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ABSTRACT

Parkinson’s disease (PD) is a very common neurodegenerative disease that occurs mostly in the elderly. There
are many main clinical manifestations of PD, such as tremor, bradykinesia, muscle rigidity, etc. Based on the
current research on PD, the accurate and convenient detection of early symptoms is the key to detect PD.With the
development of microelectronic and sensor technology, it is much easier to measure the barely noticeable tremor
in just one hand for the early detection of Parkinson’s disease. In this paper, we present a smart wearable device
for detecting hand tremor, in which MPU6050 (MIDI Processing Unit) consisting of a 3-axis gyroscope and a
3-axis accelerometer is used to collect acceleration and angular velocity of fingers. By analyzing the time of specific
finger movements, we successfully recognized the tremor signals with high accuracy. Meanwhile, with Bluetooth
4.0 (Bluetooth Low Energy, BLE) and networking terminal ability, tremor data can be transferred to a monitoring
device in real timewith extremely low energy consumption. The experimental results have shown that the proposed
device (smart ring) is convenient for long-term tremor detection which is vital for early detection and treatment
for Parkinson’s disease.
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1 Introduction

Parkinson’s disease (PD) is a progressive nervous system disorder that affects movements of
human body. Symptoms start gradually, sometimes starting with a barely noticeable tremor in just
one hand. Tremors are common, but the disorder usually causes stiffness or bradykinesia [1]. The
elderly is at a higher risk of Parkinson’s disease compared with young people which causes great
difficulties to their life.
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Tremor, especially static tremor, is usually the first symptom of Parkinson’s disease. The
“static” refers to a state of quietness or relaxation of muscles of the body. These tremors look
like as if a person is rubbing clay balls or counting money. They appear only occasionally at first,
and get worse gradually.

The main symptoms of Parkinson’s disease are distinguishable, especially the tremors which
serve as the prelude and can be used to foresee an onslaught of Parkinson’s disease [2–4]. In
recent decades, the detection of tremor signals of Parkinson’s disease has attracted enthusiastic
attentions and many detection methods have been proposed in academia and industry [5–7].

Devices with builtin accelerometers and gyroscopes have been used to assist detecting tremors
in PD patients. The study of using accelerometer to detect tremor signals is evolved gradually with
the development of electronic techniques [8,9]. In 2010, in the United States, Robert LeMoyne
used builtin accelerometer in iPhone to detect tremor signals. By collecting and analyzing the
waveform of tremors from a Parkinson’s patient, it is demonstrated that the accelerometer in
iPhone can quantify the characteristics of tremor [10]. Oess et al. [11] designed a smart glove
equipped with gyroscope which can trace the motion of hand and analyze the motion waveform
to detect tremor. Paola Pierlenoni designed a bracelet which is used to detect tremor signal; it
uses the FFT (Fast Fourier Transform) and autoregressive parameter model spectrum to plot the
power spectrum and identifies the features of tremor [12]. Butson et al. [13] proposed a standard-
ized method to classify motions based on motion programming DBS (Deep Brain Stimulation)
parameters. In their study, subjects were asked to wear motion sensors while conducting DBS
coded standard procedures to collect kinematics data. Researchers could use this method to better
understand the parameters of motions.

So far, it is a common belief that tremor signals embrace reliable characteristics for early
detection of Parkinson’s disease [14,15]. However, it remains a challenge about how to make
the detection accurate and how to make the device easy to use for the elderly users. Researches
are working to develop smaller and more convenient devices for tremor detection [16]. In the
future, it is inevitable that there will be more demands on small and convenient devices for PD’s
early detection.

In general, wearable devices [17–19] for PD detection have the following features
in common:

(1) Small size and light weight, so that the device can be used as convenient as possible.
(2) High sensitivity. The device should be able to detect subtle tremors which can prelude the

onslaught of PD.
(3) Low power consumption. The battery capacity of microelectronic device is extremely

limited. As a result, the operating power should be as low as possible.

