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ABSTRACT

Punch shear tests have been widely used to determine rock shear mechanical properties but without a standard
sample geometric dimension suggestion. To investigate the impacts of sample geometric dimensions on shear
behaviors in a punch shear test, simulations using Particle Flow Code were carried out. The effects of three
geometric dimensions (i.e., disk diameter, ratio of shear surface diameter to disk diameter, and ratio of disk height
to shear surface diameter) were discussed. Variations of shear strength, shear stiffness, and shear dilatancy angles
were studied, and the fracture processes and patterns of samples were investigated. Then, normal stress on the
shear surface during test was analyzed and a suggested disk geometric dimension was given. Simulation results
show that when the ratio of the shear surface diameter to the disk diameter and the ratio of disk height to the
shear surface diameter is small enough, the shear strength, shear stiffness, and shear dilatancy angles are extremely
sensitive to the three geometric parameters. If the ratio of surface diameter to disk diameter is too large or the
ratio of disk height to surface diameter is too small, a part of the sample within the shear surface will fail due to
macro tensile cracks, which is characterized by break off. Samples with a greater ratio of disk height to shear surface
diameter, namely when the sample is relatively thick, crack from one end to the other while others crack from both
ends towards the middle. During test, the actual normal stress on the shear surface is greater than the target value
because of the extra compressive stress from the part of sample outside shear surface.
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1 Introduction

Shear fracture is one of the fundamental failure patterns of rocks. At present, Mohr–Coulomb
criterion is widely used for the determination of shear strength and the envelope, which intercepts
the τ -axis at cohesion with a slope equal to internal friction angle, is assumed to be a straight
line in the τ − σn plane [1–3]. The internal friction angle and cohesion, which are based on
Mohr–Coulomb theory, are important shear mechanical parameters used for rock engineering
design [4,5]. These shear mechanical parameters are mainly determined by triaxial compression
tests [6–8] or direct shear tests (DST) [9–12].
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In a triaxial compression test, the sample fails under axial and confining stresses. The strength
envelope can be obtained by the tangent line of the Mohr’s stress circles based on minimum and
maximum principal stresses [13,14]. However, the normal and shear stresses on the shear plane
cannot be directly obtained from triaxial compression test results. Unlike the triaxial compression
test, the DST can directly measure the normal and shear stresses on the shear plane [15,16].
There are two commonly used methods in this category: Direct shear-box test and punch shear
test (PST). For the direct shear-box test, upper and lower shear boxes are the main component
of the shear device. Samples in the shear-box test are subjected to normal and shears stresses
and fails along an approximate plane. However, when the sample is subjected to the PST, it
fails along a cylindrical surface rather than a plane (as shown in Fig. 1). Originally, the PST
was proposed for conveniently determining the direct shear strength [17]. Shear stress is applied
by a compressive force within and parallel to the shear surface during the PST. The PST is
applicable for high strength solids, minimizes the bending stress on the samples, and facilitates
sample preparation [17,18]. Thus, other testing methods, such as the punch through shear test
which uses a rock disk sample with two circular notches, was proposed based on the PST to
determine shear mechanical parameters [19–21].

(a) (b)

Figure 1: Punch shear test: (a) Schematic diagram; (b) Fracture pattern [22]

Rock sample dimensions in laboratory tests significantly impact the test result. As shown in
Fig. 2, the tested sample in the PST has three important geometric dimensions, disk diameter (D),
shear surface diameter (Di), and disk height (H), all of which influence the test result. However,
unlike the uniaxial and triaxial compression test, which use a cylindrical sample with a height-
diameter ratio of two, no standard sample size is specified for the PST. For example, Xu et al. [22]
used disk samples with the D = 38 mm, Di = 25.4 mm, and H = 15 mm to carry out a PST
for the investigation of dynamic shear response of rocks. Huang et al. [23] also carried out a
PST under a dynamic load, but the dimensions of their samples were D= 57 mm, Di = 25 mm,
and H = 14 mm. Backers et al. [24] conducted a punch through shear test using disks with the
D= 50 mm and Di = 25 mm. As the geometric dimensions of the samples used in these studies are
different, the results are not directly comparable. Therefore, the influence of the sample dimensions
on shear behavior should be analyzed further and a standard sample dimension should be created
for PST.

