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Abstract: The thermal-based imaging technique has recently attracted the atten-
tion of researchers who are interested in the recognition of human affects due
to its ability to measure the facial transient temperature, which is correlated with
human affects and robustness against illumination changes. Therefore, studies
have increasingly used the thermal imaging as a potential and supplemental solu-
tion to overcome the challenges of visual (RGB) imaging, such as the variation of
light conditions and revealing original human affect. Moreover, the thermal-based
imaging has shown promising results in the detection of psychophysiological sig-
nals, such as pulse rate and respiration rate in a contactless and noninvasive way.
This paper presents a brief review on human affects and focuses on the advan-
tages and challenges of the thermal imaging technique. In addition, this paper dis-
cusses the stages of thermal-based human affective state recognition, such as
dataset type, preprocessing stage, region of interest (ROI), feature descriptors,
and classification approaches with a brief performance analysis based on a num-
ber of works in the literature. This analysis could help beginners in the thermal
imaging and affective recognition domain to explore numerous approaches used
by researchers to construct an affective state system based on thermal imaging.

Keywords: Thermal-based imaging; affective state recognition; spontaneous
emotion; feature extraction and classification

1 Introduction

For a long time, human affects (emotion, facial expression) have acquired a great attention by researchers.
For instance, in the 17th century, John Buwler wrote his book, “Pathomyotomia or Dissection of the Significant
Muscles of the Affections of the Mind.” He demonstrates the mechanism of muscles on facial expressions [1].
Charles Darwin [2] illustrates the expressions of human and animals by claiming that emotions are innate.
Duchenne de Boulogne [3] describes how muscles produce facial expressions. He published facial
expression pictures obtained from the electrical stimulation of human muscles. Ekman and Friesen [4]
proposed a prototype comprises of six basic human emotions that encompass different cultures. Russel’s [5]
mapped the categories of emotion into a valance and arousal dimensional model.

Recently, the recognition of human affective state becomes a crucial aspect in different domains and
applications due to the sophistication of smart technologies, and growing of the power of processing units

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.015222

Article

echT PressScience

mailto:sufril@usm.my
http://dx.doi.org/10.32604/csse.2021.015222
http://dx.doi.org/10.32604/csse.2021.015222


and artificial intelligent techniques. For example, the understanding of humans’ current state not only
facilitates human to human communication, but can also increase human computer interaction (HCI).
Another example is the assessments of patients’ needs who are unable to express their emotions, such as
people who have autism disorder [6]. In human robot interaction (HRI) [7], such a technique allows
robots to understand and distinguish between negative and positive emotions [8]. In security applications,
the technique helps identify poker faces (people who have the ability to hide their emotions) [9].
Additionally, it is also useful in stress detection applications to avoid bad consequences, such as
cardiovascular diseases, cancer disease [10,11], and suicide phenomenon [12].

Psychological science mainly describes human affects in three main modalities; the categorical model,
dimensional model, and appraisal model. In terms of categorical model, human affects can be described as a
number of distinctive affective states called basic emotions and various theories have supported this type of
emotion description. For example, Mowrer [13] claims that only two unlearned basic emotions exist, which
are pleasure and pain. Frijda [14] introduced six basic facial expressions that can be formed by a reading
process. Ekman [15] introduced six basic emotions, which can be recognized universally. Conversely, a
dimensional model describes human affects in a dimensional way. For example, the study of Russell [5]
demonstrates human affects in a 2D-space, which are valance (miserable to gland) and arousal (sleepy to
aroused). The third category of human affect is represented as an appraisal-based emotion. In fact, the
appraisal approach is a psychological theory, which categorizes human affects by the evaluation
(appraisal) of the events, which is a specific reaction. Therefore, emotion could be elicited by appraisal
(evaluation) of events [16]. For example, Orton and Clore [17] explain appraisal theories and how
cognition shapes influence human emotions.