In this paper, we present our design and implementation of a small ring device to detect hand
tremors for Parkinson’s disease patients. Section 2 presents our selection of the system hardware
components and Section 3 presents the hardware circuit design. Section 4 explains the tremor
detection algorithm design. Section 5 presents our system implementation and the experimental
studies. In Section 6, we conclude with future work to fine-tune the smart ring device.
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2 System Hardware Architecture

2.1 Off-the-Shelf Hardware List
To minimize the size and cost of the device, we selected off-the-shelf hardware as listed in

Tab. 1 and explained below.

Table 1: List of hardware materials

Name Number

CC2541 1
MPU-6050 1
Decoupling capacitor Several
Main oscillator 32 MHz 1
Auxiliary crystal oscillator 32.768 kHz 1
The button battery 5 V 1
LED lamp 1
Reset button 1
10 K ohm resistor 1

CC2541 is a Bluetooth low energy and proprietary wireless MCU (Microcontroller), used for
data transmission. MPU-6050 (MIDI Processing Unit) is a motion tracking device designed for
low power consumption, low cost and high-performance, used to obtain data of acceleration and
angular velocity. Decoupling capacitor is used for signal filtering. Precision resistor (56 kohm,
±1%) is a bias resistor. Main crystal oscillator (32 MHz) is to supply clock signals. Auxiliary
crystal oscillator (32.768 kHz) works for low power consumption mode. The button battery (5 V)
supplies power. LED lamp is used to indicate the state of device. Reset button is used to reset
the device. 10 K� resistor is used to protect the circuit.

2.2 MPU-6050
2.2.1 A Brief Introduction of MPU-6050

MPU6050 is an integrated chip with embedded accelerometer and gyroscope on the same
silicon die that can detect acceleration, angular velocity and temperature. We only use acceleration
and angular velocity in this study. The data collected were converted from analog signals to digital
signals using a 16-bit ADC (Analog-to-Digital Converter). The integrated gyro detection diagram
is shown in Fig. 1. The pin diagram of MPU-6050 is shown in Fig. 2.

2.2.2 Configuring Register Parameters
GYRO_CONFIG: XG_ST (self-testing X-axis gyroscope), YG_ST (self-testing Y-axis gyro-

scope), G_ST (self-testing Z-axis gyroscope) and FS_SEL (gyroscope range selection) are included
in this register configuration part. When FS_SEL is 0, the output range is ±250◦/s. When FS_SEL
is 1, the output range is ±500◦/s. When FS_SEL is 2, the output range is ±1000◦/s. When
FS_SEL is 3, the output range is ±2000◦/s.

ACCEL_CONFIG: XA_ST (self-testing X-axis accelerometer), YA_ST (self-testing Y-axis
accelerometer), ZA_ST (self-testing Z-axis accelerometer) and AFS_SEL (accelerometer range
selection) are included in this register configuration part. The accelerometer configuration is shown
in Tab. 2.
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Figure 1: Gyro detection diagram

Figure 2: Pin diagram of MPU6050

Table 2: Accelerometer configuration

AFS_SEL Output range (g)

0 ±2
1 ±4
2 ±8
3 ±16

The registers used to store the triaxial acceleration values are: ACCEL_XOUT_H, ACCEL_
XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, ACCEL_ZOUT_L.

The registers used to store the value of gyroscope: GYRO_XOUT_H, GYRO_XOUT_L,
GYRO_YOUT_H, GYRO_YOUT_L, GYRO_ZOUT_H, GYRO_ZOUT_L.
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2.2.3 Interrupt Mode
The interrupt status register can read interrupt status in MPU-6050. The main interrupt

sources are Free Fall Interrupt, Motion Interrupt, and Zero Motion Interrupt.

Free Fall Interrupt: The free fall is judged by comparing the magnitude of triaxial acceleration
with the threshold value. If the acceleration is close to the threshold value, it triggers the free fall
interrupt and change the flag bit. If the acceleration is less than the threshold, it is ignored.

Motion Interrupt: If the output value is greater than the threshold value, the counter increases
by 1. Otherwise, the counter decreases by 1. When the value of counter reaches the threshold
value, the motion interrupt will be triggered. When the flag bit is read, both free fall and motion
interrupt become 0.

