where xi is a feature vector and yi is the corresponding binary
label, the SVM requires to solve the following optimization problem:

min
w,ξ

1
2
‖w‖2 +C

∑
i

ξi

subject to yi
(
wT�(xi)+ b

)
≥ 1− ξi, ξi ≥ 0 (2)

where w is the weight of the hyperplane, ξ is a non-negative variable measuring the deviation of
a data point from the hyperplane, C controls the trade-off between complexity of the SVM and
the number of nonseparable points and � represents the vector of a set of nonlinear functions
that transform the input space to the higher dimensional feature space. b is the bias. After the
SVM is well trained, the T–F units can be classified by the model with the following function:

f (x)=wT�(x)+ b=
∑
i∈SV

αiyiK (x,xi)+ b (3)

where SV represents the set of support vector indices in training data and αi is the Lagrange
multiplier that can be determined in the training phase.

2.3 Speech Spectrum Estimation Based on Binary Masking
The binary masking values of T–F units are classified using the SVM model. The identi-

fication result of label = 0 represents that the T–F unit is dominated by noise, while label =
1 represents that the T–F unit is dominated by speech. Therefore, after the binary masking
operation, the speech spectrum of the lth channel for the mth frame is as follows:

X̂M (m, l)=
{
X̂ (m, l) label= 1
0 label= 0

(4)

where X̂ (m, l) is the spectrum of the signal for the lth channel of the mth frame after passing
through the Wiener filter. X̂ (m, l) can be obtained using the following formula:

X̂ (m, l)=G (m, l) ·Y (m, l) (5)

where Y (m, l) is the frequency spectrum of noisy speech and G (m, l) is the gain of the Wiener
filter. The gain is defined below:

G (m, l)=
√

SNRprio (m, l)
1+SNRprio (m, l)

(6)

where SNRprio (m, l) is the a priori SNR. We calculate SNRprio (m, l) as follows:

SNRprio (m, l)= α · X̂
2 (m, l− 1)

λ̂D (m, l− 1)
+ (1−α) ·max

(
Ŷ2 (m, l)

λ̂D (m, l)
− 1, 0

)
(7)

where λ̂D is the noise variance, which is estimated using the method described in [12].
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3 MRPNCC Feature Extraction

Power normalized cepstral coefficients (PNCC) are features based on human auditory pro-
cessing. PNCC simulate the masking effect of human hearing during the process of feature
extraction and have been used in robust speech recognition systems. The researchers in [13] have
also achieved a recognition accuracy that is superior to that of the traditional Mel-Frequency
Cepstral Coefficients (MFCC) feature. Motivated by the PNCC feature extraction algorithm, in
this paper we propose a new feature called multi-resolution PNCC (MRPNCC). The new feature
is constructed by combining four PNCCs at different spectrotemporal resolutions in order to
capture both the local and contextual information of the signal. The MRPNCC is obtained
after completing the asymmetric denoising, temporal masking, average power normalizing, power
function nonlinearity, and discrete cosine transforming processes. A flow chart for one-resolution
parameter extraction is shown in Fig. 2. The other three-resolution parameter extraction methods
are similar to it.
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Figure 2: One-resolution PNCC feature extraction flow chart

3.1 Pre-Processing
The pre-processing of the signal includes pre-emphasizing, framing, and filtering with the

gammatone filterbank, in which the pre-emphasis filter is H (z)= 1− 0.97z−1. During the framing
phase, the pre-emphasized signals are processed at two frame lengths (L1 and L2) with the
following parameters in this paper: L1 = 20 ms and L2 = 200 ms. Signals with the two frame
lengths are then filtered using a 40-channel gammatone filterbank, generating their respective sub-
band signals. Then, the multi-resolution power of the sub-band signals is calculated. Let the
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mth frame of signals with the lengths of L1 and L2 be x1,m (n) and x2,m (n). The spectra of lth
sub-band signals of x1,m (n) and x2,m (n) are represented as X1 (m, l) and X2 (m, l), respectively.
Then the powers of the lth sub-band signals are denoted as follows:

P1 (m, l)=
L1−1∑
l=0

|X1 (m, l) |2 (8)

P2 (m, l)=
L2−1∑
l=0

|X2 (m, l) |2 (9)

