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ABSTRACT

User-transformer relations are significant to electric power marketing, power supply safety, and line loss calcula-
tions. To get accurate user-transformer relations, this paper proposes an identificationmethod for user-transformer
relations based on improved quantum particle swarm optimization (QPSO) and Fuzzy C-Means Clustering. The
main idea is: as energymeters at different transformer areas exhibit different zero-crossing shift features, we classify
the zero-crossing shift data from energy meters through Fuzzy C-Means Clustering and compare it with that at
the transformer end to identify user-transformer relations. The proposed method contributes in three main ways.
First, based on the fuzzy C-means clustering algorithm (FCM), the quantum particle swarm optimization (PSO)
is introduced to optimize the FCM clustering center and kernel parameters. The optimized FCM algorithm can
improve clustering accuracy and efficiency. Since easily falls into a local optimum, an improved PSO optimization
algorithm (IQPSO) is proposed. Secondly, considering that traditional FCM cannot solve the linear inseparability
problem, this article uses a FCM(KFCM) that introduces kernel functions. Combinedwith the IQPSOoptimization
algorithm used in the previous step, the IQPSO-KFCM algorithm is proposed. Simulation experiments verify
the superiority of the proposed method. Finally, the proposed method is applied to transformer detection. The
proposed method determines the class members of transformers and meters in the actual transformer area, and
obtains results consistent with actual user-transformer relations. This fully shows that the proposed method has
practical application value.
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1 Introduction

User-transformer relation refers to the power supply membership between electricity users and
the transformer that serves them [1]. Unclear user-transformer relations would cause significant
errors between data from area line losses and split-phase line losses, and irrational load increases
based on business expansion, affecting the load balance and lowering the success rate of remote
cost controls and remote recharge systems. While influencing fundamental business, it would also
curb implementing further business applications. When a power failure occurs and an immediate
repair is needed, wrong loads and membership data could impair the practicality and safety of
the repair strategy and timeliness of the repair project [2]. Due to changing user information,
replacing malfunctioning meters, upgrading station areas, and more, user-transformer relations
change frequently. In the meanwhile, under the “null wire shared” and coupling conditions, cross-
area communications and readings are attainable in low voltage power line carrier and micropower
wireless communications. All of the above make it very challenging to resolve user-transformer
relations [3].

User-transformer relation identification is a new field that has just recently emerged in China.
With small populations and simply-structured low-voltage station areas, it is not a problem for
developed Western countries; nor is it a problem for ordinary developing countries. Despite
big populations, they have fewer grid terminal equipment, and thus can manually resolve user-
transformer relations. On the contrary, most parts of China are densely-populated. With growing
power demand and an increasing number of terminal equipment, it is urgent for user-transformer
relations to be accurately resolved. At present, this is usually done by patrol persons during
their routine on-site patrols and thus is time-consuming and laborious. In addition, energy
meters placed in intersecting station areas can’t be distinguished unless the power is cut off.
The operations are not only difficult but bound to cause huge economic losses. Since 2016,
many organizations in the power system have tried to apply big data to energy meter cur-
rents, power, power frequency zero-crossing shifts, and power frequency zero-crossing distortions
to identify user-transformer relations. However, affected by the equipment sampling accuracy,
data synchronization, and high distinguishing costs, the big data method has not proved to be
effective [4].

User-transformer relations identification is a typical classification problem. The commonly-
used clustering analysis methods primarily include: Mean clustering [5], kernel subtraction clus-
tering [6], hierarchical clustering [7], and graph theory clustering [8]. The clustering algorithms
avoid solutions for complex gradients and adjoint equations and have no strict requirements on
model expression and continuity. They can effectively extract system features for classifications
and are easy to implement. Hajek et al. [9] proposed a clustering method based on semidefi-
nite programming, which implemented a binary symmetric stochastic block model to deal with
stochastic graph classification and solved the problem of semidefinite programming relaxation
with a maximum likelihood estimation to obtain accurate cluster boundaries. Wade et al. [10]
proposed a clustering method based on Bayesian analysis, where appropriate point estimates and
confidence intervals were set to determine the clustering structure based on the decision-making
and information theory and techniques. Javadi et al. [11] implemented the K-means clustering
method to cluster underground aquifer vulnerabilities, where vulnerability maps were created based
on on-site data features to substitute for conventional fixed indicators, such as weights and ratios
and accurately classify groundwater contamination. Combining principal component analysis and
hierarchical clustering analysis, Granato et al. [12] presented relevant classifications for multiple
compounds in food based on data characteristics.
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However, conventional methods are not applicable to all data structures and are unable to
solve the linear inseparability problem. By introducing kernel functions into the standard kernel
mean clustering algorithm, kernel fuzzy C-Means clustering (KFCM) [13] maps the original
problem to a high-dimensional space for clustering analysis. It can effectively achieve clustering
for various data structures and solve the linear inseparability problem, thus widely applicable to
engineering practices. However, a lack of theoretical guidance in selecting kernel functions, overly
sensitive to the initial cluster center and kernel parameters, and long in computation time [14],
standard KFCM needs to be further improved. To solve the image segmentation problem, Chen
and his team proposed the kernel fuzzy C-means clustering algorithm, established a kernel
function library, and adaptively selected the optimal kernel function through pixel feature informa-
tion [15]. Ding et al. [16] used the Genetic Algorithm to optimize KFCM kernel parameters and
increased clustering accuracy and efficiency. Likewise, Liu et al. [17] introduced the good-point set
theory and speed weight to improve the Bat Algorithm (BA) and optimize KFCM. Combining the
knowledge and theory of Quantum Mechanics and Particle Swarm Optimization, and Quantum
Particle Swarm Optimization (QPSO) absorbed the strengths of both. It has advantages, such
as few optimization parameters, fast convergence, strong generalization, a simple evolution and
global convergence. QPSO is thus introduced in this paper to optimize KFCM cluster center
and kernel parameters. To summarize, to identify the user-transformer relations in the grid, this
paper proposes an improved KFCM algorithm, where the clustering analysis of zero-crossing shift
data inherent in voltage signals in low-voltage station areas are made to identify user-transformer
relations. To improve clustering accuracy and efficiency, we adopt QPSO to optimize the cluster
center and kernel parameters. Meanwhile, we also define the intra-class distance and inter-class
distance to improve the fitness function and introduce the Attractor Multiple Update Strategy to
solve the problem of “prematurity”. Through simulation tests and application verifications, the
method has proved to be effective in identifying real user-transformer relationships in low-voltage
station areas.