To investigate the influence of the geometric dimensions of the sample disk on the shear
behavior of rocks in the PST, punch shear simulations were carried out under zero normal stress
by using Particle Flow Code (PFC). Variations in shear mechanical parameters under various



CMES, 2021, vol.126, no.2 459

geometries were studied. Then, the failure process and fracture pattern of disks with different disk
dimensions were investigated. Finally, the normal stress on the shear surface during the test was
analyzed and a suggested disk size was given.

Figure 2: Geometrical dimensions of the disk used for PST (half of the disk)

2 Particle Flow Code and Simulation Methodology

2.1 Particle Flow Code

PFC3D, a three-dimensional discrete element modeling framework, has been widely used in
rock mechanical simulations. The model framework simplifies rock material into balls and bonds.
A ball in the PFC3D is a rigid and the surface of the ball is defined by radius. A ball has a single
set of surface properties. Balls can translate and rotate. As linear parallel-bond can transmit both
force and moment while contact-bond only transmits force [25–27], it was selected to conduct the
PST simulations. For the parallel-bond, the contact force and moment are updated as follows:

Fc = F l +Fd +F (1)

Mc =M (2)

where Fc is contact force; Fl and Fd is linear force and dashpot force, respectively; F is parallel-
bond force; Mc is contact moment; M is parallel-bond moment. The parallel-bond contact force
consists of a normal force Fn and a shear force F s, and the parallel-bond moment consists of a
twisting moment Mt and a bending moment Mb:

F =−Fn
⇀
n c+F s (3)

M =Mt
⇀
n c+Mb (4)
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where nc is the direction of the contact plane. The parallel-bond shear force and bending moment
line on the contact and are expressed as:

F s =−F ss
⇀

s c+F sttc (5)

Mb =Mbssc+Mbttc (6)

The force–displacement law for the parallel-bond force and moment consists of the following
seven steps.

(1) Update the bond cross-sectional properties. In this step, the radius R, cross-sectional
area A, moment of inertia I , the polar moment of inertia J of parallel-bond will
be calculated:

A= πR2 (7)

I = 1
4
πR4 (8)

J = 1
2
πR4 (9)

(2) Update normal force. The normal force will be recalculated according to the relative
normal-displacement increment Δδn, normal stiffness of the parallel-bond kn, and the area
of the parallel A:

Fn = Fn+ knAΔδn (10)

(3) Update shear force. Shear force of the parallel-bond will be recalculated in this step:

F s = Fs+ ksAΔδs (11)

where ks is shear stiffness of the parallel-bond and Δδs is the relative shear–
displacement increment.

(4) Update twisting moment:

Mt =Mt− ksJΔθt (12)

where Δθt is a relative twist-rotation increment.
(5) Update bending moment:

Mb =Mb− knIΔθb (13)

where Δθb is relative bend-rotation increment.
(6) Update the maximum normal and shear stresses at the parallel-bond periphery:

σn = Fn

A
+β

‖‖R
I

, τ =
∥
∥F s

∥
∥

A
+β

|Mt|R
J

(14)

where β is moment-contribution factor.
(7) Enforce strength limits. If the tensile strength limit of the parallel-bond is exceeded, then

break the bond in tension. If the shear strength limit of the parallel-bond is exceeded, then
break the bond in shear.