P1 (m, l) and P2 (m, l) are then smoothed with square windows with the widths of N1 and
N2 in both the time domain and frequency domain to obtain the context information. After the
smoothing, the following formula can be obtained:

p3 (m, l)= 1

N2
1

l∑
l′=l1

m∑
m′=m1

P1
(
m′, l′

)
(10)

P4 (m, l)= 1

N2
2

l∑
l′=l2

m∑
m′=m2

P2
(
m′, l′

)
(11)

where l1 = max (l−N1 + 1, 1), m1 = max (m−N1 + 1, 1), l2 = max (l−N2 + 1, 1), and m2 =
max (m−N2 + 1, 1). Subsequent feature extractions are performed on the basis of P1 (m, l),
P2 (m, l), P3 (m, l) and P4 (m, l), which are calculated in parallel. The above four kinds of power
spectra are uniformly designated as P (m, l) to make them easy to express.

3.2 Asymmetric Noise Suppression
In general, the speech power in the channel changes faster than the background noise power

in the same channel, i.e., speech has a higher modulation frequency than that of noise. Based
on this observation, some algorithms have been developed to perform high-pass or band-pass
filtering in the modulation spectrum domain to remove the slowly-varying components which
typically represent the additive noise [14]. In this paper the asymmetric denoising method is
used to eliminate the interference of the noise during the feature extraction process. The block
diagram of asymmetric noise suppression processing with temporal masking is shown in Fig. 3.
The relationship between the input and the output of the asymmetric filter is as follows [15]:

Q (m, l)=
{

λaQ (m− 1, l)+ (1−λa)P (m, l) P (m, l)≥Q (m− 1, l)

λbQ (m− 1, l)+ (1−λb)P (m, l) P (m, l) <Q (m− 1, l)
(12)

In Formula (12), m is the frame index, l is the channel index, and λa and λbare constants
between 0 and 1. In the formula above, the parameters are λa = 0.999 and λb = 0.5. Q (0, l) is
initialized to 0.9 ·P (m, l). After noise suppression, half-wave rectification is performed on the signal
and the output of the rectifier is Q0 (m, l). Since the rectified signal still contains noise, a second
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asymmetric filtering is performed to obtain a lower envelope which is then used as the basic noise
level. The envelope Qf (m, l) is obtained as follows:

Qf (m, l)=
{

λaQf (m− 1, l)+ (1−λa)Q0 (m, l) Q0 (m, l)≥Qf (m− 1, l)

λbQf (m− 1, l)+ (1−λb) Q0 (m, l)Q0 (m, l) <Qf (m− 1, l)
(13)

Qf (m, l) in Formula (13) is initialized as Q (m, l). As shown in Fig. 3, we use the lower
envelope of the rectified signal Qf (m, l) as floor level for Q1 (m, l) after temporal masking:

Q1 (m, l)=max
(
Qtm (m, l) ,Qf (m, l)

)
(14)

where Qtm (m, l) is obtained by performing temporal masking on signal Q0 (m, l). Then, Qtm (m, l)
and the second asymmetric filtering result are compared, and the higher value is retained.
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Figure 3: Asymmetric noise suppression block diagram

Whether the sub-band signal is a speech signal or a silent segment is determined based on
P (m, l) and the lower envelope Q (m, l). If P (m, l)≥ cQ (m, l), then the sub-band signal is a speech
segment with an asymmetric filtering module output of Q1 (m, l). Otherwise, the sub-band signal
is a silent segment with an asymmetric filtering module output of Qf (m, l). These signals can be
expressed mathematically as follows:

R (m, l)=
{
Q1 (m, l) P (m, l)≥cQ (m, l)

Qf (m, l) P (m, l)<cQ (m, l)
(15)

In Formula (15), c= 2 provides the best performance according to the pre-experiments.
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3.3 Temporal Masking
Studies have shown that the human auditory system pays more attention to the onset of an

incoming power envelope rather than the falling edge of the same power envelope [16,17], which
has led to various speech onset enhancement systems [18,19]. In this paper, this auditory effect of
the human ear has been integrated into the temporal masking algorithm. First, the peak power
of each channel Qp (m, l) is calculated as follows:

Qp (m, l)=max
(
λtQp (m− 1, l) ,Q0 (m, l)