2 Problem Descriptions

For the actual low-voltage distribution network shown in Fig. 1, the AC signals are trans-
mitted to each low-voltage station area along the medium-voltage line through a 10 KV/380 V
transformer. When the electrical signals are passing through the transformer, or when the capac-
itive or inductive loads are being connected to or disconnected from the power line, the phase
of the AC electrical signal will exhibit voltage zero-crossing shift, phase distortion, and other
characteristics. The specific shift is shown in Fig. 2.

...
Power source

Area 1 Area 2 Area 3 Area n

Figure 1: Topological graph for low-voltage area network
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Figure 2: Sketch map for phase shift

Zero-crossing shift refers to the time or phase deviation of the AC sine wave signal at the
point where the amplitude changes positively or negatively (that is, the zero-crossing point) with
the standard frequency signal. Less affected by the load, the voltage signal is often used for
analysis. In Fig. 2, the solid line represents the power frequency voltage signal (standard signal)
with an effective value of 220 V and a frequency of 50 HZ. The dotted line and the dash line are
the load voltages of station area 1 and station area 2 respectively. S1 and S2 are the zero-crossing
shift data of the voltage signals in the two station areas respectively.

In order to verify the influences of different inductances and capacitances on the zero-crossing
shift, a simulation circuit, as shown in Fig. 3, is constructed. Module 1 is used to generate a 220 V
power frequency power supply and simulate a transformer; Module 2 is used to generate a zero-
crossing signal on the transformer side; Module 3 is used to simulate the impedance environment
of the power network. The impedance range is simulated between 2 � and 50 �. The transmission
line resistor is 1 �; Module 4 is used to generate a zero-crossing signal on the energy meter side.
Let R3 =R4 = 1 �, adjust differences in L1 and L2, and record the zero-crossing shifts in Tab. 1.
It can be observed that inductance and zero-crossing shift are positively correlated.

In an actual scenario affected by the inductance of the medium-voltage line, the capacitance to
the ground, the primary-side equipment, and the transformer, the zero-crossing shift characteristics
vary between different station areas. The phases in different station areas vary as well. In addition,
the distributions of transformers and transmission lines are inherently inductive and capacitive,
hence further highlighting the characteristics of each station area.

Assume that there are M low-voltage station areas (corresponding to M transformers) in the
target power grid, and a total of N energy meters. The zero-crossing shift of the voltage signal
corresponding to the jth energy meter is:

xj =Tj−T , j ∈ [1,N] , (1)

where Tj and T are the time between two adjacent zero crossings of the jth energy meter and the
standard signal respectively.
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Figure 3: Artificial circuit of zero-crossing shift

Table 1: Zero-crossing shift under different inductance values

Line inductance
L1 =L2 (mH)

Zero-crossing
shift (µs)

1 1.86
10 4.90
20 12.16
50 34.43
100 54.70

Similarly, the zero-crossing shift of the ith transformer is:

X̃i = T̃i−T , i ∈ [1,M] , (2)

where T̃i represents the time between two adjacent zero crossings of the ith transformer.



1298 CMES, 2021, vol.126, no.3

By performing cluster analysis on the zero-crossing shifts of the energy meter xj and compar-

ing them with the zero-crossing shifts of the transformer in the station area X̃i, we can identify the
class membership between the Nth energy meter and the Mth low-voltage station area. Therefore,
in this paper, an improved KFCM algorithm is proposed, where the quantum idea, optimization
and clustering algorithms are combined, and the QPSO algorithm is adopted to optimize the
KFCM algorithm cluster center and kernel parameters. It enables us to make accurate and fast
classifications of zero-crossing shifts and hence obtain authentic user-transformer relations.

