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ABSTRACT

The isogeometric analysis method (IGA) is a new type of numerical method solving partial differential equations.
Compared with the traditional finite element method, IGA based on geometric spline can keep the model con-
sistency between geometry and analysis, and provide higher precision with less freedom. However, huge stiffness
matrix from the subdivision progress still leads to the solution efficiency problems. This paper presents a multigrid
method based on geometric multigrid (GMG) to solve thematrix system of IGA. This method extracts the required
computational data for multigrid method from the IGA process, which also can be used to improve the traditional
algebraic multigrid method (AGM). Based on this, a full multigrid method (FMG) based on GMG is proposed.
In order to verify the validity and reliability of these methods, this paper did some test on Poisson’s equation
and Reynolds’ equation and compared the methods on different subdivision methods, different grid degrees of
freedom, different cyclic structure degrees, and studied the convergence rate under different subdivision strategies.
The results show that the proposed method is superior to the conventional algebraic multigrid method, and for
the standard relaxed V-cycle iteration, the method still has a convergence speed independent of the grid size at the
same degrees.
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1 Introduction

In recent years, as a numerical method for solving partial differential equations (PDEs), isoge-
ometric analysis [1] (IGA) has been widely concerned and studied. The basic idea of IGA: Based
on the isoparametric element theory, geometric splines can not only describe the exact geometric
modeling but also the solution space of numerical methods, which can unify the geometric model
and the analytical model. Therefore, the spline information in CAD model is directly used as
the initial mesh in IGA. Since it was proposed, most of the research on IGA has focused on
parametric modeling and physical spatial discretization. However, when dealing with large-scale
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problems, it is still a problem to solve the system of linear equations which are obtained from the
geometric discretization. The reason is that the direct solution is inefficient and usually requires
targeted development of faster and more efficient iterative solver.

The multigrid method [2,3] (MG) is often used as an efficient iterative algorithm to solve
large-scale linear equations. The main idea is to eliminate high-frequency errors through fine mesh
smoothing, coarse grid correction to eliminate low frequency errors, and an iterative strategy for
fine grid and coarse grid cycles. According to the different mapping matrix generation methods,
the MG can be divided into two types: geometric multigrid method (GMG) and algebraic multi-
grid method (AMG). Usually the AMG is more widely used then the other because it obtains
different level meshes in an algebraic way instead of constructing them, which may be compli-
cated in some cases [4]. However, the IGA directly generates the hierarchical mesh through the
refinement method (p-refinement, h-refinement, k-refinement), which encourages us to implement
the GMG in IGA.

It seems natural to extend these methods to IGA, and several remarkable works has been
made in recent years. MG for IGA based on classical concepts have been considered in [5,6],
and a classical multilevel method in [7]. An approach to local refinement in IGA based on a full
multigrid method(FMG) can be found in [8]. The related studies mainly include Gahalaut et al. [9]
applied multigrid to IGA, and did not propose the concept of mapping matrix; Hofreither
et al. [10] proposed a robust error approximation. These studies above mainly focus on the
implement of MG in IGA. And the efficiency in the adaptation process has been studied. Other
research mainly includes Guo [11] to improve efficiency through parallel computing and multi-
grid method, Liu et al. [12] combined conjugate gradient method with multi-grid method, and
Chen et al. [13] based on geometric analysis such as least squares coupling multigrid method.
Recently, in [14] some progress has been made by using a Richardson method preconditioned
with the mass matrix as a smoother (mass-Richardson smoother). Similar techniques have been
used to construct symbol-based multigrid methods for IGA, see [15,16]. However, all the above
research uses the coordinate mapping relationship in the process of geometric mesh construction
to modify the traditional algebraic multigrid iterative process but ignore the stiffness information
discretely obtained during isogeometric subdivision. In addition, the extension matrix transposition
is directly used in the construction of restriction matrix, which will lead to the confusion and
imbalance of mapping relationship.

Based on previous generations, this paper uses the geometric information discretized by isoge-
ometric subdivision to couple the MG with IGA and its application. Especially for the numerical
algorithms such as IGA, we use geometric method to optimize them in the shortcomings of AMG,
and it has integrated into the process of FMG.

2 Isogeometric Analysis

2.1 B-Splines and NURBS Basis Functions
Like FEM, IGA also have shape functions, not the Lagrange interpolation functions but the

spline basis functions. As the two common spline functions used in CAD, B-spline and NURBS
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are briefly introduced below. With a given node vector, the B-spline basis function [17] can be
recursively defined as:

Ni, 0(ξ)=
{
1 ξi ≤ ξ ≤ ξi+1
0 others

Ni,k(ξ)= ξ − ξi

ξi+k− ξi
Ni,k−1(ξ)+ ξi+k+1− ξ

ξi+k+1− ξi+1
Ni+1,k−1(ξ)

(1)

where the one-dimensional knot vector ξ = [ξ0, ξ1, . . . , ξn+k+1] is a set of non-decreasing sequences
between 0 and 1. k is the degree of the basis function (p= k+1 is the order of the basis function).
n is the number of basic functions, which is numerically equal to the number of control points.