)
(16)

In Formula (16), λt is the forgetting factor for obtaining the online peak and λt = 0.85. The
output after temporal masking is as follows:

Qtm (m, l)=
{
Q0 (m, l) Q0 (m, l)≥ λtQp (m− 1, l)

μtQp (m− 1, l) Q0 (m, l) < λtQp (m− 1, l)
(17)

In Formula (17), μt = 0.2. Therefore, the transfer function of the entire asymmetric denoising
process can be expressed as:

S (m, l)= R (m, l)
P (m, l)

(18)

The power spectrum after modulating with the transfer function of S (m, l) is as follows:

T (m, l)=Po (m, l)S (m, l) (19)

where Po (m, l) is the corresponding original spectrum at a different resolution without any
smoothing.

3.4 Mean Power Normalization
The human ear has an automatic gain adjustment function to mitigate the influence of

changes in amplitude of the input signal. To simulate this function of the human ear, the power
spectrum is normalized during the MRPNCC parameter extraction process. In this paper, the
mean power is accomplished by running average [13]:

μ(m)= λμμ(m− 1)+ 1−λμ

L

L−1∑
l=0

T (m, l) (20)

In Formula (20), λμ is set to 0.999. The normalized power is obtained directly from the
estimated average power:

U (m, l)= T (m, l)
μ (m)

(21)

3.5 Power Function Non-Linearization
The nonlinear function used to describe the relationship between input and output of the

channel plays an important role in the auditory model. The power law function has been shown
to be a good approximation of the transfer function observed in physiological experiments.
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Athulya et al. [20] found that the use of a power law function with an exponent of 1/15 best
suited for noisy conditions. Therefore, the power law factor is set to 1/15 in this paper:

V (m, l)=U (m, l)1/15 (22)

4 Experiments

4.1 Simulation Experiment
MHINT is a corpus designed for Mandarin hearing test [21]. Sentences in the corpus represent

simple and conversational speech among which some words can be predicted with the contextual
information. However, subjects with different hearing loss have different cognitive ability which
will affect the experimental results. Therefore, experiments were conducted on the corpus recorded
by ourselves in an anechoic chamber, containing 400 sentences. To reduce the effect of cognition
in the hearing test, the corpus was designed with relatively low word context. A total of 400
sentences were constructed by a native female speaker in China. The sampling rate of all the
utterances was 44.1 kHz and the signals were resampled to 16 kHz. A total of 300 sentences
were used to train the SVM model and the remaining 100 sentences were used to test. All these
sentences were corrupted by three types of noise at −5, 0 and 5 dB SNR. Three types of noise
signals were babble noise, factory noise, and speech shaped noise (SSN).

A baseline system was constructed to determine the parameters for the proposed feature
extraction algorithm such as the frame length and the width of the smoothing window. For
training and test, clean speech was mixed with babble noise at 0 dB. At first, the training speech
was sent to a 40-channel gammatone filterbank. Then, the feature parameters were extracted from
the filtered signals to train the SVM model. Lastly, the SVM model generated the classification
result based on the feature vectors to determine whether the T–F unit was speech-dominant or
noise-dominant. In the model, to determine the category of the T–F unit, the threshold parameter
of local SNR criterion was set to −5 dB. Since the task of the system was to classify the T–F
unit, the most direct evaluation index should be the classification accuracy. However, it is not
reasonable to use the classification accuracy as the evaluation index of the system performance,
because it assigns the same importance to the rates of two errors (i.e., misclassifying the speech-
dominant T–F unit as the noise-dominated T–F unit and misclassifying the noise-dominated
T–F unit as the speech-dominant T–F unit). In fact, studies on speech intelligibility show that
the effect of misclassifying the noise-dominated T–F unit as the speech-dominant T–F unit on
speech intelligibility is greater than that of misclassifying the speech-dominant T–F unit as the
noise-dominated T–F unit [22]. So, the estimation of HIT–FA is considered as a best objective
evaluation criteria because of its strong correlation to human speech intelligibility [23]. HIT refers
to the hit rate, which is the percentage that the system correctly classifies the speech-dominated
T–F unit. FA refers to the false alarm rate, which is the percentage that the system wrongly
classifies the noise-dominated T–F unit. Therefore, in this paper, HIT–FA was used as an objective
index for the system performance evaluation.