CMES, 2021, vol.126, no.2 461

2.2 Simulation Methodology

In PFC3D, stress is applied within the model by moving walls or balls. If the tensile or shear
strength of a bond is exceeded, a tensile or shear micro-crack will be formed. The numerical
model in this study is composed of five walls (Fig. 3a). The diameter of the first wall (Wall #1),
a circular wall, is equal to the Di. The second wall (Wall #2) is in the shape of a ring and has an
outer diameter larger than the D and an inner diameter smaller than the Di. The diameter of the
third wall (Wall #3) is larger than Di+n. The inner diameter of the fourth wall (Wall #4) is equal
to the Di of the sample plus an additional four millimeters, and with an outer diameter larger
than the D The fifth wall (Wall #5) is a cylindrical wall with a diameter equal to the D. These
five walls ensure that the simulated rock material does not leave the domain (Fig. 3b). Once the
simulated rock material was bonded by contacts (Fig. 3c), Wall #2 and #3 were removed from
the model domain before finalizing the numerical model and applying displacement and stress.
According to Xu et al. [22] and Huang et al. [23], the shear surface is not a standard cylinder,
with the bottom diameter of the shear cylinder slightly larger than the top diameter. Shear stress
on the shear surface can be calculated by dividing the shear force by the area of the shear surface.
In the PST, the average diameter of the shear surface is (2Di+ n)/2. Thus, the shear stress on the
shear surface can be calculated as:

τ = 2P
πH (2Di+ n)

(15)

where P is the shear load and n are the difference between the top diameter and bottom diameter
of the shear surface.

Figure 3: Numerical model of the disk used for simulation (a) shows the shapes of the walls; (b)
is the numerical sample with all the walls; (c) is the numerical sample with the walls #2 and
#3 deleted

As the strength of a parallel-bond conforms to the Mohr–Coulomb criterion. Therefore, the
strength of a parallel-bond can be described by the parameters of parallel-bond tensile strength,
parallel-bond cohesion and parallel-bond friction angle. The detailed descriptions of the micro-
parameters used in the simulations are detailed in Tab. 1. During the test, Wall #4 was fixed
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and shear stress was applied by the vertical movement of the Wall #1. A displacement rate of
0.08 m/s was adopted for shear stress loading, which is low enough for a static rock loading
simulation [2,28]. As this study aimed to investigate the influence of geometric dimensions of a
rock disk on shear behavior and provide a recommended sample size for the PST, the confining
stress applied by Wall #5 was set to zero. The PST simulations were conducted on disks with a D
from 30 to 70 mm at intervals of 10 mm. The ratio between Di and D (Rd ) ranged from 0.15 to
0.75 in intervals of 0.15. The ratio between H and Di (Rh) varied from 0.6 to 2.2 with an interval
of 0.4. In addition, the bottom diameter of the surface was also defined as 4 mm larger than
the applied Di (i.e., n= 4 mm in Eq. (15)). Tab. 2 provides detailed descriptions of the geometric
dimensions of the 125 samples used in the numerical simulations.

Table 1: Micro-parameters used for PST simulation

Micro-parameter Value

Parallel-bond tensile strength (MPa) 4.0
Parallel-bond cohesion (MPa) 4.5
Parallel-bond friction angle (◦) 42
Ratio of maximum to minimum radius of ball 1.4
Ration of normal to shear stiffness of parallel 1.5
Particle friction coefficient 0.57

Table 2: Detailed description for geometrical dimensions of the disks used for PST simulation

No. D
(mm)

Rd
(%)

Rh
(%)

No. D
(mm)

Rd
(%)

Rh
(%)

No. D
(mm)

Rd
(%)

Rh
(%)

No. D
(mm)

Rd
(%)

Rh
(%)

No. D
(mm)

Rd
(%)

Rh
(%)