If the basis function of B-spline is multiplied by an appropriate weight w, the non-uniform
rational B-spline (NURBS) can be introduced. Its expression is:

Rp,qi, j (ξ , η)= Ni,p(ξ)Nj,q(η)wi, j
�n
k=1�

m
l=1Nk,p(ξ)Nl,q(η)wk, l

(2)

2.2 The Framework of Multigrid Isogeometric Analysis
FEA and IGA have the same theoretical basis (i.e., the weak form of partial differential

equation). Take the common elliptic partial differential equation as an example:

−∇ (k∇u)= f in �

u= g on ΓD (3)

∂u
∂n
= h on ΓN

where �⊂R2 is the open and bounded Lipschitz domain and the boundary is ∂�, �D∪�N = �≡
∂�, �D ∩�N =∅; Given source term f : �⊂R2; Symmetric positive definite matrix k : �⊂R2×2;
Dirichlet boundary value g : ∂�⊂ �D; Neumann boundary value h : ∂�⊂ �N .

It is assumed that the physical domain � is represented by a parameter domain �0 mapping

F : �0→�, F(ξ , η)=
(
x
y

)
. Using the control point cij, F can be defined by NURBS as:

F(ξ , η)=
m∑
i=1

n∑
j=1

Rij(ξ , η)cij (4)

The weak form of the differential equation is obtained by multiplying with the trial function
and integrating in the domain �. Let a(u, v)= ∫∫

�
(∇(k∇u)) vdxdy and 〈f , v〉 = ∫∫

�
f v dxdy, then

the equation becomes a(p, v) = 〈f , v〉. According to Green’s method, the linear equations are
obtained by discrete assembly:

Au= f (5)

The detailed process can be seen in [18,19].



1036 CMES, 2021, vol.126, no.3

2.3 Isogeometric Subdivision
Based on the requirements of light weight, modern CAD systems follow the principle of

sufficient enough when characterizing models [20]. So, the spline order in CAD is low usually,
just meeting the basic characterization needs, and the node of the parameter domain is relatively
sparse. But the order of the shape function (spline basis function) and the grid size (knot vector
interpolation space scale) have a great impact on the analysis accuracy. As a result, the first step
in IGA is subdivision, which works like the refinement in FEM, but with a different method.
Therefore, it is necessary to introduce the subdivision process before constructing the isogeometric
multiple meshes.

There are mainly three subdivision methods [21] in IGA, they are p-refinement, h-refinement
and k-refinement. All these subdivision methods can keep the original shape the same. The
changes are mainly at the spline order and knot vector. In particular, the p-refinement retains
the original parameter domain grid and only increases the order of the basis function; the h-
refinement does not change the basis function order but reduces the grid size to construct a finer
parameter domain grid. As a combination of p-refinement and h-refinement, k-refinement increase
the order of basis function firstly, and then refines the knot vector.

Taken the one-dimensional h-refinement as an example for introduction. Inserting the knot
t = [t1, t2, . . . , tm] ⊂ [τk, τn+1] into the knot vector T = [τ0, τ1, . . . , τn+k+1] at one time can get
the new knot vector T = [τ 0, τ 1, . . . , τ n+k+1+m], then the corresponding coordinate calculation
formula of the new spline control point can be obtained [22]:

Dj =D[r+1]
i, j =

(
τ j+k−r− τi

)
τi+k−r− τi

D[r]
i, j+

(
τi+k−r− τ j+k−r

)
τi+k−r− τi

D[r]
i−1, j

{
τi ≤ τ j < τi+1

r= 1, 2, . . . , k
(6)

where D[1]
i, j =Di is the coordinate of the original spline control point.

If k= 3 (the cubic B-spline), Formula (6) can be written as follow:

Dj =D[4]
i, j = aiDi+ ai−1Di−1+ ai−2Di−2+ ai−3Di−3τi ≤ τ j < τi+1 (7)

where, the coefficients can be calculated as follows:

ai =
(
τ j+1− τi

) (
τ j+2− τi

) (
τ j+3− τi

)
(τi+1− τi) (τi+2− τi) (τi+3− τi)

ai−1=
(
τ j+1− τi

) (
τ j+2− τi

) (
τi+3− tj+3

)
(τi+1− τi) (τi+2− τi) (τi+3− τi)

+
(
τ j+1− τi

) (
τi+2− τ j+2

) (
τ j+3− τi−1

)
(τi+1− τi) (τi+2− τi) (τi+2− τi−1)

+
(
τi+1− τ j+1

) (
τ j+2− τi−1

) (
τ j+3− τi−1

)
(τi+1− τi) (τi+1− τi−1) (τi+2− τi−1)

ai−2=
(
τ j+1− τi

) (
τi+2− τ j+2

) (
τi+2− τ j+3

)
(τi+1− τi) (τi+2− τi) (τi+2− τi−1)

+
(
τi+1− τ j+1

) (
τ j+2− τi−1

) (
τi+2− τ j+3

)
(τi+1− τi) (τi+1− τi−1) (τi+2− τi−1)

+
(
τi+1− τ j+1

) (
τi+1− τ j+2

) (
τ j+3− τi−2

)
(τi+1− τi) (τi+1− τi−1) (τi+1− τi−2)
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ai−3=
(
τ i+1− tj+1

) (
τ i+1− tj+2

) (
τ i+1− tj+3

)
(τi+1− τi) (τi+1− τi−1) (τi+1− τi−2)

During p-refinement process, the degree of the spline curve is raised once, and the shape and
continuity of the curve remain unchanged. Cohen [23] offered a solution to calculate the new
control points:

Dj = 1
k

n∑
i=0

Diaki (j) j= 0, 1, . . . , n+ l (8)

where aki (j) recursively as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
i = a1i =

{
1, τi ≤ τ j ≺ τi+1
0, others

aki (j)=
τ j+k+1− τi

τi+k− τi
ak−1i (j)+ τi+k+1− τ j+k+1

τi+k+1− τi+1
ak−1i+1 (j)+αki (j)

αki (j)=
τ j+k− τi

τi+k− τi
αk−1i (j)+ τi+k+1− τ j+k

τi+k+1− τi+1
αk−1i+1 (j)

K-refinement is a combination of h-refinement and p-refinement. In order to ensure the
continuity of elements, k-refinement is often defined as “first upgrade, then insert nodes” in IGA.
This means, for the B-spline curve of order p, the order is elevated to q by p-refinement firstly,
and then knots inserting is taken by h-refinement.