Human affects are influenced by several factors, and it can be revealed through a set of human channels,
such as voice, gesture, pose, gaze direction, and facial expressions [18]. Psychology sciences classify human
communication into verbal and nonverbal categories, of which the nonverbal communication comprises
signals, such as kinesics, proxemics, haptics, physical appearance, and paralanguage. Kinesics behavior
represents gestures, motion, eye gaze, posture, and facial expressions, while paralanguage represents the
voice, volume, tone, pitch, and rate of a speaker [19–21]. Facial expressions influence the spoken
message about 55%, while the influence of spoken words is only 7% [22]. Facial expressions consist of
primitive and nonverbal language, which represent the basic unit of meaning, and it is identical to words
in spoken languages [23]. On the other hand, emotions have a significant role in human affective states
and represent the stimulations process to conscious or unconscious awareness for events or objects
attached to a mental state [24]. Due to the important role of face to convey human affects, Ekman and
Friesen [25] introduced an anatomical tool to describe the movement of facial muscles during emotion
called facial action coding system (FACS) and the muscles movement is described as an action unit (AU).

In addition to psychological behaviors, past studies have also focused on physiological signals in
studying human affects. In fact, the nervous system in human comprises two main parts, which are
central nervous system (CNS) and peripheral nervous system (PNS). The PNS also consists of autonomic
nervous system [26] and somatic nervous system (SNS) [27]. Considering ANS, it can regulate numerous
physiological processes, such as heart rate, breathing rate, digestion, blood pressure, body temperature,
and metabolism. Consequently, human behaviors and affects can be reflected from physiological signals
[27,28]. The following physiological sensors have been employed by researchers, such as
electromyograph (EMG), electrocardiogram (ECG), electroencephalogram (EEG), Galvanic skin response
(GSR), and photoplethysmogram (PPG).

In most recent decades, the literature seems to reflect the concern about constructing various types of
automatic human affective state recognition modalities. These modalities can be categorized based on the
type input source of the model. For example, a large number of studies have focused on visual-based
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(RGB imaging) facial emotion recognition, while other studies selected thermal-based (infra-red thermal
imaging) facial emotion recognition. Several human affective state recognitions based on voice, gestures,
and physiological signals have been obtained. Several reviews and survey studies have been conducted in
recent years. For example, the multimodal affective state recognition can be referred to [29–35]. In the
physiological-based domain, readers can refer to [27,36–40], for a visual-based facial affective state
recognition [41,42], and for thermal-based facial affective state recognition, readers can refer to [43–47].
This study focuses on the thermal-based affective state recognition. The goal of this study was as follows:
First, to introduce the important role of thermal imaging in the affective state recognition. Second, to
review databases that are used in the thermal affective state recognition and its challenges. Third, to
discuss the general stages of thermal-based affective state recognition, such as preprocessing, region of
interest (ROI), feature extraction, and classification. The final goal of this survey was to propose a brief
performance analysis based on numerous studies to explore the performance of feature descriptors,
classification algorithms, and databases, which were used by past studies. The organization of this paper
is as follows: Section 2 discusses the thermal-based affective state recognition, while Section 2.1 reviews
the types of thermal databases and its challenges. Section 2.2 presents the preprocessing stage based on
the literature’s perspective, and Section 2.3 discusses the facial region of interest (ROIs) and its
correlation with human affects. Section 2.4 discusses numerous feature extraction methods with brief
performance analyses. Section 2.5 reviews classification approaches with a brief performance analysis.
Finally, Section 3 concludes this study.