3 KFCM Based on Improved QPSO

3.1 KFCM
Mapping the original problem into a high-dimensional space, KFCM achieves clustering

analysis based on the fuzzy theory and distance objective function. With this method, the phasors
composed of N sample points, namely xj, j = 1, . . . ,N, can be classified into M classes. For a
general classification problem, suppose the center of the ith cluster is vi, i= 1, 2, . . . ,M, the mem-
bership degree that the jth sample belongs to for the ith class is μij, i= 1, 2, . . . ,M, j= 1, 2, . . . ,N,
then the following calculation Formula can be obtained [18]:

J =
M∑
i=1

N∑
j=1

(
μij

)m ∥∥ϕ (
xj

)−ϕ (vi)∥∥2 . (3)

The given data needs to be mapped into a high-dimensional space for processing. Selecting
the Gaussian function here as the kernel function will achieve:

J =
M∑
i=1

N∑
j=1

(
μij

)m (
K

(
xj,xj

)− 2K
(
xj, vi

)+K (vi, vi)
)

= 2
M∑
i=1

N∑
j=1

(
μij

)m (
1−K

(
xj, vi

))
, (4)

where K
(
xj, vi

) = e
−‖xj−vi‖

2

2σ2i .

Membership degree:

μij =
1−K

(
xj, vi

)−1/m−1

M∑
i=1

(
1−K

(
xj, vi

))−1/m−1

, (5)

where the membership degree satisfies the constraint of
∑M

i=1μij = 1, μij ∈ [0, 1].

Cluster center:

vi =
⎛⎝ N∑
j=1

μm
ij
K

(
xj, vi

)
xj

⎞⎠/ ⎛⎝ N∑
j=1

μm
ij
K

(
xj, vi

)⎞⎠ . (6)



CMES, 2021, vol.126, no.3 1299

The clustering process is [18]:

(1) Parameter settings: Ambiguity as m, Error Threshold of Objective Function as ε, Maxi-
mum Number of Iterations as Imax;

(2) Initialization: Randomly select M data points in the feasible domain as the initial
cluster center;

(3) For the tth iteration, compute Objective Function J (t). Determine whether |J (t)− J (t− 1)|
< ε is true. If it is true, stop the clustering. Otherwise, update the membership matrix and
cluster center according to Formulae (5) and (6) and continue with clustering until the
optimal cluster center is obtained;

(4) Defuzzy to get the final clustering result.

KFCM is very sensitive to cluster center settings and kernel parameters. However, in standard
KFCM, the initial cluster center is randomly determined, and the kernel parameters are set
according to experience. This greatly affects clustering accuracy and efficiency. Thus QPSO is
introduced in this paper to seek the optimal cluster centers and kernel parameters.

3.2 Improved QPSO
3.2.1 QPSO

Quantum Particle Swarm Optimization (QPSO) is a new intelligent optimization algorithm
proposed by Sun and other scholars on the basis of particle swarm optimization and quan-
tum mechanics [19]. Particle swarm optimization updates positions according to particle flight
speeds. Based on the δ potential well theory, QPSO obtains the probability density functions for
particles appearing at certain points by solving the Schrödinger equation and performs inverse-
transformation alongside it to obtain particle positions. Compared with conventional algorithms,
QPSO can search for the optimal solution in the entire feasible domain, with fast convergence
and robustness [20,21].

In QPSO, assume the position vector of particle k (k= 1, 2, . . . ,W , W represents the number

of particles) in the tth generation is Xk,t =
{
x1k,t,x

2
k,t, . . . ,x

N
k,t

}
, where N is the dimension of the

target problem, Pbestk,t represents the historically best position of Particle K and Gbestt is the
optimal position of the swarm. As known from Chen et al. [22], as particles evolve, a particle
would take Pk,t, the weighted average position of its historically best position and the optimal
position of its swarm, as the attraction point and gravitate towards that point. The specific
weighted average position (or attractor) is:

Pk,t= α ·Pbestk,t + (1−α)Gbestt , (7)

where α is a weighting factor, subject to uniform distribution, i.e., α∼U (0, 1).

The mean value of the historically best positions of all particles (average optimal position) is:

mbestt =
1
W

W∑
k=1

Pbestk,t . (8)
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To update particle positions, the particles need to be collapsed from the quantum state to
the classic state, and the Monte Carlo random simulation is used to obtain the next-generation
particle position.

Xk,t+1 =Pk,t+β ·
∣∣mbestt −Xk,t

∣∣ · ln (u) , (9)

where β =
⎧⎨⎩0.5+ 0.5 · Ĩmax−t

Ĩmax
, u> 0.5,

0.5− 0.5 · Ĩmax−t
Ĩmax

, u≤ 0.5.
, represents the contraction-expansion coefficient, Ĩmax is

the maximum number of iterations, u is the random number, u∼U (0, 1) [23].