3 Multigrid Method

For FEM, most of MG method uses the algebraic multigrid method to construct interpolation
operator and coarse the initial grid to get different hierarchical grid. In IGA, the geometric model
is constructed from coarse to fine. There are different levels of grid naturally, and the mapping
matrix between each level can be obtained from the subdivision process. In addition, each level has
its own stiffness matrix and righthand vector. If this advantage is used to combine the multigrid
method with IGA, the efficiency of solution would be improved.

3.1 Multigrid Mapping Matrix
3.1.1 Classical Algebraic Multigrid Mapping Matrix

In AMG, the main work is focused on constructing the interpolation matrix by coarsen the
fine mesh, coarsening refined net �m to get rough grid �m−1 (m= 2, . . . , n). And the coarse grid
�m−1 is a subset of the fine grid defined with Cm, using Fm to define the remaining set �m−Cm,
when

∣∣∣ai, jm ∣∣∣≥ θ ·maxk =i,
∣∣∣ai, jm ∣∣∣, 0< θ ≤ 1 the point i is strongly connected to point j. Let Sim define

all the strong connection points of point i, then the strong connection rough set is Ci
m = Sim∩Cm

and the interpolation matrix Imm−1 refers to the interpolation formula given by Chang et al. [24].

For MG, the mapping matrix is important. And its generation can affect the computational
efficiency of MG directly. So, it is necessary to compare the generation rate of mapping matrix
under different degrees of freedom. the time-consuming of mapping matrix generation (using
Chang’s method) in Tab. 1 shows that the time of generating the mapping matrix of the algebra
multigrid rises sharply with the increase of degrees of freedom. Obviously, a faster constructing
method for mapping matrix will be helpful for the implement of MG.
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Table 1: The generation rate of mapping matrix

n 100 324 1156 4356 16900

Algebraic multigrid method Imm−1 (s) 0.169837 0.888387 4.669562 37.063700 569.107235

3.1.2 Suitable for Isogeometric Analysis of Multigrid Mapping Matrix
As discussed in Chapter 2.3, in the subdivision of IGA can generate the mapping relationship

between new and old control points Dm and Dn. It is assumed that the relationship between u
(on fine grid) and u (coarse grid) also satisfies this relationship. According to the formula (7), the
extension matrix from coarse to fine corresponding to h-refinement can be expressed as:

Dm =Rhm×nDn (9)

in the formula, Rhm×n =
[
r0 . . . rn

]T
m×n

The corresponding linear relation is that the non-zero element in row vector r is numbered
as the old control point number related to the new control point, which is usually a continuous
interval segment.

P-refinement extended matrix can be obtained according to the calculation of Formula (8):

Rp= 1
k+ 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ak0(0) ak1(0) . . . akn(0)

ak0(1) ak1(1) . . . akn(1)

...
... . . .

...

ak0(n+ l) ak1(n+ l) . . . akn(n+ l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

Therefore, the extended matrix of k-refinement is:

Rk =RhRp (11)

In theory, the restriction matrix P from fine grid to coarse grid is the generalized inverse
matrix of extension matrix R, but it is difficult to calculate the inverse matrix of extension matrix
R, and there are stability problems and limitations in inversion calculation. Therefore, in this
paper, transposed matrix is chosen as generalized inverse, P=RT . But in fact, the mapping matrix
P obtained by transpose cannot accurately represent the mapping relationship from coarse grid to
fine grid, so the mapping matrix αi is modified by parameter P here:

αiP(i)D1 =D2(i) (i= 0, 1, . . . ,m) (12)

in the formula, P=

⎡
⎢⎣
p0
...

pm

⎤
⎥⎦
m×n

, D1 =

⎡
⎢⎢⎣
d10
...

d1n

⎤
⎥⎥⎦
n

, D2 =

⎡
⎢⎢⎣
d20
...

d2m

⎤
⎥⎥⎦
m

.

Since the control point D is a coordinate vector, the difference between the positive and
negative coordinates will affect the effect of the correction. To ensure the positive correction of
the parameter αi, the analysis model can be translated to the first quadrant to ensure that the
control point coordinates are greater than zero.
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In IGA, the mapping matrix obtained by different refinement strategies are shown in Tab. 2.
The detailed process can be referred to [25].

Table 2: Mapping matrix

h-refinement p-refinement k-refinement

Continuation Rh Rp Rk

Restrictions Ph Pp Pk

Amended restrictions P
h

P
p

P
k

Based on one-dimensional subdivision, two-dimensional subdivision only needs to subdivide
in u, v directions at the same time to get mapping matrix Ru, i and Rv, j, and then get the mapping
matrix Rξ ,η by global numbering of coarse and fine meshes. n, n′ is the number of control points
of the grid. Rξ ,η can be represented by Eq. (13).