Zero Motion Interrupt: If the output value is smaller than the threshold value, the counter
will increase by 1. When the value of counter reaches the threshold value, the static interrupt
is triggered.

Interrupts can be triggered by the following events: Switching clock source, completing the
DMP (Digital Motion Processor), reading data from FIFO (First-In, First-Out) data register and
interrupt accelerometer.

2.2.4 CC2541 Communication
In addition to the IIC interface connected to MPU6050, CC2541 also has two powerful

asynchronous serial communication interfaces that support multiple serial protocols: USART0
and USART1. These two interfaces can not only run asynchronous UART mode but also run
synchronous SPI mode.

The operation characteristics of UART mode are as follows: 1) Three calibration methods
are applicable, namely odd parity, even parity and no parity. 2) Receive interrupts autonomously.
3) Access memory autonomously. 4) Check the error state through the checksum frame.

UART has two interface selection methods: 2-wire interface (using RXD and TXD), 4-wire
interface (using RXD, TXD, RTS and CTS). In USART0, P0_2 corresponds to RX, P0_3 to TX,
P1_4 to RX, and P1_5 to TX. In USART1, P0_5 corresponds to RX, P0_4 to TX, P1_7 to RX,
and P1_6 to TX.

The UART operations mainly include UxCSR and UxUCR (x is 0 or 1, which is the USART
number). Now take USART0 for example. U0CSR.MODE is used to set UART MODE. When
U0CSR.RE is 0, the receiver is disabled. When U0CSR.RE is 1, the receiver is enabled. When
U0CSR.FE is 0, it means no frame error detection.

When U0CSR.FE is 1, it means the byte has received incorrect stop bit level. When
U0CSR.ERR is 0, there is no parity error. When U0CSR.ERR is 1, there is parity error.
U0CSR.RX_BYTE is 0 when no bytes are received. When U0CSR.RX_BYTE is 1, it is ready to
receive bytes. When U0CSR.TX_BYTE is 0, the byte is not sent. When U0CSR.TX_BYTE is 1,
the byte is written to the cache and the byte will be sent at last. When U0CSR.ACTIVE is 0,
USART is idle. When U0CSR.ACTIVE is 1, USART is busy when sending or receiving. The table
USART 0 UART Control-U0UCR (0xC4) is in Tab. 3.
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Table 3: USART 0 UART control-U0UCR (0xC4)

Name Describe

FLUSH Clean unit
FLOW UART hardware stream enablement
D9 UART parity bit
BIT9 UART 9-bit data enablement
PARITY UART parity enabling
SPB UART stop bits

3 Hardware Circuit Design

3.1 Overall Design Scheme and Circuit Diagram Analysis
In this study, CC2541 is the main chip and MPU6050 is the data collection module which

are to be integrated as a smart ring. Fig. 3 shows the overall scheme diagram. The smart ring
includes the sensor module, power supply, and the Bluetooth transmission unit. APP is developed
as a smartphone application to display the data. Fig. 4 shows the circuit of CC2541 module.

Figure 3: Overall scheme diagram

3.2 Design of CC2541 Reset Circuit
CC2541 RESET pin can reset CC2541. The reset function will initialize the system to the

original state when all registers are cleared. In this design, the reset button is used for future
development. Fig. 5 is the reset button circuit.

Under normal conditions, the key will always be in a disconnected state, and the RESET pin
will always be in a low-level state. When the key is pressed, RESET is directly connected to the
power supply. At this time, RESET is 1 and the starts to reset. Of course, C and R determine
the duration of the high level. The advantage of button reset is that it can be reset at any time.
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But there are also disadvantages. For instance, the operation is more complex and welding is
more difficult.

Figure 4: Circuit of CC2541 bluetooth module

Figure 5: Reset button circuit

3.3 Crystal Oscillator Circuit Design of CC2541
Considering the low power consumption, a primary and a secondary crystal oscillator are

added according to the user manual of CC2541. The main crystal oscillator is connected to the
circuit of 22 and 23 pins. Fig. 6 shows the crystal oscillator circuit.
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Figure 6: Crystal oscillator circuit

The reason why the RC internal oscillator of 16 MHz is not used is that it has low accuracy
which cannot be used in RF transceivers. The main frequency of auxiliary crystal oscillator is
32.768 KHz according to the manual, which is added to achieve low power consumption. In
general, the crystal oscillator is matched with capacitors. The main crystal oscillator and the
auxiliary crystal oscillator have two capacitors respectively according to the manual, which can
effectively assist the crystal to vibrate and improve the stability of the circuit.