The Schrodinger equation [24] informs us that the state of the system cannot be determined
with specific values but needs to be described with a wave function. Particle K moves in potential
well δ centered on position Pk,t in the jth dimension, with a wave function ψ that can be
described as:

ψ
(
Xj
k,t+1

)
= 1√

Ljk,t

exp

⎛⎝−

∣∣∣Xj
k,t+1−Pjk,t

∣∣∣
Ljk,t

⎞⎠ , (10)

where Ljk,t represents the characteristic length of potential well δ in the jth dimension and satisfies

Ljk,t= 2β
∣∣∣mbestjt

−Xj
k,t

∣∣∣ . (11)

The probability density function of Particle K in the jth dimension is

Q
(
Xj
k,t+1

)
= 1

Ljk,t
exp

⎛⎝−
2

∣∣∣Xj
k,t+1−Pjk,t

∣∣∣
Ljk,t

⎞⎠ . (12)

Through iterative solutions from Formulae (7) to (9), the optimal values can be obtained.
In the later iteration period, with less space for the possible distributions of particle attraction
points and insufficient swarm diversity, the aforementioned QPSO algorithm is difficult to jump
out of local extrema and hence trapped in the “prematurity” problem. Focusing on the QPSO
problems in the optimization solution, this paper proposes an Improved Quantum Particle Swarm
Optimization algorithm (IQPSO), striving to improve upon the QPSO in three aspects and better
the algorithm searching performance.

3.2.2 Betterment Strategy
(1) Attractor Multiple Update Strategy

The QPSO algorithm obtains the retained good positions from the historically best posi-
tions of individuals and optimal positions of the swarm through the attractor shown in
Formula (7), and gradually gravitates towards the global optimal position. However, as
the iteration progresses, it causes a fast decline in swarm diversity and a degradation
in the searching performance for the multi-extrema optimization problem, thus becoming
stuck in the local optimal solution [21]. To solve this problem, the Attractor Multiple
Update Strategy was introduced. Suppose the neighborhood optimal position of Particle
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j is ξPbestk,t , and ξ represents the neighborhood weighing factor, replace the updated
Formula with:

Pk,t= α ·Pbestk,t + (1−α)Gbestt , (13)

Pk,t= α ·Pbestk,t + (1−α) ξPbestk,t , (14)

Pk,t= α ·Pbestk,t + (1−α)
(
Gbestt − ξPbestk,t

)
. (15)

Formula (13) is the original attractor update Formula that can select and retain the optimal
solutions from the swarm’s best position. Formula (14) selects the better solution from
the neighborhood optimal position. Formula (15) selects and retains the better solution
from the global optimal position and neighborhood best position. In the Attractor Multiple
Update Strategy, the update is conducted based on comprehensive consideration for the
swarm’s optimal positions, the individual historically best positions and neighborhood best
position. It helps increase swarm diversity effectively and enables searching for the global
optimal solution. In practice, an auxiliary random weight ω ∈ (0, 1) is introduced. If ω< ξ ,
the attractor will be updated according to Formula (14). If ξ ≤ ω < 1 − ξ , the attractor
will be updated according to Formula (13). Otherwise, Formula (15) will be utilized. In

practice, ξ ∈
(
0, 13

)
is often selected.

(2) Perturbation Strategy of Potential-Well Characteristic Length
Integrating Formulae (9) and (11), we will get:

Xk,t+1 =Pk,t+
Ljk,t
2

· ln (u) . (16)

It shows that the Potential-Well characteristic length Ljk,t is directly related to the algo-

rithm search speed and convergence performance. The QPSO algorithm adopts the swarm’s
average position to update the position, which fails to present search information for
the entire group. When the swarm’s best position Gbest is only the local best, almost all
particles only conduct local searches and are hardpressed to jump out of local extrema.
Therefore, considering the information from different individuals, this paper introduces the
Perturbation Strategy. For the swarm composed of W particles, we select θW particles
randomly proportional to θ ∈ (0.1, 0.3) and perform perturbation to the Potential-Well
characteristic length according to the Formula:

Ljk,t= 2β

∣∣∣∣∣∣
Pj,λ1bestk,t

−Pj,λ2bestk,t

2

∣∣∣∣∣∣ , (17)

where λ1 and λ2 represent two randomly-selected particles respectively.
(3) Dynamic Crossover Strategy

To further enhance the global swarm search ability, we introduce the crossover operation
of the genetic algorithm into QPSO. During the algorithm iteration, for the tth iteration,
firstly, we obtain Xk,t+1, the particle position in the (t+ 1)th iteration according to For-
mula (8) and Formulae (13) to (17). Then, we perform crossover operations on Pbestk,t and
the individual’s historically best position Pbestk,t , and generate the new individual position
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Zk,t =
{
z1k,t+1, z

2
k,t+1, . . . , z

N
k,t+1

}
. To perform crossover operations on the particle position

according to the following Formula, we will get:

zjk,t+1 =
{
Xj
k,t+1, ηj < γc,

Pjbestk,t , else,
(18)

where ηj is the random number, satisfying ηj ∼U (0, 1), and γc is the crossover probability.
The crossover operation of the particle’s historically best position is:

Pjbestk,t+1
=

⎧⎨⎩z
j
k,t+1, f

(
zjk,t+1

)
< f

(
Pjbestk,t

)
,

Pjbestk,t , else,
(19)

where f (·) is the fitness function.
Large crossover probability can fully retain the individual’s empirical knowledge and speed
up algorithm convergence. While retaining individual information, small crossover proba-
bility increases swarm diversity and enhances the global search ability. Therefore, this paper
introduces it in the middle and late iteration periods. The dynamic crossover strategy is
defined as:

γc (t)= γmax− (γmax− γmin) ln [1+ (e− 1) t/Imax] , (20)

where γc ∈ [γmin,γmax], γmin and γmax represent respectively the given minimum and
maximum crossover probabilities, and e is the natural base.