Rξ ,η =Ru, iRv, j
{

ξ = n′(v− 1)+ u
η= n(j− 1)+ i (13)

A time-consuming compare of mapping matrix generation between this method and AMG is
given in Tab. 3. With the freedom increase, more time can be saved in pre-processing stage of MG.

Table 3: The generation rate of mapping matrix

n 100 324 1156 4356 16900

Algebraic multiple method Imm−1 0.169837 0.888387 4.669562 37.063700 569.107235
Mapping matrix Rξ ,η 0.003802 0.009883 0.039448 0.199938 1.603531

3.2 Multigrid Algorithm
3.2.1 Geometric Modification of Algebraic Multigrid Method

The multigrid method is divided into initial period and calculation stage. In the initial period,
GMG is based on the subdivision of the solution domain to get the grid of different scales.
AMG only uses the information of coefficient matrix in algebraic equations to construct multigrid,
and the method is consistent in the iterative solution stage. In order to improve the implement
of AMG in IGA, geometric information will be introduced to AMG, what is called Geometric
modification of algebraic multigrid method (GMG).

1. Initial period

1). The nested grid layer �1 ⊂�2 ⊂ . . .⊂�m is constructed by subdivision, and the extension
matrix Rmm−1 from layer m− 1 grid to layer m is stored. The mapping matrix Pm−1m from
layer m grid to layer m− 1 is modified according to Eq. (12).

2). Multigrid A1
GMG, A

2
GMG, . . . , AmGMG is obtained by discretizing PDEs with the method of

IGA, so the Right items f 1, f 2, . . . , f m.
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2. Calculation stage

Algorithm 1: um←GMG(Am, f m, um, d)

1. If m= 1, solve directly or precisely iteratively on �1, otherwise proceed to the next step.
2. Pre-relaxation: um← Sλ1(Am, f m, um)

3. Coarse-grid correction:
(a) Algebraic residuals rm−1=Pm−1m (f m−AmAMGu

m);
Geometric residual rm−1=Pm−1m (f m−AmGMGu

m)

(b) Take the minimum residual rm−1 from (a)
(c) em−1←GMG(Am−1, rm−1, 0, d)

(d) Correction of residuals um = um+Rmm−1em−1
4. Post relaxation: um← Sλ2(Am, f m, um)

The iterative process of multigrid method (GMG) is given above. For a given parameter
space �1 ⊂ (0, 1)2, a rough gird for IGA can be built. Though refinement, multilevel grids can
be constructed., so the limit matrix of layer m to layer m − 1 Pm−1m and the extension matrix
from m−1 to m Rmm−1. Parameter d in GAMG determines how to access each layer, as shown in
Fig. 1, d = 1 is a V-type cycle and d = 2D is a W -type cycle. The traditional AMG, the left term
of the coarse grid is calculated using the mapping method, Am−1AMG = Pm−1m AmAMGR

m
m−1. In GMG,

the corresponding Am of each geometric level can be calculated directly. That means, GMG in
this paper introduces geometric information as a more selection of residual and selects the smaller
residual as the next relaxation iteration by comparing the residual between geometric grid and
algebra grid.

m = 3

m = 2

m = 1

Figure 1: Multi-grid cycle

As for the iteration of relaxation operator Sv1(Am, f m, um), v1= v2 = 2 represents the number
of times of relaxation. In order to get the iteration structure, Am is divided into Am =Mm−Nm,
and its iterative format can be written as:

um = (I −Mm−1Am)um+Mm−1f m (14)

Mm is selected to obtain various iterative methods for relaxation. Jacobi, Gauss–Seidel and
SOR iterations are commonly used. For rough grid correction, both the residual rm = (f m−Amum)

and error em = um − um satisfy the residual equation Amem = rm, so em−1 can be solved by the
same relaxation operator S.

3.2.2 Full Multigrid Method
As known to all, Am and f m are discretized on each level grid in IGA, in order to make full

use of these information, a full multigrid method (FMG) method suitable for IGA is established.
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In the loop process of FMG, both AMG and GMG can be selected as solving algorithm
on each layer, hence the accuracy of each layer can be guaranteed. Besides, and with the help
of the extension matrix Rmm−1, the results can be interpolation to the previous layer as the initial
solution which can be useful to reduce the iteration steps. As shown in Fig. 2, the FMG process
is as follows:

m = 3

m = 2

m = 1

Figure 2: Full multigrid method

Algorithm 2: FMG algorithm

1. Using exact solution in the thickest grid u1 =A1/f 1

2. The initial solution of the second layer grid u2=R2
1u

1

3. For the level m, the initial solution of the third layer um =Rmm−1um−1
4. Calculate um←AMG(Am, f m, um) or um←GMG(Am, f m, um)

5. If m is the final level “exit”, else go to Step 3.

4 Numerical Examples

In order to verify the validity of the algorithm, this paper has carried out the verification on
the Poisson equation and Reynolds equation.

According to the relationship between residual norm and error norm: ‖rk‖ = ‖Aek‖ ≤
‖A‖‖ek‖, the convergence of the residual and the error is consistent.

The relative error can be expressed as follows:

‖rk‖ /‖r0‖ = error (15)

The convergence rate is defined as:

ration= erroriter/erroriter−1 (16)

The algorithm is written in OCTAVE, the computer processor is Core i5-4570, with 3.20 GHz
frequency. We contrast the convergence and calculation time of different subdivision strategies.
The unified cycle format is V cycle, the number of grid layers m = 3, and the subdivision mode
of coarse grid to fine grid is p1 h1 p2 h2 p3 h3, corresponding to the 6-bit coding (such
as 102026) shown in the figure below, respectively. Select the corresponding subdivision strategy
from Tab. 5 (Reynolds) and Tab. 8 (Poisson), and the relaxation algorithm selects Gauss–Seidel
iteration, and the number of internal iterations is controlled to be v1 = v2= 2.