1 30 15 60 26 40 15 60 51 50 15 60 76 60 15 60 101 70 15 60
2 100 27 100 52 100 77 100 102 100
3 140 28 140 53 140 78 140 103 140
4 180 29 180 54 180 79 180 104 180
5 220 30 220 55 220 80 220 105 220
6 30 60 31 30 60 56 30 60 81 30 60 106 30 60
7 100 32 100 57 100 82 100 107 100
8 140 33 140 58 140 83 140 108 140
9 180 34 180 59 180 84 180 109 180
10 220 35 220 60 220 85 220 110 220
11 45 60 36 45 60 61 45 60 86 45 60 111 45 60
12 100 37 100 62 100 87 100 112 100
13 140 38 140 63 140 88 140 113 140
14 180 39 180 64 180 89 180 114 180
15 220 40 220 65 220 90 220 115 220
16 60 60 41 60 60 66 60 60 91 60 60 116 60 60
17 100 42 100 67 100 92 100 117 100
18 140 43 140 68 140 93 140 118 140
19 180 44 180 69 180 94 180 119 180
20 220 45 220 70 220 95 220 120 220
21 75 60 46 75 60 71 75 60 96 75 60 121 75 60
22 100 47 100 72 100 97 100 122 100
23 140 48 140 73 140 98 140 123 140
24 180 49 180 74 180 99 180 124 180
25 220 50 220 75 220 100 220 125 220
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3 Results and Analysis

3.1 Strength and Deformation
Twenty-five of the 125 samples were selected for analysis. Figs. 4a–4c give the curves with

various D (Rd = 0.45, Rh = 0.6), Rd (D = 50 mm, Rh = 0.6), and Rh (D = 50 mm, Rd = 0.45),
respectively. The shear stress–shear displacement curves can be divided into three stages: linear,
nonlinear, and post-peak (Fig. 4). In the linear stage, shear stress exhibits linear growth as
shear displacement increases. As the shear stress–shear displacement curve enters a nonlinear
stage, shear stress increases nonlinearly with increased shear displacement. In the post-peak stage,
the shear stress decreases gradually as the shear displacement increases. The shear stress of the
samples with a higher Rh decreases more slowly, which is even more obvious in Fig. 4c. Between
the linear and nonlinear stages, most of the samples have a distinct drop in shear stress, except for
the sample with the D= 50, Rd = 0.75, Rh= 0.6, the sample with the D= 50, Rd = 0.45, Rh= 1.8,
and the sample with the D = 50, Rd = 0.45, Rh = 2.2 (Figs. 4b, 4c). Shear strength and shear
stiffness of samples with varying geometric dimensions differ, indicating that geometric dimensions
of the sample disk have significant effects on the behavior of shear mechanics.
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Figure 4: Shear stress–shear displacement curves of samples with (a) Rd = 0.45 and Rh = 0.6,
(b) D= 50 mm Rh= 0.6, (c) D= 50 mm and Rd = 0.45
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Fig. 5 shows the influence of disk geometric dimensions on the shear strength in the PST.
When the Rd is equal to 0.15, the shear strength increases and then stays at a high level with the
increase of the Rh except for the sample with the D equal to 30 mm, which shows a constant
increase (Fig. 5a). For all of the samples with the Rd equal to 0.3, the shear strength initially
grows and then declines. However, the shear strength of the samples with the Rd equal to 0.45
first increases and then decreases when the D is 30 and 40 mm (Figs. 5a and 5b), which reduces
gradually when the D is in the range from 50 to 70 mm (Figs. 5c–5e). When the Rd is equal to 0.6
or 0.75, shear strength of all samples reduces gradually as the Rh grows. Shear strength gradually
decreases as the Rd increases from 0.3 to 0.75 (Fig. 5). As shown in Fig. 5f, the shear strength
gradually approaches a constant as the Rd and Rh increase. However, the shear strength of the
samples with different D values varies little.

(a) (b)

(c)

(e)

(d)
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(f)

Figure 5: Shear strength of disks with various disk geometrical dimensions (a–e) are the changes
in shear strength of samples with different disk diameter and (f) shows the relationship between
shear strength, H/Di and Di/D in a three-dimensional coordinate system