2 Thermal-Based Affective State Recognition

Recently, studies have increasingly adopted the thermal imaging in the affective state recognition due to
several factors. In the past, the technology of thermal camera was not feasible because of its low resolution,
high cost, heavy weight, and the need to control environment for a stable ambient temperature [48]. The
advancement of thermal devices produced new categories of portable and flexible thermal sensors in
lightweight, low cost price, and with high resolutions, like mobile thermal sensors. Therefore, the
sophisticated thermal sensors motivate researchers to explore thermal imaging inside laboratories and in
real world environments for several application, such as human stress recognition [49], and physiological
monitoring, such as respiration rate and heart rate [50]. Moreover, the Covid-19 pandemic has increased
the popularity of thermal sensors to detect people’s temperatures in a contactless and noninvasive way.
Another factor that reveals the importance of thermal imaging is the nature of human affect. From the
psychophysiological perspective, ANS is responsible for regulating human physiological signals, such as
heart rate, respiration rate, blood perfusion, and body temperature during human affect. Hence, thermal
imaging becomes a potential solution to measure the facial transient temperature [51]. Past studies have
also used thermal imaging to detect another vital signals, which are correlated with human affect, such as
respiration rate and pulse rate and it could overcome the challenges of contact-based and invasive
physiological sensors [52–57]. When comparing between thermal-based imaging with visual-based
(RGB) imaging, studies have reported several advantages of thermal images over visual. For example,
visual-based methods reported challenges to distinguish between the original and fake human affective
state, especially for those people who are skillful in disguising their emotions [58], visual-based systems
are sensitive to an illumination change [59–61], the variety of human skin color, facial shape, texture,
ethical backgrounds, cultural differences, and eyes could influence the accuracy of the affective state
recognition rate [59,62]. Visual-based recognition approaches have used posed databases due to the lack
and difficulties in constructing a spontaneous database, which means that it reduces the efficiency of
recognition of the spontaneous affective state [63–65]. Moreover, visual-based imagining approaches
provide an inaccurate recognition accuracy in uncontrolled environments [66]. On the other hand,
thermal-based imaging is robust against light conditions, which means that it can be used even in full
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dark environments. Thermal-based imaging can capture a temperature variation influenced by human affects,
therefore, it can be adopted to differentiate between spontaneous and fake emotions. For example, studies
have shown that the variation of temperature between the left and right side of the face and a temperature
change in periorbital and nasal facial regions are correlated to human affective state [67], also, the
variation of blood flow in periorbital region provides an opportunity to measure the instantaneous and
sustained stress conditions [68]. Past studies have also reported challenges obtained from thermal
imaging, such as facial occlusion of glass opacity in individuals who wear eyeglasses. Consequently, the
occlusion creates a challenge to read facial heat pattern. Head pose is another challenge that could
influence recognition accuracy in thermal-based affective state recognition. Several studies proposed a
solution to solve occlusion and head pose challenges, such as in the following studies [58,69–72]. Past
studies have also used the thermal-based imaging as a complementary tool to overcome challenges of
visual-based imaging and to enhance human affective state’s recognition accuracy by the fusing of
features from both types of images, such as [69,73–77]. The thermal-based affective state recognition
comprises numerous stages, such as dataset selection, preprocessing, region of interest (ROIs) selection,
feature extraction (descriptors), and classification process. The section that follows reviews the
abovementioned stages of affective state recognition and presents a brief performance analysis based on a
number of works in the literature as demonstrated in Tab. 1

Table 1: Literature work of thermal-based affective state recognition, R/A is recognition accuracy

Author Dataset ROI Emotion Descriptors Classifier R/A

[58] KTFE � Forehead � Anger � Moment invariants � Multiclass-SVM 87.5

� Eyes � Fear � Histogram statistics

� Cheeks � Happy

� Nose � Sad

� Mouth � Normal

[60] KTFE � Refer to paper � Angry � Statistical � PCA 90.42

� Disgust

� Fear

� Happy � EMC 89.99

� Sad

� Surprise

� Neutral � PCA-EMC 85.94

[78] Their own
dataset

� Whole face � Angry � HOG � modified Hausdorff
distance (MHD)

66.8

� Disgust

� Fear

� Happy

� Sad

� Surprise

[79] Their own
dataset

� Supraorbital � Angry � GLCM � SVM :Fine Gaussian 88.5

� Periorbital � Disgust

� Nose � Surprise � Tree Complex 61.4

� Mouth � Weighted KNN 99.1
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Table 1 (continued).

Author Dataset ROI Emotion Descriptors Classifier R/A

[80] Dataset
from [80]