The methods for determining the frame length and the smoothing window width in the
MRPNCC feature extraction algorithm are as follows: The features extracted from P1 (m, l),
P2 (m, l), P3 (m, l), P4 (m, l) were expressed as PNCC1, PNCC2, PNCC3, and PNCC4, respectively.
All of these features were cascaded in series to form the feature MRPNCC. Notably, the method
used to extract PNCC1-PNCC4 was not exactly the same as that used in Reference [13], so the
resulting feature vectors were not identical either. The same symbols are used here because of the
convenience of description. First, during calculating PNCC1, the window size was set to 20 ms,
the noisy speech with babble noise at 0 dB SNR was used to train the SVM model, and then
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noisy speech with babble noise at 0 dB SNR was used to identify the T–F units of each channel
and the HIT–FA value of the system was calculated. The frame length of PNCC1 was fixed,
while that of PNCC2 was varied to compute the HIT–FA. The frame length corresponding to the
maximum HIT–FA value was deemed the optimal frame length which was 200 ms. Similarly, the
widths of the square sliding windows for PNCC3 and PNCC4 (N1 and N2) were determined, and
the optimal widths were determined at N1 = 2 and N2 = 4, respectively. Fig. 4 shows the HIT–FA
value of the system after adding contextual information. As can be seen from the Fig. 4, adding
PNCC2-4 improves the system performance for babble noisy speech at 0 dB SNR. Similar trends
are observed for the other noises.

PNCC1 PNCC1-2 PNCC1-3 PNCC1-4
0.6

0.62

0.64

0.66

0.68

0.7

H
IT

-F
A

Figure 4: HIT–FA values of the intelligibility enhancement system after adding different
contextual information

A visualization of the MRPNCC feature is given in Fig. 5, where the left plots features
extracted from the clean speech and the right from a babble mixture at 0 dB SNR. As shown in
Fig. 5, PNCC displayed in the first row is the regular cepstrum coefficients, PNCC2 displayed in
the second row captures temporal context, PNCC3 displayed in the third row encodes relatively
small spectrotemporal context and PNCC4 displayed in the fourth row encodes relatively large
spectrotemporal context. By comparing Figs. 5a and 5b, we find that MRPNCC features can
partially retain spectrotemporal information of speech in noise environment, and that it acquires
the contextual information in the signal and that it is thus suitable for the classification of T–F
units. This rationale behind MRPNCC is that regardless of the speech-dominant T–F unit or the
noise-dominant T–F unit, the T–F units are usually clustered.

The estimated binary masking values of the noisy speech adding babble noise at 0 dB SNR
are shown in Fig. 6. Fig. 6a shows the ideal binary masking value. It indicates that the speech-
dominant T–F units or noise-dominant T–F units are presented essentially in clusters, and only
occasionally a few of the T–F units wander off the T–F cluster. Fig. 6b displays the estimation
result of the binary masking value using the SVM model. Using the MRPNCC feature, the SVM
identifies most of the speech-dominant T–F units, while a small number of noise-dominant units
are misidentified as speech-dominant ones and a small number of speech-dominant units are
misidentified as noise-dominant ones.
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Figure 5: MRPNCC feature spectrum (a) clean speech and (b) noisy speech with babble noise at
0 dB SNR
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Figure 6: Binary mask estimation (a) ideal binary masking value and (b) binary masking estimated
via SVM

To compare the waveforms of a speech segment before and after enhancement by the pro-
posed algorithm, the speech waveforms before and after enhancement are shown in Fig. 7. Fig. 7a
shows the waveform of the clean speech signal. Fig. 7b shows that of the noisy signal with an
SNR of 0 dB synthesized by mixing clean speech with babble noise. Fig. 7c shows that of the
speech processed by the ideal binary masking enhancement algorithm. Fig. 7d shows that of the
speech processed by the proposed algorithm. It is indicated that the waveform of the speech
processed by the ideal binary masking algorithm is closest to that of the clean speech, and the
waveform of the speech processed by the proposed algorithm is close to that of the clean speech.
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Figure 7: Comparison of speech waveforms before and after enhancement (a) clean speech
(b) noisy speech (c) enhanced speech by IBM and (d) enhanced speech by proposed method