3.4 CC2541 RF Circuit and Antenna Design
The 25 and 26 pins of CC2541 are RF pins, and a 50 ohms impedance is the best match

for RF communication according to the manual. Therefore, a device named 2450BM15A0002 of
balun is used in this design. Considering the ceramic antenna is smaller than traditional PCB
antenna, ceramic antenna is selected. Fig. 7 is the RF circuit and antenna.

Figure 7: RF circuit and antenna

CC2541 and MPU6050 have SCL pin, SDA pin and IIC interface, which can receive and send
data. NFC is used for communication between CC2541 and MPU6050. MPU6050 transmits the
collected data to CC2541 using the two pins, and then the data will be transmitted to the mobile
terminal using the Bluetooth module.
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3.5 Power Circuit Design
Since 5 V is the reference voltage, the voltage stabilizing circuit Lm1117 is used. The advan-

tage of LM1117 is the high voltage stability, accuracy, small temperature drift at high and low
temperature and simple peripheral circuit. The output current can reach 0.8 A with 0.2% voltage
stability and 0.4% load stability. A light emitting diode is added to the far right to indicate
whether it is working to prevent the battery from connecting backwards. Fig. 8 shows the power
supply circuit.

Figure 8: Power supply circuit

3.6 Hardware Overall Analysis
This design uses a CC2541 chip, which has low power consumption. The current is only

0.5 mA in external interrupt mode. In order to meet the requirements of low power consumption,
32.768 kHz auxiliary crystal oscillator is used.

4 Tremor Detection Algorithm Design

4.1 Main Flow of System
After calling the main function, the system will enter the initial state, and then continuously

send the current state of the device in the while loop. The program flow diagram is shown
in Fig. 9.

4.2 Internal Drive Function Flow of MPU6050
After calling the MPU6050 drive function, it then tests readability of the data collected by

MPU6050 and the stability of connection. It then sends all data of the triaxial acceleration and
angular velocity to CC2541 by NFC. The flow diagram is shown in Fig. 10.

4.3 Inertial Data Collection
4.3.1 Initialize and Test the Connection Fragment

The algorithm for collecting inertial data is shown in Fig. 11.

At first, IIC is initialized and bIfConnected is set with a flag ahead of time. If AD0 of
MPU6050 is in low level, then the connection is successful. And then assign a value of 1 to
bIfConnected and initialize MPU6050.

Using a for loop, all the data in the IIC device are read and stored in the array for invocation.
Where Slave Address is the device address, REG_Address is the device’s internal register address,
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readNum is the maximum number of internal registers, and I2CSlaveBuffer[PORT_USED][i] is
the array to be sent.

Figure 9: System flow design

The variables ax, ay, az receive the unprocessed triaxial acceleration data from registers and
gx, gy, gz receive the unprocessed triaxial angular velocity data from the correspondent registers.
These data will be continuously passed to the DMP motion chip for further processing and then
being transmitted to the mobile client by the Bluetooth module.

The data packet of the communication protocol usually has 20 bytes, including header
(1 byte), effective data length (1 byte), function code (1 byte), effective data (0–16 bytes), checksum
(1 byte, the sum of data before the checksum in the package), and complement byte (0–16 bytes).
Firstly, check the following packet head to see whether it is 0× 55. If so, continue the following
operation and analyze whether the packet head of the transmitted packet is 0 × 52 or 0 × 51
respectively. If it is 0× 51, it indicates that the packet is an acceleration packet. Otherwise, it is
an angular velocity packet.
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Figure 10: Internal flow diagram

Figure 11: Algorithm for collecting inertial data
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5 System Experiments and Results

5.1 APP Design Test
An smartphone application is designed as shown in Fig. 12. In this interface, x, y and z

in the diagram are displayed for acceleration and angular velocity. In the test process, click the
“Select Bluetooth” button to select the corresponding Bluetooth. At this time, each axial waveform
will be displayed on the screen, and the data will be saved into two files in the system with file
extension “.txt”, with “ble6050a.txt” storing acceleration data, and “ble6050b.txt” storing angular
velocity data.