In the linear stage, the shear stress increases linearly with the increase of the shear displace-
ment (Fig. 4). The slope of this linear increase is the shear stiffness of the disk in the PST
(Fig. 6). The shear stiffness decreases nonlinearly with the growth of the Rd and the Rh (Fig. 6).
Additionally, it can be seen that the shear stiffness reduces gradually as the disk diameter D
increases (Fig. 6b). The difference of the shear stiffness with various values of D is larger when
the sample has a smaller Rd or Rh. As shown in Fig. 6a, for samples with a Rd of 0.15 and a
Rh of 0.6, the maximum shear stiffness is 175.21 MPa/mm while the minimum shear stiffness is
114.85 MPa/mm. However, for the samples with a Rd of 0.75 and a Rh of 2.2, the maximum and
the minimum shear stiffness are 8.21 and 3.99 MPa/mm, respectively. Thus, the shear stiffness of
a sample is more sensitive to the D in the PST when the Rd and Rh is small. With the increase
of the Rd and Rh, the shear stiffness gradually approaches a threshold and the difference in shear
stiffness between different samples with varying D reduces (Fig. 6b), similar to the results for shear
strength (Fig. 5).
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Figure 6: Change in shear stiffness of disks with various geometrical dimensions (a) shows the
changes in shear stiffness of samples with different disk diameter and (b) shows the relationship
between shear stiffness, H/Di and Di/D in a three-dimensional coordinate system

The change in normal displacement with shear displacement is shown in Fig. 7. The variation
of the normal displacement can be divided into three stages: Initial stage, acceleration stage, and
linear stage. In the initial stage, the normal displacement increases slowly as the shear displacement
increases. It can be observed that the initial stage in Fig. 7 corresponds to the timing of the linear
stage in Fig. 4. The acceleration stage is nonlinear, with the normal displacement growth rate
increasing gradually. This stage corresponds to the stage near the peak shear stress of the curves
in Fig. 4. In this stage, the shear stress–shear displacement changes from pre-peak to post-peak. In
the linear stage in Fig. 7, the normal displacement increases linearly with the growth of the shear
displacement. This stage corresponds to the post-peak stage in Fig. 4. The slope of the curve in
Fig. 7 is the shear dilatancy angle of the sample in the PST. Based on these results, the change
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in normal displacement with shear displacement can be simplified into the curve shown in Fig. 8.
The three types of dilatancy angles are the slopes of the three stages on the curve in Fig. 7.
Where the peak dilatancy angle is the slope of the normal displacement-shear displacement curve
at peak shear stress.

(a) (b)

(c)

Figure 7: Normal displacement-shear displacement curves of samples with various (a) D, (b) Di
and (c) H
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Fig. 9 gives the dilatancy angle of disks in the PST. The abscissa in Fig. 9a is the sample
number listed in Tab. 2, in which the detailed geometric dimensions for each sample are presented.
An increase in the abscissa means an increase in D, Di, or H (Tab. 2). For the disks with the
same D, the pre-peak dilatancy angle first increases and then decreases as the sample number
increases in general, and all of the maximum pre-peak dilatancy angles are obtained when both
Rd and Rh are equal to 0.6 (i.e., the samples numbered 16, 41, 66, 91 and 116) (Fig. 9a). The
pre-peak dilatancy angle exhibits such a change due to the pre-peak dilatancy angle first growing
and then reducing with the increase of the Rd under the same Rh (Fig. 9b). Meanwhile, the pre-
peak dilatancy angle increases gradually with the increase of the Rh for the samples with a small
Rd while that decreases as the Rh grows when the Rd is higher (Fig. 9b). For the samples with
different D and the same Rh and Rd , the pre-peak dilatancy angle exhibits little difference. For
example, the five maximum pre-peak dilatancy angles mentioned above are 4.58, 4.61, 4.56, 4.40,
and 4.43 MPa/mm, respectively, with the difference between the maximum and the minimum value
being 0.21 MPa/mm. For each sample, the peak dilatancy angle is smaller than the post-peak
dilatancy angle, which can be easily understood through analyzing Fig. 8. With the increase of
the sample number, the peak and post-peak dilatancy angles first increase, then remain at a high
value, but in general grow slowly. The peak and post-peak dilatancy angles of the samples with
a Rd of 0.15 and a Rh equal to 0.6 and 1.0 are very small compared to the other samples. Thus,
the variation of the Rd and Rh has little influence on the peak and post-peak dilatancy angles
except when the two parameters are small (Rd equal to 0.15 and Rh of 0.6 or 1.0). Similar to
the pre-peak dilatancy angle, the peak and post-peak dilatancy angles have little difference for the
samples with the same Rd , Rh but different D. Therefore, the influence of the disk diameter D on
dilatancy angle is negligible.