� Whole face � Neutral � DSIFT � SVM 75.4

� Happiness

� Sadness

� surprise

[81] Their own
dataset

� Forehead � High Stress � Statistical � LDA 89.3

� Periorbital � Neutral

� Lower cheeks � Low stress

� Below bottom lip

[82] USTC-
NVIE

� Facial AUs � Angry � FCTH � KNN 34

� Disgust

� Fear

� Happy

� Sad

� Surprise

[83] Their own
dataset

� Face � Affective vs Neutral � Statistical � Ada boost 90

� Neck � Positive Vs Negative Vs
neutral

54

� shoulders
� Positive Vs Negative 50

[84] USTC-
NVIE

� Forehead � Embarrassment � Histogram of SIFT
flow bag of words

� SVM 91

� Left cheek � Surprise � Facial temperature
changes

� Right cheek � Happiness

� Sadness

� Disgust

� Anger or Upset

� Pain

� Fear or Nervous

[85] NVIE � Forehead � Low Valance and High
Valance

� Thermal statistic
features

� DBM 62.9

� Eyes � 2D-DCT � SVM

� Mouth � GLCM

� DBM features

[86] Their own
dataset

� Forehead � Happy � PCA � SVM 77.5

� Periorbital � Anger

� Nose

� Mouth

[87] Their own
dataset

� Supraorbital � Angry � 2DWT � SVM 98.6

� Periorbital � Disgust � GLCM

� Maxillary /Nose � Fear � LBP

� Mouth � Happy

� Sad

� Surprise

(Continued)
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2.1 Thermal Dataset

Thermal databases can be divided based on the affective type into three main categories, such as posed,
induced, and spontaneous databases [91]. In posed databases, in past studies, participants were asked to act
different types of emotions to collect posed affective state. Therefore, this type of emotion does not reflect
true human affects. To elicit human affects, the participants were exposed to stimuli to induce their affects,
while in the spontaneous type, the participants were not aware of the video recording of their acts that
captured their images. Hence, the process of the construction of spontaneous databases is very difficult
[63]. More importantly, thermal-based affective state recognition systems require databases that comprise
different factors, which play an important role on recognition accuracy, such as aligned and cropped
faces, illumination variation, head poses, and occlusion [92]. Due to the importance of thermal imaging
in recognition of human affective state, several methods have been proposed to construct thermal-based
databases. From the study of Wang et al. [92], a natural visible and infrared facial expression (NVIE)
database was constructed. This database comprises both thermal and visible images acquired
simultaneously from 215 participants. Also, the database was manually annotated and contained
landmarks for spontaneous and posed expressions. In addition, facial images with and without eyeglasses
were captured under different illumination conditions. For validation and assessment purposes, the
authors have applied PCA, LDA, and AAM algorithms for visible expression recognition and PCA, and
LDA for infrared expression recognition from the results of the thermal classification algorithms and
analysis of correlation between facial temperature and emotions. The authors reported that NVIE database
provides suitable features for the thermal affective state recognition process.

Table 1 (continued).

Author Dataset ROI Emotion Descriptors Classifier R/A

[88] KTFE � Whole face � Angry � Statistical � PCA 73.96

� Happy � EMC

� Fear � PCA-EMC

� Sad 66.45

� Neutral 70.34

[89] Their own
dataset

� Left and right forehead � Disgust � statistical � LDA 85

� Left and right periorbital � Fear

� Tip of nose � Happiness

� Cheeks � Sadness

� Left and right perinasal � Surprise

� Left and right chin

[90] Their own
dataset

� Facial thermal feature points
on facial muscle
map (forehead, Around
eyes, cheeks, around
mouth, chin)

� Neutral � PCA � LDA 83.3

� intentional happy and
sad

� Statistical features

� Neutral 67.2

� intentional happy,
disgust, surprise, angry

� Neutral 57.1

� Six pretended basic
emotions

� Neutral 72

� Evoked happy, sad,
disgust, angry
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Kopaczka et al. [70] constructed a thermal database, which includes a number of features that facilitate
the affective state recognition in thermal imaging as follows: Firstly, the database comprises spontaneous and
posed expressions, and secondly, for occlusion challenge the database encompasses faces with and without
spectacles to solve occlusion challenges, then, the authors captured faces with different positions to allow
algorithms to deal with the head movement problems. In addition, the database consists of 68 manually
annotated facial landmarks and numerous AUs for thermal recognition. Finally, the authors evaluated
their database by applying the different types of features and classification algorithms, such as HOG,
LBP, SIFT, SVM, KNN, BDT, LDA, NB, and RF classifiers. Their study reported the ability of the
database to train machine learning algorithms. Nguyen et al. [93] constructed the KTFE facial expression
database. This database focuses on natural and spontaneous expressions in thermal and visible videos.
The authors claim that their database solves a number of problems found in other facial expression
databases, such as time interval between stimuli and participants’ response. More importantly, thermal
databases are very few compared to visual databases [91], and numerous challenges could influence the
quality of data. For example, the number of annotated facial images is small, which limits the use of
machine learning algorithms and the type of expressions in these databases are posed expressions [92,93].
Consequently, the rarity of thermal databases could limit the validation process and comparison between
several thermal based affective state methods.