Figure 12: APP page

5.2 Prototype of the Ring Device
The smart ring implemented in this study uses a plastic platform, which does not produce

much interference compared with using metal material. The Printed Circuit Board (PCB) contains
a switch, MPU6050, CC2541. When the switch is open, a LED lamp will light up to indicate that
the device is running. Fig. 13 shows the prototype and the PCB diagram.

5.3 Experiments and Results Analysis
5.3.1 Measuring the Intensity of Finger Tremor

In our experiment, hand tremor is simulated by healthy people using protocols based on
the study as described in the research background. Three tests are conducted in this study. All
participants wear the ring device in their fingers (see Fig. 14).

Sample 1: The tested person stays static.

Sample 2: The tested person walks normally.

Sample 3: The tested person simulates the tremor.

During the test, we transmitted the data to the mobile APP according to the operation
instructions and selected sample screenshots as shown in the figures. Fig. 15 shows the waveform
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Figure 13: Prototype and PCB diagram

Figure 14: Wearing device on one finger

of three axis acceleration and angular velocity of Sample 1. Fig. 16 shows the waveform of
Sample 2. Fig. 17 shows the waveform of Sample 3.

Tabs. 4–9 present the raw data of the three samples of the experiments, and
Tabs. 10–12 present the processed data, where acceleration of three-axis is processed by numerical
value/32768× 16 g (where g is the acceleration of gravity and taken as 9.8 m/s2), and angular
velocity of three-axis is processed by numerical value/32768× 2000 (◦/s).

Tab. 4 shows the acceleration raw data of Sample 1.

Tab. 5 shows the angular velocity raw data of Sample 1.

Tab. 6 shows the acceleration raw data of Sample 2.

Tab. 7 shows the velocity raw data of Sample 2.

Tab. 8 shows the acceleration raw data of Sample 3.

Tab. 9 shows the angular velocity raw data of Sample 3.
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Figure 15: Waveform of three axis acceleration and angular velocity of Sample 1

Figure 16: Waveform of three axis acceleration and angular velocity of Sample 2
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Figure 17: Waveform of three axis acceleration and angular velocity of Sample 3

Table 4: Acceleration raw data of Sample 1

No. 1 2 3 4 5 6 7 8 9

X-axis 64842 64850 64930 64874 64888 64846 64846 64838 64884
Y-axis 63862 63870 63820 63880 63918 63864 63906 63816 63854
Z-axis 46877 46829 46801 46881 46960 46885 46875 46827 46915

No. 10 11 12 13 14 15 16 17 18

X-axis 64846 64862 64866 64944 64844 64870 6101 64848 64830
Y-axis 63788 63784 63808 63800 63834 63854 36220 63826 63814
Z-axis 46805 46909 46907 46960 46891 46861 50500 46833 46881

Table 5: Angular velocity raw data of Sample 1

No. 1 2 3 4 5 6 7 8 9

X-axis 65250 65251 65251 65251 65252 65254 65259 65250 65252
Y-axis 15 17 17 17 17 15 17 18 17
Z-axis 5 5 6 5 5 5 7 6 5

No. 10 11 12 13 14 15 16 17 18

X-axis 65252 65252 65252 65251 65252 65252 65252 65251 65251
Y-axis 18 17 18 17 17 17 17 17 17
Z-axis 4 4 4 6 4 6 6 6 4
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Table 6: Acceleration raw data of Sample 2

No. 1 2 3 4 5 6 7 8 9

X-axis 62113 62059 59870 60394 59264 58662 61238 62248 62310
Y-axis 56499 57455 55907 56132 55200 58647 57505 56433 58045
Z-axis 50710 51957 47140 48931 48201 50265 49632 48148 49570