4.1 Reynolds Equation Model
The piston-cylinder liner is used as a lubrication system, and the oil film pressure is derived

based on the Reynolds equation. Fig. 3a shows the piston liner system, and the area of lubricating
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film is shown in Fig. 3b. Based on the Navier–Stokes equations and the mass continuity equation,
the Reynolds equation [26,27] can be established as follows:

∂

∂x

(
ρh3

12η
∂p
∂x

)
+ ∂

∂y

(
ρh3

12η
∂p
∂y

)
= ∂

∂x
(u0− uh) ρh

2
+ ∂

∂y
(v0− vh)ρh

2
+ ∂ (ρh)

∂t
(17)

where ρ is the lubricant density, p is the oil film pressure, η is the dynamic viscosity, u0 and uh
are the oil film circumferential speeds on the piston and the cylinder liner surface, v0 and vh are
the film shaft speed on the piston and the cylinder liner surface, h is the film thickness, t is time.

Since the lubrication area is symmetrical relative to the plane φ = 0, only the right half needs
to be considered. In general, the piston moves periodically, and the values of density and viscosity
will change with the change of load value. However, in order to simplify the numerical model,
the values of density and viscosity are taken as constant. The calculation parameters of oil film
pressure are shown in Tab. 4.

(a) (b)

Figure 3: Piston-cylinder liner lubrication system (a) piston-cylinder system (b) oil film
lubrication area

Table 4: Calculate parameters

Parameter/unit Explanation Value

r/m Piston skirt radius 2.1725× 10−2
R/m Cylinder radius 2.175× 10−2
LSK /m Piston skirt length 2.25× 10−2
η/Pa · s Lubricant viscosity 1.295× 10−2
et/m Eccentricity of upper end of piston skirt 7.8565× 10−2
eb/m Eccentricity of lower end of piston skirt −2.4924× 10−5
det/m · s−1 Derivative of et to time −2.435× 10−3
deb/m · s−1 Derivative of eb to time −8.4461× 10−3
v/m · s−1 Reciprocating speed of piston −10.6543
Cb/m Vertical distance from piston pin to piston crown 6× 10−3
Cc/m Distance from piston pin to piston centerline 0
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The motion parameters of the piston-cylinder liner model have been given above, and the
relevant detailed derivation process is referred to [28,29].

Table 5: Number of control points from MG based on different refinement strategies

p h

0 1 2 3 4 5 6 7

0 4 9 25 81 289 1089 4225 16641
1 9 16 36 100 324 1156 4356 16900
2 16 25 49 121 361 1225 4489 17161
3 25 36 81 144 400 1296 4624 17424

When the Reynolds equation is discretized, the knot vector of the initial parameter domain is
v= u= [0 0 1 1]. In the initial state, given different p, h, k-refinement strategies will get different
levels of grid control points.

In the case of h-refinement, n is the thinnest grid, and the appropriate coarse grid is selected
to make it have the fastest convergence rate. It can be seen from Tab. 6 that when k is constant,
the grid size is independent of the convergence rate. Since the Reynolds equation is an elliptic
equation of second order, so it has the fastest convergence rate at k = 2. When k increases, the
convergence rate decreases sharply.

Table 6: Convergence rate

k= 1 iter= 8 k= 2 iter= 7 k= 3 iter= 20 k= 4 iter= 70

n L2-error Ration n L2-error Ration n L2-error Ration n L2-error Ration

81 5.7682e−9 0.0893 100 1.4610e−11 0.0420 121 5.4724e−10 0.4866 144 2.7144e−09 0.8618
289 2.6945e−10 0.0595 324 1.2098e−11 0.0438 361 9.3986e−11 0.4863 400 1.8839e−10 0.8599
1089 1.6173e−10 0.0553 1156 1.1407e−11 0.0467 1225 2.3928e−11 0.4867 1296 4.0223e−11 0.8405
4225 6.3934e−11 0.0536 4356 4.6670e−12 0.0453 4489 1.0456e−11 0.4835 4624 1.8401e−11 0.8400
16641 2.9877e−11 0.0534 16900 1.9957e−12 0.0444 17161 4.9974e−12 0.4830 17424 9.0104e−12 0.8402

Fig. 4 only shows the comparison between h-refinement and k-refinement in order to explore
the influence of different refinement strategies on the convergence rate. The broken lines in
the figure indicate the number of subdivisions of each layer of the grid. For example, 252627
represents the second-order fifth-level grids, the second-order sixth-level grids and the second-order
seventh-level grids. The figure below is similar. The traditional AMG and GMG are used to
compare the convergence of different degrees of freedom and spline degree k. The convergence
rate of AMG and GMG iterations are shown in Fig. 5. Tab. 7 shows the CPU calculation time
of the AMG algorithm and the GMG algorithm. It can be seen that: when the number k is
constant, the convergence rate of AMG and GMG is almost the same under different grid sizes.
Due to the different ways in which the coarse grid matrix is generated, the non-zero elements
of the matrix A are different. As shown in Fig. 6, nz is the number of non-zero elements. The
band length in the GMG matrix A is reduced globally and locally, and the number of non-zero
elements is less than that in the AMG matrix. Therefore, when the degree of freedom is large, the
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GMG of the natural discrete matrix A can save more time and computing resources. Meanwhile,
as the right items of different levels of are also produced in the discrete process, FMG can be
used to calculate the original right items in the current layer. It can be seen from Fig. 7 that the
full multiple cycles have superior initial values in the iterative calculation process, and the desired
error accuracy can be obtained in less iterations.