Experimental results are presented to demonstrate the superiority of MRPNCC feature over
competing ones. The features used for comparison were PLP [24], Relative spectral transform
PLP (R-PLP) [24], MFCC [25], MRMFCC which is extend from MFCC, Amplitude Modulation
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Spectrogram (AMS) [26], and Power Normalized Cepstral Coefficients (PNCC) [13]. The HIT–FA
values of different features under babble noisy environment at 0 dB SNR are shown in Fig. 8.
Comparisons of different features indicate that the HIT–FA value of the MRPNCC feature is the
highest and that of the AMS is the lowest, while those of the other features are in the middle. The
reason why the MRPNCC feature has the best performance is that it utilizes the multi-resolution
information of the signal.

PLP R-PLP MFCC MRMFCC AMS PNCC MRPNCC
0.4

0.45

0.5

0.55

0.6

0.65

0.7
H

IT
-F

A

Figure 8: HIT–FA values with different features

To compare the performance of the MRMFCC and the MRPNCC in 3 noise types, the test
results of STOI, HASPI and PESQ are shown in Tab. 1. We can see that all of the methods
improve the speech intelligibility and speech quality. Results based on MRPNCC is better than
that of MRMFCC due to temporal masking during feature extraction. Comparing the results
of 3 noise conditions, results of the babble noise are the worst. This is probably because of the
similarity between the babble noise and the speech. At the same time, we find that although PESQ
is improved, it is improved slightly.

Table 1: STOI, HASPI and PESQ of the proposed algorithm and contrast algorithm

Babble Factory SSN

Noisy
speech

MRMFCC MRPNCC Noisy
speech

MRMFCC MRPNCC Noisy
speech

MRMFCC MRPNCC

STOI 5 dB 0.67 0.75 0.78 0.73 0.81 0.84 0.77 0.82 0.86
0 dB 0.57 0.66 0.70 0.71 0.74 0.78 0.66 0.75 0.79
−5 dB 0.47 0.51 0.56 0.59 0.62 0.68 0.54 0.66 0.69

HASPI 5 dB 0.83 0.91 0.95 0.83 0.93 0.96 0.82 0.87 0.95
0 dB 0.67 0.80 0.86 0.66 0.79 0.85 0.63 0.82 0.87
−5 dB 0.11 0.52 0.60 0.18 0.54 0.65 0.15 0.56 0.64

PESQ 5 dB 1.08 1.33 1.41 1.12 1.36 1.47 1.20 1.55 1.61
0 dB 1.04 1.25 1.30 1.06 1.25 1.27 1.11 1.28 1.39
−5 dB 1.01 1.06 1.13 1.04 1.14 1.18 1.06 1.19 1.26
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4.2 Auditory Experiment
Ten patients with moderate to moderate-to-severe sensorineural hearing loss participated in

the listening test. They were five males and five females aged from 52 to 66 years with an
average age of 60.3 years, Pure-tone average (PTA) based on 0.5, 1,and 2 kHz ranged from 35 to
65 dB hearing level (HL: average 54.6), and a sloping hearing loss pattern. The pure tone-hearing
threshold for these patients is shown in Tab. 2. The test utterance was taken from the corpus with
a total of 100 sentences. The noise types were babble noise, factory noise and SSN with SNRs of
−5, 0 and 5 dB, respectively. Because the subjects all had hearing loss, the processed signal had
to be amplified. Before the amplification, the root mean square level of the signal was corrected
to 65 dB, and the signals were amplified using the NAL-NL1 formula and transmitted to the
subject through an earphone. The test was conducted in an anechoic chamber. After hearing one
sentence, the subject was asked to speak the sentence out immediately, and the tester recorded
the content that the subject had just spoken. After the experiment was completed, the percentage
of correctly identified words by the subject was used to represent the intelligibility of the speech.
During testing, the noise type was randomized and the SNR was blocked. Firstly, the unprocessed
speech with babble noise was tested. Secondly, the processed speech at −5 dB was tested. Thirdly,
the processed speech at 0 dB was tested. At last, the processed speech at 5 dB was tested.