Due to the important role of spontaneous affective state, this paper conducted a brief analysis to show the
percentage of spontaneous database compared to posed databases. The analysis relied on the study of Ordun
et al. [94] as this study collected 17 thermal emotion databases. The percentage of abovementioned dataset
types in their collected databases is as follows: Spontaneous database 17.6 %, posed database 58.8 %,
spontaneous with posed database 11.8 %, and unknown type of databases is 11.8 %. This analysis may
assert the challenge of collecting spontaneous human affects. As listed in Tab. 1, 50 % of the studies
conducted their own experiment (handcraft) to collect induced affective state dataset rather than posed
affects. The percentage of studies that used KTFE and UTC-NVIE dataset is 18.75 %. From this analysis,
it can be concluded that past studies tended to use their own handcrafted dataset more than the public
dataset and the reason could be linked to the rarity of spontaneous and induced databases and not all
databases are available for public. For example, the percentage of databases, which require a permission
from the owners to use and the ones listed in Ordun et al.’s [94] study is 52.9 %, while 11.7 % of
databases is publicly available and 35.2 % of the listed databases have no information about publicity of
use. Another important issue that could be helpful in selecting an appropriate database is by analyzing the
performance of recognition affective state with respect to the type of dataset. Therefore, Fig. 1
demonstrates the average recognition accuracy results with respect to the dataset type. From Fig. 1, it can
be noticed that the average recognition accuracy results obtained by using KTFE, dataset developed
based on the literature (handcraft), Ref. [80] database, and UTC-NVIE database are 80.65%, 75.98%,
75.40%, and 62.63%, respectively.

2.2 Preprocessing Stage

Thermal-based images are different in structure than visual-based images due to its thermal temperature.
Therefore, several characteristics of geometric, appearance, and texture of thermal images need different
preprocessing methods for image enhancement, noise reduction, and for facial extraction. In the pre-
processing stage, past studies have used several methods to enhance thermal images and to extract facial
region. For example, Kopaczka et al. [70] applied HOG with SVM for face detection. Merhof et al. [71]
implemented unsharped mask for image enhancement. The study used lowpass gaussian filter and
subtracted the filtered image from the original image. Liu and Yin [84] proposed a unified model, which
comprises a mixture of trees with shard pools of parts for face detection taken from [95] to allocate a
facial region for the first frame, then, they used the first frame to calculate the head motion. In
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Wang et al. [85], they applied the Otsu thresholding algorithm to generate a binary image. Then, they calculated
vertical and horizontal curves from the binary image and detected a face boundary from the largest gradient of
projection curve. To improve the image contrast, Latif et al. [87] implemented the contrast limited histogram
equalization (CLHE) on thermal images. Mohd et al. [59] applied the Viola-Jones boosting algorithm with
Haar-like features to detect a facial region. The study applied a bilateral filter for noise reduction and facial
edge preservation. Wan et al. [88] proposed a temperature space method to distinguish facial region from
image background. Trujillo et al. [96] applied the bi-modal thresholding method to locate facial boundaries.
Kolli et al. [78] proposed a color-based detection, region growing with morphological operation for face
detection. Goulart et al. [89] extracted a facial region form thermal image by using the median and gaussian
filters with a binary filter to convert the facial region into a pure black and white. Khan et al. [90] applied
the median smoothing filter for blurring and noise reduction and sobel filter for edge detection. Cruz-
Albarran et al. [97] proposed a thresholding value to extract a facial region from an image background.
Mostafa et al. [72] proposed the tracking ROI method, of which their method is composed of an adaptive
particle filter tracker to track the facial ROI. From these studies, it can be noticed that different methods
have been proposed for thermal image enhancement and for facial extraction.