3.3 IQPSO-KFCM
The QPSO algorithm is improved according to the strategy stated in Section 3.3.3 and is used

to optimize the cluster center and kernel parameters of fuzzy c-means clustering. This is the main
idea of the IQPSO-KFCM algorithm proposed in this paper. As is shown in Formula (4), gen-
erally, KFCM determines the cluster center by minimizing the intra-class distance. The inter-class
distance is thus ignored, and clustering accuracy is reduced. Therefore, this paper comprehensively
considers the intra-class distance and inter-class distance and improves the fitness function.

3.3.1 Fitness Function Construction
According to Formula (2), the inter-class distances of different samples in KFCM are

defined as:

Di =
M∑
ζ ,i=1

(μi)
m ∥∥ϕ (vi)−ϕ (

vζ
)∥∥2

= 2
M∑
ζ ,i=1

(μi)
m (

1−K
(
vi, vζ

))
. (21)

The objective function is:

Ei = Ji
Di

, (22)
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where Di represents the sum of the inter-class distances and describes the relation between relevant
classes; Ji is the sum of intra-class distances and the objection function of the original clustering
algorithm. In the objective function, a smaller Ji leads to a greater Di and a smaller Ei will be. It
indicates that a closer intra-class distance leads to a more distant inter-class distance and better
clustering. Therefore, the fitness function is constructed as:

fiti =
1

1+Ei
. (23)

Thus, a bigger fiti leads to better clustering.

3.3.2 Algorithm Steps
The basic process of IQPSO-KFCM is: In improved quantum particle swarm optimization,

the particle positions represent the feasible solutions to the optimization problem, and each
position is composed of a group of cluster centers. The IQPSO and KFCM algorithms are
executed in an alternating fashion to obtain the kernel parameters of the optimal cluster center
and Gaussian kernel function. The detailed steps are:

Step 1: Parameter settings: Determines the number of clusters as M, variable dimension
as N, error threshold as ε, maximum number of iterations as Imax, and maximum and minimum
crossover probability as γmin and γmax respectively;

Step 2: Initialization: Swarm size is W , particle position is Xk,0, cluster center is vi, and the
particle historically best position and swarm best position is 0;

Step 3: Calculate the fitness function according to Formulae (4) and (21) to (23), sort the
historically best fitness functions in descending order (find the maximum value) and update
the particle historically optimal position Pbestk,t and swarm best position Gbestt according to
the calculation result;

Step 4: Execute Steps 5 to 9 on each particle in swarm k, 1≤ k≤W ;

Step 5: Determine the neighborhood optimal position of each particle according to the fitness
function ξPbestk,t , execute the attractor multiple update strategy according to Formulae (13) to
(15) to obtain local attractor Pk,t;

Step 6: Execute the perturbation strategy of the Potential-Well characteristic length and
update the particle position Xk,t+1 according to Formulae (16) and (17);

Step 7: Execute the dynamic crossover strategy and update the particle positions according to
Formula (18);

Step 8: Update the particle historically best position Pjbestk,t according to Formula (19);

Step 9: Compare the fitness functions and update the swarm best position Gbestt ;

Step 10: Update the crossover probability according to Formula (20);

Step 11: Keep repeating Steps 4 to 10 until the two fitness functions of two adjacent iterations
meet the error threshold, or the maximum number of iterations is reached. Stop the iterations and
the final result Gbestt+1 will be the optimal solution obtained by IQPSO-KFCM and f

(
Gbestt+1

)
the corresponding best indicator.
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3.4 Algorithm Validation
The IQPSO-KFCM algorithm proposed in this paper consists of two parts, the improved

quantum particle swarm optimization and IQPSP-based kernel fuzzy C-means clustering. The two
parts will be validated respectively. All validation tests and simulations are based on Windows 10
Pro Edition (×64), configured with an i7-8550U CPU, 1.80 GHz CPU Frequency, 8 GB RAM
and Matlab R2016b.

3.4.1 Algorithm Validation of IQPSO
To illustrate the improvements in the IQPSO algorithm in its ability to search for opti-

mal solutions, this paper introduces 6 commonly-used benchmark functions [25,26], as shown
in Tab. 2, uses QPSO and IQPSO for optimization and conducts tests with the maximum
number of iterations, and the error threshold of the objective function as the termination
condition respectively.