(a)

(b)

Figure 9: Change in dilatancy angles of disks in the PST (a) Shows the changes in the three
types of dilatancy angles for the samples with various geometrical dimensions; (b) Shows the
relationship between dilatancy angle, H/Di and Di/D in a three-dimensional coordinate system
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3.2 Fracture Characteristic
Fig. 10 gives the fracture process of the samples with a D of 50 mm and a Rd equal to 0.3.

In the same picture, the circular image on the left is the top view while the rectangular image on
the right is the front view of the disk. In the top view, the larger circle is the disk outline and
the smaller circle is shear surface. All pictures in the same row show the same sample (Fig. 10,
rows A–E). The pictures (the top five columns on the left) in the same column show the fracture
pattern of the samples under the same percent (0.2–1.0 with and interval of 0.2) of corresponding
peak shear stress τf . The two columns on the far right show the post-peak fracture patterns of
samples and their 3D view. It is worth noting that the front view of the sample is not drawn to
scale for the sake of brevity and illustration. The samples have begun to crack when the shear
stress reaches 0.2 τf (Fig. 10, column 1). Some of the cracks are near the shear surface while
others appear at the edge of the sample. Cracks near the shear surface are formed due to the
increase of the shear displacement and shear stress. As shear stress increases, the number of cracks
near the shear surface grows significantly. However, the cracks at the edge of the sample do not
expand before the pre-peak stage. At peak shear stress and in the post-peak stage, a large number
of micro-cracks have been produced at the shear surface, forming multiple macro-cracks along the
radial direction of the samples (Fig. 10, columns 5 and 6). The fracture pattern of the sample is
very close to that in the laboratory test shown in Fig. 1b. When the Rh is less than or equal to
1.4, three macro-cracks are formed within the shear surface when the shear stress reaches 0.6τf
(Fig. 10, rows A–C, column 3). This kind of macro-crack is also produced in the sample with a
Rh of 1.8 when the shear stress reaches 0.8τf (Fig. 10, row D, column 4). Bending of the sample
within the shear surface, caused by the load parallel to shear displacement, results in tensile stress
on the lower surface of the sample. This is the main cause of the formation of the three macro-
cracks. The three macro-cracks are produced only on the lower surface of the samples with a Rh
of 1.0, 1.4, and 1.8, while they propagate to the vertical middle of the sample when the Rh is 0.6
due to the thinness of that sample. In addition, micro-cracks propagate from both vertical ends
to the middle when the Rh is 0.6 and 1.0 (Fig. 10, rows A and B, column 3) while the micro-
cracks propagate from one end to the other end when the Rh is 1.8 and 2.2 (Fig. 10, rows D
and E, column 3).

According to Huang et al. [29], shear failure rate Rs is defined as the ratio of shear crack
number to total crack number in a rock test simulation. This can be used to describe the fracture
pattern. Take the samples with a D of 50 mm and a Rd of 0.6 as examples (Fig. 11). In the
initial stage, the Rs fluctuates as the sample has fewer cracks and the formation of a new crack
will have a significant impact on the value of Rs. After the initial fluctuations, the Rs is small
(less than 0.5) and begins to increase rapidly, indicating that the sample fails due to tension in
the beginning. Then, the Rs remains at a high level (greater than 0.5) before peak shear stress,
indicating that the fracture of a sample is mainly caused by the formation of shear crack at this
stage. In the post-peak stage, the Rs reduces gradually with the increase of the total crack number.
This suggests that more tensile cracks rather than shear cracks are formed after peak shear
stress.
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Figure 10: Fracture process of the samples with D = 50 mm and Rd = 0.3. The circular picture
is the top view and the rectangular picture is the front view of disks. In the top view, the two
circles are the disk outline and the shear surface, respectively. In the front view, the two vertical
lines are the boundary of the shear surface
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Fig. 12 gives the change in peak shear failure rate (Rsp), which is the Rs at peak shear stress.
As first introduced in Fig. 9a, the abscissa in Fig. 12a is the sample number listed in Tab. 2.
On the whole, the peak shear stress gradually increases with the growth of the sample number
(Fig. 12a). For the samples with a Rd of 0.15 and a Rh of either 0.6 or 1.0, the D of the sample
has a marked impact on the Rsp. (Fig. 12a, samples 1, 2, 26, and 27) When the Rd is larger than
0.15 or the Rh is greater than 1.0, the Rsp remains high (greater than 0.5) and fluctuates as the
sample number increases (Fig. 12b). Thus, samples mainly fail due to shear stress and the Rsp is
not sensitive to the D when the Rd is larger than 0.15 or the Rh is greater than 1.0.