2.3 Region of Interest (ROI)

A facial temperature is influenced by human affects as an autonomic nervous system (ANS) responses to
human affects, like emotions or mental trigger physiological changes, such as an increasing blood flow inside
the vascular system. Hence, the human body temperature is regulated through the propagation of internal
body heat to human skin. The variation of facial temperatures could be measured by using the IR-thermal
[98]. Another factor that influences facial temperature is the facial muscles contraction, which also
produces heat that propagates to facial skin [99]. However, the literature has mainly focused on numerous
facial areas to measure human affects, such as forehead, eyes, mouth, periorbital, tip of nose, maxillary,
cheeks, and chin [60,81,82,84,87,100]. Several studies have observed the variation of temperature in the
facial ROI with respect to human emotion type. For example, the study of Ioannou et al. [47] reported
that the temperature of the nose, forehead, and maxillary reduces in stress and fear affective state, and the
periorbital temperature increases in the anxiety affective state. Their study demonstrates the temperature
variation in facial ROI as shown in Tab. 2. Moreover, Jian et al. [67] have shown that cheeks and eyes
have positively correlated with human emotion. Furthermore, Cruz-Albarran et al. [97] reported that the
temperature of the nose and maxillary is reduced in fear, joy, anger, disgust, and sadness emotions, while
the cheeks’ temperature increases in disgust and sadness affects. Also, Ioannou et al. [47] reported the
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Figure 1: Average recognition accuracy results with respect to database type
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decrease in the forehead’s temperature when in fear and sadness, and increases in an anger affective state.
Tab. 2 demonstrates the temperature changes in facial ROIs within human affects, taken from [47].

2.4 Feature Extraction (Descriptors)

Features play an important role in the recognition human affects, especially in thermal images, which
have a different texture, appearance, and shape than the RGB images. Past studies have used several
types of thermal descriptors in their works. The performance of affective state recognition relies on the
efficiency of facial features from either the whole face or facial parts (ROI). Tab. 1 in this survey
demonstrates numerous types of feature extraction. From Tab. 1, it can be noticed that more than 50% of
the studies have used statistical features. For example, Cross et al. [81] selected the mean value of
temperature points, while Pérez-Rosas et al. [83] used an average temperature, overall minimum and
maximum temperature, standard deviation, and standard deviation of minimum and maximum
temperature. Nguyen et al. [69,88] applied the covariance matrix over facial temperature points. Liu and
Yin [84] applied the histogram of SIFT features with the variation of facial temperature. Wang et al. [85]
selected a number of statistical features in addition to 2D-DCT, GLCM, and DBM features. Basu et al.
[58] applied the moment invariant with histogram statistic features, while Goulart et al. [89] applied
numerous statistical features, such as mean emissivity, variance of emissivity, mean value of rows and
columns, median of rows and columns, and another seven statistical features. Similarly, the study of
Khan et al. [90] applied a number of statistical features, such as mean of thermal intensity values,
covariance, and eigenvectors. Another important feature has also been paid attention to by researchers
that is the gray level co-occurrence matrix (GLCM) [79,85,87]. GLCM is used to describe the texture
information in thermal images and co-occurrence distributions, which represent the distance and angles of
spatial relationship over the image. GLCM composes multiple directions during the analysis, such as
vertical direction (0°), vertical direction (90°), and diagonal direction (45°) and (135°). Histogram of
oriented gradient (HOG) is another facial descriptor used in thermal-based affective state recognition [78].
The HOG descriptor counts the occurrence of gradient orientation from a local region in an image, by
dividing the image into a number of sub-regions called cells and computes the histogram of gradient
direction for each cell. Local Binary Pattern (LBP) is applied in thermal-based affective state recognition
[87]. This descriptor thresholds the neighborhood of pixels image by using 3 × 3 filter where the center
of the filter is the pixel image, while the others represent pixel neighborhoods, and the threshold value is
represented in the form of binary numbers. LBP operators have been updated by extending the pixel
neighborhoods as a circular neighborhood to utilize the features from different scales [101]. Different
kinds of LBP have been established, for example, LBP for spatial domain, LBP for spatiotemporal

Table 2: Temperature variation of facial ROIs during human affective state, ‘+’ temperature increased, ‘-’
temperature decreased, ‘NA’ not available, this table adapted from [47]