Table 2: Benchmark function set

Function Formula Feasible region Optimal
value

Sphere f1 (x)=
∑n

i=1 x
2
i [−100, 100] 0

Schwefel f2 (x)=
∑n

i=1

(∑i
j=1 xj

)2
[−5, 5] 0

Rosenbrock f3 (x)=
∑n−1

i=1

[
100

(
x2i −xi+1

)2+ (xi− 1)2
]

[−100, 100] 0

Griewank f5 (x)= 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 [−600, 600] 0

Ackley
f4 (x)=−20 exp

(
−0.2

√
1
30

∑n
i=1 xi

2
)

− exp
(

1
30

∑n
i=1 cos 2πxi

)
+ 20+ e

[−32, 32] 0

Schaffer f6 (x)= sin2
√
x12+x22−0.5

(1+0.001(x12+x22))2
+ 0.5 [−100, 100] 0

Take the number of iterations as the only termination conditions. Set the maximum number
of iterations as 1000 and the swarm size as 50. Employ QPSO and IQPSO and run them 50 times
each. Take the statistical mean of the mean and standard deviation of the objective function as
the performance evaluation metrics for the algorithms. Parameter settings: The feasible region of
variable initialization is shown in Tab. 2, where the crossover probability γmin = 0.7, γmax = 0.9.
The optimization problem for different variable dimensions is solved, and the optimization results
are recorded in Tab. 3. By contrast, it can be found that, whether it is mean or standard deviation,
the results obtained from IQPSO optimization are smaller than that from QPSO optimization,
and IQPSO archives strike improvements in optimization accuracy. For the solution to the low-
dimensional optimization problem, all test functions achieve good optimization effects. For the
solution to the high-dimensional problem, all functions, except the Rosenbrock function can
obtain the ideal optimal solution. For the Rosenbrock function, although the improved method
in this paper can further approximate the optimal solution, there are still some errors. Hence,
the IQPSO algorithm proposed in this paper is good enough to solve the low-dimensional opti-
mization problem but slightly deficient for solving the high-dimensional problem. To demonstrate
the specific search process for the optimal solution, one result of the 50-dimension solutions is
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randomly chosen and graphed for analysis, as shown in Figs. 4 to 9. By comparison, it is found
that, whether in mean or standard deviation, the IQPSO algorithm proposed in this paper achieves
better accuracy than QPSO. In the later iteration period, the QPSO algorithm is stuck in the local
extrema. On the contrary, thanks to the introduction of the improvement strategy, IQPSO enjoys
better swarm diversity, hence it is able to jump out of the local extrema, search, and obtain the
global best solution.

Table 3: Statistical analysis of optimization results

Function Experiment
No.

Problem
dimension

QPSO IQPSO

Mean
value

Standard
deviation

Mean
value

Standard
deviation

Sphere 50 50 3.51× 10−5 4.32× 10−6 1.75× 10−11 5.67× 10−12

25 2.08× 10−12 1.57× 10−13 5.18× 10−18 1.52× 10−18

Schwefel 50 50 1.08× 10−2 3.05× 10−2 1.12E× 10−7 8.67× 10−8

25 8.14× 10−10 3.08× 10−10 6.19× 10−15 4.35× 10−16

Rosenbrock 50 50 2.84× 10+1 5.75× 10−1 7.90× 10−1 2.15× 10−1

25 1.17× 10−8 5.01× 10−9 2.44× 10−13 3.12× 10−13

Griewank 50 50 1.99× 10−6 4.06× 10−6 1.13× 10−12 2.13× 10−13

25 6.19× 10−14 1.62× 10−14 8.65× 10−19 2.14× 10−20

Ackley 50 50 4.42× 10−3 1.32× 10−3 2.83× 10−6 1.02× 10−6

25 1.49× 10−10 2.88× 10−11 3.71× 10−18 9.80× 10−20

Schaffer 50 2 4.39× 10−12 5.11× 10−11 9.01× 10−19 1.67× 10−19

Take the error threshold of the objective functions as the only termination condition and set
the specific parameters as above. Run QPSO and IQPSO independently 100 times, and record the
average number of iterations and success rates for each solution in Tab. 4, where the success rate
φ is calculated by Formula (24).

φ = ly
ltotal

, (24)

where ly is the number of successful tests, and ltotal is the total number of tests.

By comparing the data in Tab. 4 it can be seen that based on the premise of meeting target
accuracy, the average number of iterations for the IQPSO algorithm proposed in this paper is
significantly less than that of the QPSO algorithm. This is because the QPSO algorithm lacks
a corresponding strategy to ensure swarm diversity in the late iterations of the algorithm. As a
result, the algorithm tends to fall into local extrema, and thus often fails to find the optimal
solution under the conditions of a given accuracy and satisfy accuracy threshold conditions. By
contrast, the IQPSO algorithm can obtain the optimal solution properly. Therefore, the IQPSO
algorithm proposed in this paper has a better convergence speed and accuracy.