(a)

(b)

Figure 12: Change in peak shear failure rate. In which, (a) Displays the change of peak shear
failure rate in a two-dimensional coordinate system, and (b) Displays the change of that in a
three-dimensional coordinate system
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As shown in Fig. 13, bonds in the PFC model consist of two ends, with each end connecting
with a piece. The angle between the vector along each bond and the positive direction of the
z-axis is β, the angle between the shear stress and the bond. To analyze the distribution of β of
bonds that have failed at peak shear stress, the number of cracks per degree interval was counted.
As shown in Fig. 14, the top half of each image is the proportion of cracks at a certain angle
range (Rc). For example, the Rc at the degree of 1◦ denotes the ratio of the number of cracks
with 0◦ ≤ β < 1◦ to the total crack number. The bottom half of each figure in Fig. 14 is the Rsp
of cracks within a certain angle range with the count method being the same as above. As shown
in Fig. 14, which gives the change in Rc and Rsp of the samples with a D of 50 mm and a Rd
of 0.3, the Rc is based on β = 90◦ as the symmetry line. With the increase of the Rh, the curve
of Rc changes from lanky to chubby. The β accounts for the largest proportion near 90◦, but the
maximum Rc gradually reduces as the Rh increases. The maximum Rc is 1.94% when the Rh is 0.6
(Fig. 14a), but it is 1.37% when the Rh is 2.2 (Fig. 14e), with a reduction of 29.38%. When the β

is near 0◦ or 180◦, the Rc approaches zero. This denotes that the bonds rarely fail in the PST if
they are parallel to or nearly parallel to the shear direction before shear stress reaches peak value.
When the Rh is small, the β has a significant impact on the Rsp. For the sample with a D equal 50
mm, a Rd of 0.3, and a Rh of 0.6, Rsp is greater than others if 0◦ < β < 25◦ or 75◦ < β < 105◦ or
155◦ < β < 180◦ (Fig. 14a). These bonds are approximately parallel or perpendicular to the shear
direction. Under the action of shear displacement, either a large shear stress or a large tensile
stress acts on these bonds. The shear strength of a bond is small if it is subjected to a large
tensile stress (shear strength of the bond conforms to Mohr–Coulomb criterion in the PFC). So,
those bonds either are subjected to a large shear stress or have a small shear strength. As a result,
they are prone to fail caused by shear stress. However, the influences of β on Rsp have a marked
reduction with the increase of the Rh. For example, the Rsp of the sample with a D of 50 mm,
a Rd of 0.3 and a Rh of 2.2 is always about 0.6 (Fig. 14e).

Figure 13: Schematic diagram of a bond in coordinate system
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Figure 14: Change in Rc and Rs, in which the samples geometrical dimensions are D = 50 mm,
Rd = 0.3 and (a) Rh = 0.6, (b) Rh= 1.0, (c) Rh= 1.4, (d) Rh= 1.8, (e) Rh= 2.2
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4 Discussion