Table 2: Subject’s pure tone hearing threshold/dB

Subject Sex Age PTA Frequency/kHz

0.125 0.25 0.5 0.75 1 1.5 2 3 4 6 8

H1 M 55 35 30 20 25 30 35 40 45 55 60 70 75
H2 F 61 50 40 45 50 55 45 50 55 60 65 70 70
H3 M 59 58 45 40 50 50 55 65 70 70 75 80 85
H4 F 52 53 40 35 45 50 55 60 60 55 50 65 75
H5 F 66 63 30 35 60 55 60 65 70 75 75 65 55
H6 M 61 48 30 30 35 35 50 55 60 65 70 75 80
H7 M 64 62 50 55 60 65 55 60 70 75 80 85 90
H8 F 65 65 45 40 55 55 65 70 75 75 80 85 90
H9 F 58 47 25 30 35 40 45 55 60 70 75 80 85
H10 M 62 65 60 60 65 70 70 75 60 65 75 80 90

Fig. 9 shows the speech intelligibility results of the ten hearing impaired patients under
different SNRs and different environments. Because the intelligibility of the processed speech in
the −5 dB environment was lower than 50%, it was not shown in the figure. The intelligibility of
the unprocessed speech in a noisy environment is indicated by “•”. That of the processed speech
is indicated by “�”, and the improved speech intelligibility is represented by the height of the
line. In each figure, the intelligibility of speech at 0 dB SNR is shown in the left and those of
speech at 5 dB SNR is shown in the right. Paired t tests confirmed the reliability of the processing
benefit in each condition shown in Fig. 9 (p< 0.001).
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Figure 9: Speech intelligibility under different noise and SNR conditions (a) babble noise
(b) factory noise and (c) SSN
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In the babble noise environment, the speech intelligibility for all patients at the SNR of 0 dB
was improved. Subject 2 received the most benefit of 49%. Four out of the ten subjects received
a benefit of more than 40%. In the babble noise environment, the speech intelligibility for all
patients at the SNR of 5 dB was improved. Subject 2 received the most benefit of 36%. Five out
of the ten subjects received a benefit of more than 20%.

In the factory noise environment, the speech intelligibility for all patients at the SNR of 0 dB
was improved. Subject 9 received the most benefit of 46%. Five out of the ten subjects received
a benefit of more than 35%. In the factory noise environment, all of the speech intelligibility at
the SNR of 5 dB was improved. Subject 2 received the most benefit of 37%. Five out of the ten
subjects received a benefit of more than 20%.

In the SSN environment, the speech intelligibility of all the patients at the SNR of 0 dB was
improved. Subject 5 received the most benefit of 44%. Four out of the ten subjects received a
benefit of more than 40%. In the SSN environment, except for Subject 1, the speech intelligibility
at the SNR of 5 dB for other patients was improved. Subject 2 received the most benefit of 37%.
Five out of the ten subjects received a benefit of more than 20%.

A comprehensive comparison of the three panels in Fig. 9 indicates that if the intelligibility of
the unprocessed speech for the subject is lower, then the intelligibility of the processed speech for
the subject improves more. If the intelligibility of the unprocessed speech for the subject is higher,
then that of the processed speech for the subject improves less. Because of the high baseline
level, it is difficult to make further improvement. In some cases, the intelligibility even decreases.
The group-mean improvement of intelligibility in all environments is 25.57%. It indicates that the
proposed algorithm is suitable for improving the speech intelligibility.

5 Conclusions

In this paper, we proposed the MRPNCC feature for speech intelligibility enhancement sys-
tem. The signals were firstly decomposed to T–F units using the gammatone filterbank. Then, the
novel robust MRPNCC features were extracted from the obtained T–F units, and utilized to train
the SVM model together with the known labels. During the recognition stage, the SVM model was
used to identify whether the T–F unit was noise-dominated or speech-dominated. If the T–F unit
was noise-dominated, then it was removed. Otherwise, it was processed by Wiener filter. Lastly, the
processed T–F unit was used to synthesize the enhanced speech. To evaluate the performance of
the speech intelligibility enhancement system, experiments under different feature conditions were
compared, and results show that the MRPNCC feature outperformed the traditional PLP, R-PLP,
MFCC, MRMFCC, AMS, and PNCC features. Finally, subjective auditory experiments results
of ten hearing-impaired subjects demonstrated that the intelligibility of the enhanced speech was
significantly improved.
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