Facial ROI Stress Fear Startle Sexual Arousal Anxiety Pain Guilt

Forehead +/− – NA + + – NA

Periorbital NA NA + + + NA NA

Supraorbital NA NA + NA + NA NA

Cheeks NA NA – NA NA NA NA

Nose – NA NA NA NA NA NA

Maxillary – – – NA NA – –

Lips/mouth NA NA NA + NA NA NA
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domain, and LBP for face description. Scale-invariant feature transform (SIFT) and Dense SIFT have also
been selected as facial descriptors in thermal-based affective state recognition [84,80]. The general idea of
the SIFT descriptor is to describe the local features in an image based on Euclidian distance. Principle
Component Analysis (PCA) is a statistical approach selected by past studies for dimensionality reduction
[86,90] by converting a large set of variables to a small set, while preserving the information that exist in
the large set. Principal Component Analysis (PCA) is another important descriptor. This descriptor
transforms numerous possible correlated variables to small uncorrelated variables (principal components),
in a facial expression recognition domain. PCA extracts the facial features from a set of images, which
are global facial images and varies from mean face (eigenface). However, another several feature
descriptors have also been utilized by past studies. For example, 2D-DCT was used with other descriptors
in [85]. 2DWT applied by [87] and Fuzzy Color and texture histogram (FCTH) were used in [82]. This
paper analyzed the performance of facial descriptors as follows: The first analysis was the maximum
recognition accuracy result reported in Tab. 1, which is 98.6% obtained by combining 2DWT, GLCM,
and LBP features as reported in [87]. The next analysis represents the maximum feature selected by past
studies. As shown in Tab. 1, about 50% of past studies used statistical features and reported an overall
average recognition accuracy result of 75.91%. The reason of selecting statistical features could be due to
the nature of thermal imaging, which motivated past studies to measure the variation of facial skin
temperature rather than the RGB images, which have a better facial texture and shape.

2.5 Classification

Robust classification method is crucial in thermal-based affective state recognition in order to maintain a
high accuracy of affective prediction. Consequently, several classifiers have been used for this purpose. As
demonstrated in Tab. 1, it can be noticed that the SVM classifier has been used widely in past studies
[58,61,79,80,84–87]. The second classifier focused by past studies is LDA [81,89]. In addition, KNN is
another important classifier [82,102]. PCA, EMC, and PCA-EMC have been used by [60,88,90].
AdaBoost was also selected by [83]. Deep Boltzmann machine (DBN) was used in [85]. The Modified
Hausdorff distance (MHD) was applied in [78]. Tree complex classifier was implemented in [79]. This
paper analyzed the performance of numerous classification algorithms. The maximum accuracy results is
99.1% reported in [79]. The classifier used in this study was weighted KNN. Moreover, the average
accuracy result reported from all literatures is 76.69%. Fig. 2 demonstrates the analysis of classifier
recurrent with its average recognition accuracy. From this figure it can be noticed that the classifier that
was more frequently used in past studies is SVM with 28% of recurrent and reported higher average
recognition accuracy results, which is 83.05%.
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Figure 2: Classification algorithm analysis, percentage of recurrent and average recognition accuracy
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3 Conclusion

This paper discusses the importance of thermal-based imaging in affective state recognition. Thermal
images have important characteristics that could help researchers to overcome well-known challenges of
other techniques like visual-based affective state recognition and physiological-based affective state
recognition. For example, thermal images are robust against illumination changes and it captures the
facial transient temperature, which reflects human inner affects. Moreover, past studies have used thermal
images to measure important vital signals, such as pulse rate and respiration rate in a contactless and
noninvasive way. Therefore, researchers have recently paid their attention to the thermal-based imaging
technique as a potential and supplemental solution to the challenges of affective state recognition. This
paper also discusses general stages of affective state recognition based on thermal imaging and conducted
a brief performance analysis. Based on the analysis of this paper, 50% of past studies have conducted
their own dataset and the reason could be due to the rarity of spontaneous and induced databases, and
52.9% of the public databases require the permission to use. This paper also reported that 50% of past
studies applied statistical features with an overall recognition accuracy of 75.91%. In the classification
stage, the analysis of this paper shows that SVM is the classifier that have been more frequently used by
past studies with 28% recurrent of use and an overall average recognition accuracy of 83.05%.
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