3.4.2 Algorithm Validation of IQPSO-KFCM
To validate the effect of IQPSO-KFCM in clustering applications, the UCI Dataset, including

Iris, Wine, Blance-archive, Vote, Heart, and Australia, are introduced to conduct clustering tests
on the algorithm [27]. The parameters of the dataset are shown in Tab. 5.
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Figure 4: Fitness curve of Sphere function
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Figure 5: Fitness curve of Schwefel function

KFCM and IQPSO-KFCM are used to conduct clustering analysis on the aforementioned
UCI dataset. Clustering is performed 100 times. The success rate index is defined as:

φ̃ = Ny

Ntotal
, (25)

where Ny is the number of accurate clustering samples, Ntotal is the total number of samples. The
average accuracy of 100 tests is recorded in Tab. 6.

The experimental data in Tab. 6 shows the clustering results of 3 clustering algorithms on
6 UCI data. The proposed algorithm shows the best clustering performance on all UCI data
sets. It is easy to observe that the data in columns 3 and 4 in Tab. 6 prove that the KFCM
clustering performance based on the optimized algorithm has been greatly improved. This shows
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that the optimization algorithm can indeed find a good clustering center, thereby improving the
final clustering effect from the algorithm. The data in the fourth column of Tab. 6 is slightly
improved compared to the third column, which shows that IQPSO can indeed prevent QPSO from
falling into local extreme values, thereby improving IQPSP-KFCM clustering performance.
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Figure 6: Fitness curve of Rosenbrock function
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Figure 7: Fitness curve of Griewank function

4 Membership Identification of Low-Voltage Station Areas Based on IQPSO-KFCM

The IQPSO-KFCM algorithm proposed in this paper is adopted to find identification solu-
tions to the user-transformer relations based on the zero-crossing shift data of on-site low-voltage
energy meters and transformers. As shown in Fig. 10, the data is collected based on the existing
equipment from the energy meters and concentrators at some station areas in some coastal city
and pooled at the main station for further processing. There are four transformers connected
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to 234 energy meters. The specific zero-crossing shift data at the transformer side and energy
meter side are shown in Tabs. 7 and 8. Thus, the problem is about how to use the IQPSOKFCM
algorithm to conduct clustering analysis and classify the dataset composed of 234 energy meters
into 4 classes.
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Figure 8: Fitness curve of Ackley function
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Figure 9: Fitness curve of Schaffer function

Parameter settings: Number of clustering M = 4, variable vector N = 234, error threshold
ε = 10−3, maximum number of iterations Imax = 1000, minimum crossover probability γmin = 0.7,
maximum crossover probability γmax = 0.9, Gaussian function as kernel function, swarm size
W = 300, initial position of the particle Xk,0 and cluster center vi are determined randomly. When
the algorithm satisfies either one of the conditions, the error threshold or the maximum number
of iterations, the clustering process can be stopped and the optimal solution obtained. To compare
the clustering effect, KFCM is introduced to compare with the proposed algorithm. The specific
clustering results are shown in Fig. 11.
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Table 4: Statistics of average iteration number and average optimization success rate

Function Accuracy QPSO IQPSO

Average
iteration
times

Success
rate

Average
iteration
times

Success
rate

Sphere 10−4 596 100% 362 100%
Schwefel 10−4 961 60% 675 100%
Rosenbrock 10−1 347 100% 260 100%
Griewank 10−4 544 100% 363 100%
Ackley 10−4 882 34% 460 92%
Schaffer 10−4 791 88% 88 100%

Table 5: UCI data set

Data set Dimension Samples Categories

Iris 4 150 3
Wine 13 178 3
Blance-archive 4 625 3
Vote 16 435 2
Heart 14 270 2
Australia 15 690 2

Table 6: Clustering result comparisons

Data set KFCM (%) QPSO-KFCM (%) IQPSO-KFCM (%)

Iris 90.10 97.44 99.52
Wine 71.88 91.88 98.69
Blance-archive 62.20 84.51 91.6
Vote 86.46 89.73 95.10
Heart 60.30 80.97 87.01
Australia 62.00 83.08 94.73

Intelligent 
meter 

Concentrator
Master
station

Carrier communication 4G

Figure 10: Schematic diagram of field data acquisition
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Table 7: Zero-crossing shift field data on transformer side

Area number Zero-crossing shift on
transformer side (µs)