(a)

(b)

Figure 4: Relative error of refinement strategy (a) H-refinement relative error (b) K-refinement
relative error
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(a) (b)

(c) (d)

Figure 5: Relative error between AMG and GMG (a) k= 1 (b) k= 2 (c) k= 3 (d) k= 4

Table 7: CPU calculation time of AMG and GMG

n Computation time/s n Computation time/s

AMG GMG AMG GMG

1089 0.01429 0.01381 1156 0.02011 0.02132
4225 0.04896 0.04004 4356 0.09043 0.08749
16641 0.19569 0.19189 16900 0.47305 0.45915
1225 0.06512 0.07268 1296 0.54113 0.56633
4489 0.35961 0.35194 4624 3.43262 3.32487
17161 2.00979 1.89226 17424 14.15859 13.95189



1046 CMES, 2021, vol.126, no.3

(a) (b)

Figure 6: Coarse grid matrix A (a) GMG (b) AMG

Figure 7: Relative error between FMG and GMG

4.2 Poisson Equation Model
The equation of the two-dimensional Poisson problem with Dirichlet boundary conditions in

the domain � with the following expression:{−∇ (k∇u)= f in �

u= 0 on ∂�
(18)

The domain � is the quarter-ring of the inner radius Ri = 1 and the outer radius Re = 2

is shown in Fig. 8. When the right term heat source is f = ((8− 9
√

(x2+ y2) sin(2arctan(y/x)))/

(x2+ y2), the analytical solution is u= (x2+ y2− 3
√

(x2+ y2)+ 2) sin(2arctan(y/x)).
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Figure 8: Two dimensional poisson heat transfer problem

For the parameter domain knot vector of two-dimensional Poisson equation is v = u =
[0 0 0 1 1 1] in the initial state, the convergence and calculation time of subdivision strategy
are compared under the working environment mentioned above. The related calculated data
correspond to the Reynolds equation are listed below.

Table 8: Number of control points from MG based on different subdivision strategies

p h

0 1 2 3 4 5 6 7

0 9 16 36 100 324 1156 4356 16900
1 16 25 49 121 361 1225 4489 17161
2 25 36 81 144 400 1296 4624 17424

Table 9: Convergence rate

k= 2 iter= 7 k= 3 iter= 20 k= 4 iter= 70

n L2-error Ration n L2-error Ration n L2-error Ration

100 3.6649e−11 0.053717 121 3.7055e−11 0.4703 144 4.3997e−11 0.8503
324 5.1800e−10 0.112660 361 1.5032e−12 0.4413 400 8.2384e−12 0.8505
1156 3.5185e−10 0.131564 1225 5.1833e−13 0.4587 1296 1.8076e−12 0.8351
4356 2.0245e−10 0.119191 4489 1.1490e−13 0.4633 4624 4.8159e−13 0.8362
16900 1.5931e−10 0.121456 17161 5.3937e−14 0.7366 17424 1.2852e−13 0.8485
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(a)

(b)

Figure 9: Relative error of refinement strategy (a) H-refinement relative error (b) K-refinement
relative error

Tab. 9 discusses the influence of the choice of grid level on convergence in the AMG
algorithm under different subdivision situations. Fig. 9 only shows the comparison between
h-refinement and k-refinement in order to explore the influence of different refinement strategies
on the convergence rate. It can be seen from the figure that the mapping matrix satisfies the
mapping relationship between the control points when there is a large gap between the number
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of control points of the coarse and fine grid, whether h-refinement or k-refinement. For the
assumed scale series between u and u are large, the linear distortion leads to the inaccurate
mapping relationship, and the convergence rate is not converged as expected. Within a certain
range of the number gap between the coarse and fine grid points, the convergence rate of
h-refinement is different in the early iteration, but the convergence curve tends to coincide in the
later 10 iterations, while the trend of k-refinement only convergence rate is the same. Therefore,
the selection of the appropriate grid hierarchy is beneficial to the convergence of the multi-grid
method. Fig. 10 shows the relative error of the AMG algorithm and the GMG algorithm. Tab. 10
shows the CPU calculation time of the AMG algorithm and the GMG algorithm. Although the
convergence rate of the AMG algorithm and the GMG algorithm is almost the same in the
verification of the Reynolds equation, the GMG algorithm still saves more time in the initial
period calculation.

(a) (b)

(c)

Figure 10: Relative error between AMG and GMG (a) k= 2 (b) k= 3 (c) k= 4
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Table 10: CPU calculation time of AMG and GMG

n Computation time/s n Computation time/s n Computation time/s

AMG GMG AMG GMG AMG GMG

1156 0.03075 0.02785 1225 0.06954 0.07617 1296 0.50252 0.52221
4356 0.10854 0.10078 4489 0.40158 0.37563 4624 3.31978 3.03466
16900 0.63829 0.58589 17161 2.18113 2.08475 17424 13.98436 12.82764

Fig. 11 shows the convergence comparison between FMG and GMG under the Reynolds
equation model. It can be seen that: at the start stage, with the help of the good initial value,
the FMG algorithm has a better accurate result, but the convergence tends to be consistent with
others in the later stage.