No. 10 11 12 13 14 15 16 17 18

X-axis 63464 61886 58959 60190 4300 3519 8659 3696 2899
Y-axis 58334 58431 58563 5007 4379 7597 7055 2861 1650
Z-axis 48883 49411 49214 48341 54666 51748 51359 48472 47144

Table 7: Angular velocity raw data of Sample 2

No. 1 2 3 4 5 6 7 8 9

X-axis 142 191 65176 65138 65110 65197 65181 65200 65248
Y-axis 65180 65206 65008 64952 64753 64915 64766 65139 65019
Z-axis 717 987 1140 1093 1079 899 619 260 189

No. 10 11 12 13 14 15 16 17 18

X-axis 66 159 190 70 32 65249 15 65207 65239
Y-axis 64900 65027 65115 65255 65198 52 65228 65176 65235
Z-axis 615 943 870 596 275 134 42 49 43

Table 8: Acceleration raw data of Sample 3

No. 1 2 3 4 5 6 7 8 9

X-axis 4630 32640 15791 62209 15793 12551 23359 28427 18448
Y-axis 16123 45705 731 7374 53485 62077 11422 62426 58872
Z-axis 60109 1309 24235 65191 1475 642 3792 849 3312

No. 10 11 12 13 14 15 16 17 18

X-axis 23329 28427 18448 23329 13942 63163 30597 17460 19046
Y-axis 49411 63109 55445 63059 17432 54429 55547 61820 3961
Z-axis 3814 2786 61997 2688 1122 3168 2925 57750 61262

Tab. 10 shows strength table after Sample 1 treatment.

Tab. 11 shows strength table after Sample 2 treatment.

Tab. 12 shows strength table after Sample 3 treatment.
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Table 9: Angular velocity raw data of Sample 3

No. 1 2 3 4 5 6 7 8 9

X-axis 3580 4286 61476 4322 1999 4055 4274 62810 2851
Y-axis 7050 2984 60099 2839 1599 2828 2858 64154 2777
Z-axis 15347 11387 51430 11926 2839 8860 8624 62269 6957

No. 10 11 12 13 14 15 16 17 18

X-axis 62513 97 2750 62382 2952 969 64648 65143 1973
Y-axis 63368 65094 1937 63683 1262 467 64890 63819 1715
Z-axis 60510 63656 6310 54138 6577 64325 64654 60778 3087

Table 10: Strength table after Sample 1 treatment

No. 1 2 3 4 5 6 7 8 9

a1 275 275 275 275 275 275 275 275 275
a2 2000 2000 2000 2000 2000 2000 2000 2000 2000

No. 10 11 12 13 14 15 16 17 18

a1 275 275 275 275 275 275 222 275 275
a2 2000 2000 2000 2000 2000 2000 2000 2000 2000

Table 11: Strength table after Sample 2 treatment

No. 1 2 3 4 5 6 7 8 9

a1 275 275 275 275 275 275 275 275 275
a2 2000 2000 2828 2828 2828 2828 2828 2828 2000

No. 10 11 12 13 14 15 16 17 18

a1 275 275 275 222 222 157 157 157 157
a2 2000 2000 2000 2000 2000 2000 2000 2828 2828

Table 12: Strength table after Sample 3 treatment

No. 1 2 3 4 5 6 7 8 9

a1 157 157 0 275 157 157 0 157 157
a2 0 0 3464 0 0 0 0 3464 0

No. 10 11 12 13 14 15 16 17 18

a1 157 275 157 157 157 157 275 0 157
a2 3464 2828 0 3464 0 2000 3464 3464 0
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Figs. 18 and 19 show the intensity comparison of three samples for movements of static state,
walking state, and simulated tremor by “counting money.” Examining the waveform of figure and
the line graph of the processed intensity values of the acceleration and angular velocity, it can be
found that acceleration of Sample 1 is stable at 275 and angular velocity is stable at 2000. The
acceleration of Sample 3 fluctuates and so does the angular velocity.