1 320.221
2 58.894
3 73.237
4 81.054

Table 8: Zero-crossing shift field data on electric energy meter side

1∼26 27∼52 53∼78 79∼104 105∼130 131∼156 157∼182 183∼208 209∼234

331.715 329.401 51.426 55.185 63.987 61.522 76.728 72.023 80.810
333.076 323.034 57.072 53.347 59.537 61.093 69.037 75.372 84.115
306.367 335.536 68.559 66.599 68.825 69.271 74.393 75.929 85.355
300.600 313.086 58.285 58.518 53.055 65.248 71.233 74.798 76.436
318.230 325.377 57.379 53.962 50.374 63.054 68.200 75.318 77.947
335.609 321.649 67.018 66.171 66.032 57.244 74.654 70.426 78.555
312.304 329.769 65.952 62.584 52.086 55.214 76.712 77.279 80.156
339.666 309.901 57.005 54.696 59.946 69.199 72.753 73.174 80.876
306.100 334.042 65.528 50.338 50.729 77.138 72.639 78.774 82.804
308.199 319.491 50.969 56.792 59.941 68.743 77.207 82.228 79.583
337.243 338.585 61.805 57.390 67.087 72.715 73.267 80.536 78.098
320.683 315.728 53.165 66.139 51.701 71.605 74.804 78.663 79.646
304.925 308.889 68.752 60.587 57.151 71.056 69.884 79.699 85.318
314.660 325.831 54.170 53.682 58.492 69.744 69.357 77.006 82.048
310.800 318.004 58.161 62.855 50.146 71.507 72.255 81.673 79.836
332.459 307.239 61.214 53.367 62.715 77.436 76.709 82.506 85.383
322.868 306.330 58.253 54.203 56.696 68.174 76.104 84.473 85.752
316.864 324.780 55.380 58.006 55.642 71.490 77.675 78.449 85.640
331.212 317.347 65.309 50.024 55.999 70.332 70.246 76.264 78.580
331.999 62.776 54.129 61.750 54.355 73.642 73.325 82.459 79.736
329.360 54.473 62.293 53.236 58.534 74.180 71.865 84.487 81.243
312.711 53.387 68.818 60.265 52.043 69.101 70.147 79.978 78.848
315.836 57.819 58.210 60.663 60.639 73.640 75.708 85.306 78.922
314.922 59.180 50.534 65.440 60.985 75.553 77.994 78.639 81.635
316.599 66.909 60.083 57.869 60.324 71.329 70.505 78.823 77.787
300.876 60.666 50.455 52.179 60.743 75.786 68.686 82.792 84.171

Note: 1∼234 are the numbers of the intelligent meter, the other data is the zero-crossing shift, the unit is µs.

In Fig. 11, the actual user-transformer relation refers to the class membership of the physical
energy meters to the transformer, which can be determined by switch-in and switch-out operations.
To facilitate data analysis, the results are categorized and recorded in Tab. 9. Through comparison,
it can be seen that the cluster centers obtained by KFCM and IQPSOKFCM clustering are
basically consistent with the zero-crossing shifts at the transformer side. By using the proposed
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method, the clustering results show an accuracy of 99.15%, different from the authentic user-
transformer relation of only two energy meters. Compared with that of the KFCM algorithm,
the accuracy is increased by 10.26% with running time shortened by 37.35 s, an indication that
the proposed method has a higher accuracy and computing efficiency. The zero-crossing shift data
is fundamentally consistent in the same station area but significantly different in different station
areas. To classify the user-transformer relations according to this theory, the IQPSO-KFCM
algorithm proposed in this paper is very effective in identifying user-transformer relations in two
station areas that are quite similar. It can be seen through analysis that in both clustering analysis
methods, the energy meters in question are very close in the zero-crossing shift data. In reality,
they are usually energy meters located at the junctions between two station areas. With the devel-
opment of the power supply, distribution network and on-site line transformation, there are many
intersections in the actual station areas, making it hard to distinguish the station areas clearly.
However, the method proposed in this paper can handle this well, and thus will have an extremely
wide range of application scenarios where it can actually identify the user-transformer relations.
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Figure 11: Result of user-transformer relation identification

Table 9: Statistics result of user-transformer relations identification

Method KFCM QPSO-KFCM

Cluster center [320.007 63.426 74.663 82.116] [320.153 59.246 73.277 80.918]
Kernel parameters [2.377 0.988 2.046 2.523] [1.186 1.072 1.038 1.121]
The wrong meter in 4 areas [0 9 13 6] [0 0 1 1]
Accuracy (%) 88.89 99.15
Running time (s) 88.77 51.42

5 Conclusion

Observing the intricate low-voltage power grid, messy user-transformer relations, and man-
agement difficulty in China, the paper proposes an identification method for user-transformer
relations based on IQPSO and KFCM. Its main contributions includes the following parts: (1) An
improved PSO optimization algorithm (IQPSO) is proposed. The Attractor Multiple Update
Strategy, Perturbation Strategy of Potential-Well Characteristic Length and Dynamic Crossover
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Strategies are introduced in IQPSO, which avoids PSO from falling into local optimal problems
and improves global optimization of the optimization algorithm. (2) An improved FCM algorithm
(KFCM) is proposed. KFCM introduced a kernel function to solve the linear inseparability prob-
lem. To make full use of data, KFCM introduces a fitness function based on the distance between
classes to improve clustering performance for the clustering algorithm. (3) Adopting 6 benchmark
functions and 5 UCI datasets to simulate the IQPSO algorithm and IQPSO-KFCM algorithm
respectively, and fully explaining the superiority of the algorithm in global optimization and
cluster analysis; (4) Adopting the IQPSO-KFCM algorithm to solve the problem of identifying
the actual user-transformer relations and properly achieving the goal.

However, based on zero-crossing shift data, the proposed method can only determine the
class membership of the energy meters to the transformer but can’t sort the membership phases
of energy meters. Next, we are going to analyze the grid voltages and current data and explore
applying the fuzzy clustering algorithm in phase splitting of energy meters.
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