4.1 Normal Stress during Test
As shown in Fig. 15a sample used in the PST can be divided into two parts. Part I is the part

outside the shear surface of the sample, which is a ring. Part II is the part within the shear surface
of the sample. It can be known from Fig. 7 that the normal displacement increases with the
increase of shear displacement, namely shear dilatancy occurs. Thus, the inner and outer diameters
of Part I will grow during the test as the shear displacement increases due to shear dilatancy.
Part I is subjected to tensile stress and tensile deformation in the direction perpendicular to the
radial direction at any point. Additionally, Part I is subjected to compressive stress from Part II
as well. Therefore, the actual normal stress on the shear surface is greater than zero in this study.
If the PST is carried out under confining stress (normal stress) σn, the actual normal stress will
be greater than σn. This can also be observed in Fig. 16, which shows the force chain of the
contacts. When τ equals 0.6 τf , Part II is mainly subjected to compression while Part I is subjected
to tensile in tangential direction and compressive stress in radial direction (Fig. 16a). With the
increase of shear stress, the number of the contacts subjected to tensile stress grows. When τ is
equal to τf , Part I is mainly subjected tensile stress (Fig. 16c). Thus, the disk looks like a rubber
band (Part I) on a cylinder (Part II). The rubber band is stretched and applies a pressure on the
cylinder. However, when the shear stress reaches its peak value, as shown in Fig. 10, macro-cracks
within Part I in the radial direction have formed. At this moment, a portion of the tensile and
compressive stress that Part I is subjected to in the tangential and radial directions have been
released. As we know, shear strength under direct shear test is positively correlated with normal
stress. Thus, the shear strength obtained by the PST will be larger than the actual shear strength,
but the specific difference between the PST and real shear strength is uncertain, so further research
is needed.

P

Figure 15: Stress state of a disk in the PST
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Figure 16: Force chain of the disk with D= 50 mm, Rd = 0.3 and Rh = 1.0 under (a) τ = 0.6τf ,
(b) τ = 0.8τf and (c) τ = τf

4.2 Recommended Disk Geometric Dimension
Fig. 5 gives the shear strength of sample with different D, Rd and Rh. When the Rd or Rh

is small, shear strength is sensitive to all the three geometric parameters. Additionally, the shear
dilatancy angles (Fig. 9) and peak shear failure rate (Fig. 12) also show a great difference. Thus,
in the PST, samples with a small Rd (less than 0.3) and Rh (less than 1.4) is not recommended.
When the Rd is greater than 0.6, the D has little influence on the shear strength which changes
little and approaches a threshold value. However, if a sample has a Rd approaching 1.0, a too
small Rh, or a too large D, it will make the Part II of the sample in Fig. 15 more likely to bend
or break as shown in Fig. 10. In addition, a larger Rh leads to the sample cracking from one end
to the other rather than from both ends to the middle (as shown in Fig. 10, row E). From this
study, the sample size that should be used for the PST should be of a D between 50 and 70 mm,
a Rd between 0.45 and 0.6, and a Rh between 1.4 and 1.8. Therefore, we suggest using samples
with a D of about 60 mm, a Rd of about 0.5 and a Rh of about 1.6 to carry out the PST.

5 Conclusions

The PST has been used by researchers to determine the shear mechanical parameters of
rocks. However, there are no suggested sample geometric dimensions at present. Simulations using
PFC3D were carried out to investigate the influences of sample geometric dimensions on shear
behaviors in the PST. We found that:

(1) When the ratio between sample Di and D or the ratio between sample H and Di is small,
shear mechanical parameters of samples, such as shear strength, shear stiffness, dilatancy
angles, and shear failure rate are sensitive to the sample geometric dimensions.

(2) In the PST, a cylindrical shear surface will be formed. If the disk height is comparatively
small or the diameter of the surface is comparatively larger, the sample can easily produce a
tensile fracture within the shear surface. Samples with a small ratio between sample H and
Di cracks from both ends towards the middle while it cracks from one end to the other
end for the samples with a large ratio between sample H and Di.

(3) In the PST, the actual normal stress is greater than the set value, which results in larger
shear strength. The suggested sample geometric dimensions are given as a D of 60 mm, a
ratio between sample Di and D of 0.5, and a ratio between sample H and Di of 1.6.
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