Figure 11: Relative error between FMG and GMG

In this paper, the algebraic multigrid method and the geometric analysis of the natural discrete
stiffness matrix A are used instead of the transpose generation matrix Am−1AMG = Pm−1m AmAMGR

m
m−1,

and the geometric multi-grid method and the algebraic multigrid method are compared. Numerical
results show that: convergence rates of the two methods keep consistent, but GMG reduces the
time cost at the initial period. For the subdivision strategies of different levels (3 levels), the
convergence rate of h-refinement intermediate layer is faster when it is closer to the fine grid, and
the convergence rate of k-refinement intermediate layer is faster when it is in the middle of coarse
and fine grid. When FMG is applied to IGA, its convergence rate is faster than that of GMG.
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5 Conclusion

Based on the framework of IGA, the analytical models of Reynolds equation and Poisson
equation are established, and multigrid is applied to the IGA. According to its solving process and
method, a calculation program was developed in OCTAVE (FMG based on GMG modified the
traditional AMG). The convergence rate of the iteration is independent of the size of the discrete
mesh, so the multigrid method has the optimal computational complexity. When the degree of
freedom of fine grid is determined, the degree of freedom of coarse grid can be reduced and
the boundary information can be quickly spread to the whole, which can not only accelerate the
convergence rate but also save the cost of calculation time. However, the selection of grid level
also affects the convergence accuracy. In particular, the selection of the middle level has a greater
impact on the results, and the performance of the middle grid close to the top grid is better. As
for the combination of FMG and IGA, the results show that the algorithm can make full use
of IGA to discretize the geometric information of each layer. Compared with the V-cycle, it has
a faster initial convergence speed, but it is consistent with conventional algorithms in the later
stage. How to make better use of the existing information to accelerate calculation efficiency and
improve calculation accuracy is the direction we will continue to study in the future.

Funding Statement: This research was supported by the Natural Science Foundation of Hubei
Province (CN) (Grant No. 2019CFB693), the Research Foundation of the Education Department
of Hubei Province (CN) (Grant No. B2019003) and the open Foundation of the Key Laboratory
of Metallurgical Equipment and Control of Education Ministry (CN) (Grant No. 2015B14). The
support is gratefully acknowledged.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Nguyen, V. P., Anitescu, C., Bordas, S. P., Rabczuk, T. (2015). Isogeometric analysis: An overview

and computer implementation aspects. Mathematics and Computers in Simulation, 117, 89–116. DOI
10.1016/j.matcom.2015.05.008.

2. Briggs, W. L., Henson, V. E., Mccormick, S. F. (2000). A multigrid tutorial. 2nd edition. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

3. Tai, C. H., Zhao, Y. (2003). Parallel unsteady incompressible viscous flow computations using an unstruc-
tured multigrid method. Journal of Computational Physics, 1(1), 277–311. DOI 10.1016/j.jcp.2003.07.005.

4. Stüben, K. (2001). A review of algebraic multigrid. Journal of Computational and AppliedMathematics, 1–2,
281–309. DOI 10.1016/S0377-0427(00)00516-1.

5. Hofreither, C., Zulehner, W. (2015). Spectral analysis of geometric multigrid methods for isogeometric
analysis. Numerical Methods and Applications, 8962, 123–129. DOI 10.1007/978-3-319-15585-2_14.

6. Hofreither, C., Zulehner, W. (2016). On full multigrid schemes for isogeometric analysis.Domain Decompo-
sition Methods in Science and Engineering, 22, 267–274. DOI 10.1007/978-3-319-18827-0_25.

7. Buffa, A., Harbrecht, H., Kunoth, A., Sangalli, G. (2013). BPX-preconditioning for isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering, 265, 63–70. DOI 10.1016/j.cma.2013.05.014.

8. Chemin, A., Elguedj, T., Gravouil, A. (2015). Isogeometric local h-refinement strategy based on multigrids.
Finite Elements in Analysis and Design, 100, 77–90. DOI 10.1016/j.finel.2015.02.007.

9. Gahalaut, K. P., Johannes, K., Satyendra, T. (2013). Multigrid methods for isogeometric discretization.
Computer Methods in Applied Mechanics And Engineering, 100, 413–425. DOI 10.1016/j.cma.2012.08.015.

http://dx.doi.org/10.1016/j.matcom.2015.05.008
http://dx.doi.org/10.1016/j.jcp.2003.07.005
http://dx.doi.org/10.1016/S0377-0427(00)00516-1
http://dx.doi.org/10.1007/978-3-319-15585-2_14
http://dx.doi.org/10.1007/978-3-319-18827-0_25
http://dx.doi.org/10.1016/j.cma.2013.05.014
http://dx.doi.org/10.1016/j.finel.2015.02.007
http://dx.doi.org/ 10.1016/j.cma.2012.08.015


1052 CMES, 2021, vol.126, no.3

10. Hofreither, C., Takacs, S., Zulehner, W. (2017). A robust multigrid method for isogeometric analysis in
two dimensions using boundary correction. ComputerMethods in Applied Mechanics and Engineering, 316,
22–42. DOI 10.1016/j.cma.2016.04.003.

11. Guo, L. C. (2013). Improving the computational efficiency of isogeometric analysis via parallel computing and
multigrid methods. Hefei, China: University of Science and Technology of China.

12. Liu, S., Chen, D. X., Feng, Y. X., Xu, Z. L., Zheng, L. K. (2014). A multigrid preconditioned conju-
gate gradient method for isogeometric analysis. Applied Mathematics & Mechanics, 35(6), 630–639. DOI
10.3879/j.issn.1000-0887.2014.06.005.