Figure 18: Acceleration intensity comparison diagram

Figure 19: Angular velocity intensity comparison diagram

5.3.2 Determine the Degree of Bradykinesia in Parkinson’s Patients
To assess the severity of PD, the Unified Parkinson’s Disease Rating Scale (UPDRS) is

most commonly used. In this experiment, measuring the movement time between the touching
of thumb and the index finger is the most important part in order to analyze the symptoms
of bradykinesia between Parkinson’s patients and normal people. In the experiment, three par-
ticipants conducted as healthy people (Participant 1, Participant 2 and Participant 3) and three
participants (Participant 4, Participant 5 and Participant 6) simulated PD of UPDRS level
1–3. All these participantss touched the index finger with thumb, and the movement time was
measured respectively.
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The movement time T between the touching of thumb and the index finger can be calculated
using the collected data �Ax, �Ay, �Az, which represent the mutually perpendicular accelerated speed.
Eq. (1) is the relationship between resultant acceleration and the three components.

�Ar= �Ax+ �Ay+ �Az (1)

where, �Ar is the resultant acceleration, which can be represented using one 3-tuple (r, θ , ϕ)
according to the spherical coordinate system. After the coordinate transformation from Cartesian
to spherical, the resultant acceleration �Ar = (| �Ax|, | �Ay|, | �Az|) will be in the form of Eq. (2).

r=
√
| �Ax|2+ | �Ay|2+ | �Az|2 θ = arccos

(
| �Az|
r

)
φ = arccos

(
| �Ax|

r sin (θ)

)
(2)

The movement time T can be measured by evaluating the period P of angle θ or φ using
the Discrete-Time Fourier Transform Eq. (3). The sequence with N samples of angle θ can be
denoted as θ [N] when only considering angle θ .

Θ (ω)=
n=N∑
n=1

θ [n] e−iωn (3)

where, ω represents the angular velocity of θ . We then calculate the ω which makes the |�(ω)| to
achieve the maximum value. Then, T =P= 1/ω will be the movement time between the touching
of thumb and the index finger.

Fig. 20 is the maximum finger opening.

Fig. 21 is the moderate opening of the finger.

Fig. 22 is the two-finger touch diagram.

Tab. 13 shows the movement time of each sample and the doctor’s ratings according
to UPDRS.

Figure 20: Maximum finger opening
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Figure 21: Moderate opening of the finger

Figure 22: Two-fingers touch

Table 13: Time recording table

Subjects Average of
movement time (ms)

Standard deviation of
movement time (ms)

UPDRS assessment
of Bradykinesia

1 330 55 0
2 270 55 0
3 322 56 0
4 290 87 1
5 486 246 2
6 564 88 3
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It can be seen that the average finger movement time is 307 ms, and the standard deviation is
55 ms. The higher the level of bradykinesia is, the more serious the disease is. According to the
experimental results, the severity of symptom S is approximately linear with the finger touch time
T . The following Eq. (4) is a simple formula of the linear relationship between S and T:

S= aT + b (4)

where a, b are the coefficients which can be determined by experimental results.

5.4 Error Analysis
As can be seen in the experiments, the resting state waveform of Sample 1 is not very smooth

which may be caused by the following factors:

(1) The fingers cannot stay completely still.
(2) The interference of surrounding environment exists.

6 Conclusion

In this paper, we presented the design and implementation of a smart wearable device (smart
ring) for detecting hand tremor for Parkinson’s disease patients. We used MPU6050 (MIDI
Processing Unit) consisting of a 3-axis gyroscope and a 3-axis accelerometer to collect acceleration
and angular velocity of fingers. By analyzing the time of specific finger movements, we successfully
recognized the tremor signals with high accuracy. Meanwhile, with Bluetooth 4.0 (Bluetooth
Low Energy, BLE) and networking terminal ability, tremor data are transferred to a monitoring
smartphone application in real time. The experimental results have shown that the proposed device
is convenient for long-term tremor detection which is vital for early detection and treatment for
Parkinson’s disease. As future work, we will continue our study to address the following issues
we found with the product: (1) The selected 5 V button battery caused a noticeable amount of
power consumption in the process of transmitting data, making the standby time of the smart ring
shorter; (2) Although the size of the smart ring is small, the physical switch is big which should
be improved; (3) Open source Android APP is selected so that the conclusion can be obtained
only by refreshing the interface and then further analysis of data can be conducted to best utilize
this smart device.
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