13. Chen, D., Xu, Z. (2014). An application of multigrid in viscous flow simulations with least squares
isogeometric method. Journal of Xian JiaotongUniversity, 48(11), 122–127.DOI 10.7652/xjtuxb201411021.

14. Hofreither, C., Zulehner,W. (2015).Mass smoothers in geometric multigrid for isogeometric analysis.Curves
and Surfaces, 9213, 272–279. DOI 10.1007/978-3-319-22804-4_20.

15. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H. (2015). Robust and optimal
multi-iterative techniques for IgA Galerkin linear systems. Computer Methods in Applied Mechanics and
Engineering, 284, 230–264. DOI 10.1016/j.cma.2014.06.001.

16. Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H. (2017). Symbol-based multigrid
methods for Galerkin B-spline isogeometric analysis. SIAM Journal on Numerical Analysis, 55(1), 31–62.
DOI 10.1137/140988590.

17. Piegl, L. A., Tiller, W. (1997). The NURBS book. Berlin Heidelberg: Springer.
18. Vuong, A. V., Heinrich, C., Simeon, B. (2010). ISOGAT: A 2D tutorial MATLAB code for isogeometric

analysis. Computer Aided Geometric Design, 8(8), 644–655. DOI 10.1016/j.cagd.2010.06.006.
19. Wang, D. D., Xuan, J. C., Zhang, C. H. (2012). A three dimensional computational investigation on

the influence of essential boundary condition imposition in NURBS isogeometric finite element analysis.
Chinese Journal of Computational Mechanics, 29(1), 31–37. DOI 10.7511/jslx20121006.

20. Wang,X., Hu, P., Zhu,X., Gai, Y. (2016). Topology description function approach using nurbs interpolation
for 3D structures with self-weight loads. Lixue Xuebao/Chinese Journal of Theoretical & Applied Mechanics,
48(6), 1437–1445. DOI 10.6052/0459-1879-16-145.

21. DaVeiga, L. B., Buffa,A., Rivas, J., Sangalli, G. (2011). Some estimates for h-p–k-refinement in isogeometric
analysis. Numerische Mathematik, 118(2), 271–305. DOI 10.1007/s00211-010-0338-z.

22. Cohen, E., Lyche, T., Riesenfeld, R. (1980). Discrete B-splines and subdivision techniques in computer-
aided geometric design and computer graphics. Computer graphics and image processing, 14(2), 87–111.
DOI 10.1016/0146-664X(80)90040-4.

23. Cohen, E., Lyche, T., Schumaker, L. L. (1985). Algorithms for degree-raising of splines. ACMTransactions
on Graphics, 3(3), 171–181. DOI 10.1145/282957.282962.

24. Chang,Q.,Wong,Y. S., Fu, H. (1996).On the algebraicmultigridmethod. Journal of ComputationalPhysics,
2(2), 279–292. DOI 10.1006/jcph.1996.0094.

25. Wei, Z. P., Luo, H. X., Zuo, B. Q., Fei, J. G. (2020). Research on multigrid algorithm based on isogeometric
hierarchical model of K-subdivision. Modular Machine Tool & Automatic Manufacturing Technique, 7,
30–35. DOI 10.13462/j.cnki.mmtamt.2020.07.007.

26. Patir, N., Cheng, H. S. (1978). An average flow model for determining effects of three-dimensional
roughness on partial hydrodynamic lubrication. Journal of Lubrication Technology, 1(1), 12–17. DOI
10.1115/1.3453103.

27. Patir, N., Cheng, H. S. (1979). Application of average flow model to lubrication between rough sliding
surfaces. Journal of Tribology, 2, 220–229. DOI 10.1115/1.3453329.

28. Xu, H. Y., Luo, H. X., Zuo, B. Q., Li, Z. X. (2019). The application of isogeometric method in Reynolds
equation.Machinery Design & Manufacture, 7, 184–188. DOI 10.19356/j.cnki.1001-3997.2019.07.046.

29. Zhang, M. X., Zuo, B. Q., Huang, Z. D., Xiong, T. F. (2015). A combined solution for
DAE and PDE of cylinder-piston system. Computer Applications and Software, 12, 160–164. DOI
10.3969/j.issn.1000-386x.2015.12.038.

http://dx.doi.org/10.1016/j.cma.2016.04.003
http://dx.doi.org/10.3879/j.issn.1000-0887.2014.06.005
http://dx.doi.org/10.7652/xjtuxb201411021
http://dx.doi.org/10.1007/978-3-319-22804-4_20
http://dx.doi.org/10.1016/j.cma.2014.06.001
http://dx.doi.org/10.1137/140988590
http://dx.doi.org/10.1016/j.cagd.2010.06.006
http://dx.doi.org/10.7511/jslx20121006
http://dx.doi.org/10.6052/0459-1879-16-145
http://dx.doi.org/10.1007/s00211-010-0338-z
http://dx.doi.org/10.1016/0146-664X(80)90040-4
http://dx.doi.org/10.1145/282957.282962
http://dx.doi.org/10.1006/jcph.1996.0094
http://dx.doi.org/10.13462/j.cnki.mmtamt.2020.07.007
http://dx.doi.org/10.1115/1.3453103
http://dx.doi.org/10.1115/1.3453329
http://dx.doi.org/10.19356/j.cnki.1001-3997.2019.07.046
http://dx.doi.org/10.3969/j.issn.1000-386x.2015.12.038

